
django-nomad-notifier Documentation
Release 1.4.8

Hector Garcia

October 17, 2016





Contents

1 Overview 1
1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

i



ii



CHAPTER 1

Overview

This Django app provides a way to implement a notification system for the users of web apps that must receive
updates from the site activity through the following channels:

• Email notifications: usually transactional emails (messages like “Hi Frankie, Jimbo is now following you” or
“You have unlocked a new level”) but any type of email in practice.

• Web notifications: displayed/listed on UI (“ala” social apps such as Facebook or Google+). A list of notifica-
tions that can be marked as read.

Contents:

1.1 Installation

1.1.1 Dependencies

• django-model-utils: https://github.com/carljm/django-model-utils/

1.1.2 Initial setup

The package is listed in the Python Package Index. You can use your favorite package manager like easy_install
or pip:

pip install django-nomad-notifier

Or, you can clone the latest development code from its repository and add the folder to your python path. For example,
if you use virtualenvwrapper:

git clone git@github.com:Nomadblue/django-nomad-notifier.git
add2virtualenv django-nomad-notifier/

Add notifier to the INSTALLED_APPS setting of your settings.py:

INSTALLED_APPS = (
...
'notifier',

)

We use migrations to nicely update our database with the Notification model schema. But wait! Since there are
models that depend on custom user (settings.AUTH_USER_MODEL), we cannot provide the migrations with the
package. Instead, our policy at Nomadblue is to create them out of the scope in another place.

1

https://github.com/carljm/django-model-utils/
http://pypi.python.org/pypi/django-nomad-notifier/
http://virtualenvwrapper.readthedocs.org/en/latest/


django-nomad-notifier Documentation, Release 1.4.8

Prior to Django 1.7, there was South . So, for example, in an app called website it would be:

SOUTH_MIGRATION_MODULES = {
'notifier': 'website.notifier_migrations',

}

From your project root, create the initial migration and apply it:

python manage.py schemamigration notifier --initial
python manage.py migrate notifier

In Django 1.7 or beyond, where South was incorporated as part of the core, the equivalent setting is:

MIGRATION_MODULES = {
'notifier': 'website.notifier_migrations',

}

From your project root, create the initial migration and apply it:

python manage.py makemigrations notifier
python manage.py migrate notifier

If you prefer not to use migrations, can sync with the Django command:

python manage.py syncdb

Finally, if you want to enable email notifications (disabled by default), you must set the following in your
settings.py:

SEND_EMAIL_NOTIFICATIONS = True

1.2 Usage

django-nomad-notifier is not functional by itself. You must do your homework to get it running. This app is
meant to provide only the essential parts for the sole purpose of exposing a model and a mixin. Those minimal code
helps you build notification models that will inherit the functionality and will hold the information needed in order to
send email notifications (and show them on web as well).

What we do at Nomadblue, for instance, is adding a new app notifications that will store the models, templates,
and any other related files.

1.2.1 Creating notification models

You must do three things to successfully create a new type of notification:

• Subclass models.Notification to get the model fields and basic methods.

• Use the NotificationMixin to get the basic methods.

• Override some methods to provide the minimal functionality.

For this documentation we are going to create a simple welcome message notification that will be attached to a Django
User model whenever a new user is created (i.e. a user signs up). It will be a notification that will be sent via email
and also displayed on a web notifications list.

2 Chapter 1. Overview

http://south.aeracode.org/


django-nomad-notifier Documentation, Release 1.4.8

1.2.2 Subclassing models.Notification

First of all, the code for the impatient:

class WelcomeNotification(Notification, OurNotificationMixin, NotificationMixin):
"""Welcomes the user after signup"""

# This is the model instance that the notification will reference to. In this
# particular case, it has to be the user model who just signed up.
obj = models.OneToOneField(settings.AUTH_USER_MODEL)

# Template for web notification list
web_noti_tmpl = 'notifications/includes/welcome_notification_list_item.html'

# Templates for email notification
email_subject_tmpl = 'notifications/email/welcome_noti_subject.txt'
email_plaintext_body_tmpl = 'notifications/email/welcome_noti_plaintext_body.txt'
email_html_body_tmpl = 'notifications/email/welcome_noti_html_body.html'

def get_obj_url(self):
"""
This method is used to specify URL to redirect user after
notification is been cleared (a.k.a 'mark as read')
"""
return self.obj.get_absolute_url()

As you can see, we must provide the template paths for the two notification types (web and email), the
get_obj_url method (used in the views.ClearNotificationView) and, the most important, adding the
NotificationMixin so our model inherits the methods defined there and which will help us sending the email
notification.

