

Welcome to django-newsletter’s documentation!

Django app for managing multiple mass-mailing lists with both
plaintext as well as HTML templates with rich text widget
integration, images and a smart queueing system all right from
the admin interface.

	Installation

	Settings
	Required Settings

	Optional Settings

	Usage
	Embed A Sign-up Form Within Any Page

	Templates
	Web view templates

	Email templates

	Using a premailer

	Reference
	Models

	Forms

	Views

	Upgrading
	0.7: Management command instead of django-extensions cron job

	0.6: Upgrading from South to Django Migrations

	0.5: Message templates in files

	0.4: South migrations

	Changes [https://github.com/jazzband/django-newsletter/blob/master/CHANGES.rst] (GitHub)

	Contributors [https://github.com/jazzband/django-newsletter/blob/master/AUTHORS.rst] (GitHub)

Installation

	Install the package from PyPI:

pip install django-newsletter

Or get the latest & greatest from Github and link it to your
application tree:

pip install -e git://github.com/jazzband/django-newsletter.git#egg=django-newsletter

(In either case it is recommended that you use
VirtualEnv [http://pypi.python.org/pypi/virtualenv] in order to
keep your Python environment somewhat clean.)

	Add newsletter and the Django contrib dependencies noted below to
INSTALLED_APPS in your settings file.

You will need one of the supported thumbnail applications (
sorl-thumbnail [http://sorl-thumbnail.readthedocs.org/en/latest/installation.html]
or easy-thumbnails [https://easy-thumbnails.readthedocs.io/en/latest/]).

You may also add an optional rich text widget (
Django Imperavi [https://github.com/vasyabigi/django-imperavi]
or Django TinyMCE [https://django-tinymce.readthedocs.io/en/latest/])
and

INSTALLED_APPS = (
 # Required Contrib Apps
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.auth',
 'django.contrib.sites',
 ...
 # At least *one* of these thumbnail applications
 'sorl.thumbnail',
 'easy_thumbnails',
 ...
 # Optionally, one of Imperavi or TinyMCE WYSIWYG editors
 #'imperavi',
 #'tinymce',
 ...
 'newsletter',
 ...
)

	Specify your thumbnail application in your settings file:

Using sorl-thumbnail
NEWSLETTER_THUMBNAIL = 'sorl-thumbnail'

Using easy-thumbnails
NEWSLETTER_THUMBNAIL = 'easy-thumbnails'

	Configure any of the optional Settings.

	Import subscription, unsubscription and archive URL’s somewhere in your
urls.py:

urlpatterns = [
 ...
 path('newsletter/', include('newsletter.urls')),
 ...
]

	Enable Django’s staticfiles [http://docs.djangoproject.com/en/dev/howto/static-files/]
app so the admin icons, CSS and JavaScript will be available where
we expect it.

	Create the required data structure:

./manage.py migrate

	Change the default contact email listed in
templates/newsletter/subscription_subscribe.html and
templates/newsletter/subscription_update.html.

	(Optionally) Create message template overrides for specific newsletters in
templates/newsletter/message/<newsletter_slug>/<message_type>[_subject].<html|txt>
where <message_type> can be one from subscribe, unsubscribe, message
or update.

	You may now navigate to the Django admin where the Newsletter module
should be available for you to play with.

In order to test if submissions work, make sure you create a newsletter,
a subscription, a message and finally a submission.

After creating the submission, you must schedule it by clicking the
‘submit’ button in the top right of the page where you edit it.

	Now you may perform a test submission with the submit_newsletter
management command (-v 2 is for extra verbosity):

./manage.py submit_newsletter -v 2

	Add the submit_newsletter management command to crontab [http://man7.org/linux/man-pages/man5/crontab.5.html].

For example (for sending every 15 minutes):

*/15 * * * * <path_to_virtualenv>/bin/python <project_root>/manage.py submit_newsletter 1>/dev/null 2>&1

To send mail, django-newsletter uses Django-provided email utilities, so
ensure that email settings [https://docs.djangoproject.com/en/stable/ref/settings/#email-backend] are
properly configured for your project.

Settings

Required Settings

The following settings are required.