But wait! You surely have taken into account on another mixin we are using, OurNotificationMixin. This
mixin, whose code we provide below, holds some other mandatory methods we must implement if we want to send
notifications via email:

class OurNotificationMixin(object):
from_email = settings.DEFAULT_FROM_EMAIL

def get_email_headers(self):
# Replace 'Your name' with your real name or project name
return {

'From': 'Your name <%s>' % self.from_email,
}

def get_recipients_list(self):
# Here we include only the notification user email but
# in fact the recipient/s could be whichever.
return [self.user.email]

These two methods are conveniently stored in a mixin because tipically we end up creating many notification models
with different templates but the same common functionality.

Finally, we need to create our web and email templates. The property names are rather self-descriptive, but here it is
defined what must each template contain:

• web_noti_tmpl: template that renders the web notification snippet (each item on a notification list).

• email_subject_tmpl: template that contains the email subject (e.g. “Thanks for signing up”)

• email_plaintext_body_tmpl: template containing the plaintext version of your email.

1.2. Usage 3



django-nomad-notifier Documentation, Release 1.4.8

• email_html_body_tmpl: template containing the HTML version of your email.

1.2.3 Sending email notifications

OK, now what? As the example we are describing is a notification message a brand new user receives after the
registration process in our site, we want firstly to send the email. So, we could for instance create a new instance of
our WelcomeNotification from our signup view:

try:
user.welcomenotification # In case user is re-visiting the view by mistake

except WelcomeNotification.DoesNotExist:
WelcomeNotification.objects.create(user=user, obj=user)

Last step is to make the call to the NotificationMixin.send_notification_email method. We fancy
using the post_save signal here:

def send_email_notification(sender, instance, created, **kwargs):
if created:

instance.send_notification_email()

post_save.connect(send_email_notification, sender=WelcomeNotification)

1.2.4 Displaying web notifications

What about showing a list of notifications in the user interface, where they can review them and clear them (mark as
read)? We can go straight using the urls and views powered in the app. Include the calls in your root urls.py:

url(r'^notifications/', include('notifier.urls')),

Assuming that you have already created your template (its path stored in web_noti_tmpl), if you visit
http://localhost:8000/notifications/ you should see a list of notifications. Of course you can go
ahead and override the notifier/notifications_list.html template.

1.2.5 Types of notifications

In our previous example we created a web and email notification, i.e. a notification that is sent via email and displayed
on you website. But perhaps you want to send an email but not show the notification via web. No problem! The
Notification object supports specification of types of notifications with its noti_type field. Adjusting the
creation of the notification above, we would end up with:

try:
user.welcomenotification # In case user is re-visiting the view by mistake

except WelcomeNotification.DoesNotExist:
WelcomeNotification.objects.create(user=user, obj=user, noti_type=WelcomeNotification.EMAIL_NOTI)

1.3 Settings

1.3.1 SEND_EMAIL_NOTIFICATIONS

Default: False

Set this to True to enable the app to send email notifications. It is disabled by default to avoid unwanted “surprises”
(e.g. sending emails to real users by mistake), so we force you to explicitly set it up.

4 Chapter 1. Overview



django-nomad-notifier Documentation, Release 1.4.8

1.3.2 NOTI_FAIL_SILENTLY

Optional setting Default: False

If there is an error sending a notification via email, the SMTP exception is captured and stored in the object. By
default, the exception is thrown and the application fails, but if setting is present and set to True, it will fail silently
and not crash. It is sometimes for production servers, where we do not want errors to break our user experiences.

1.3. Settings 5


	Overview
	Installation
	Usage
	Settings


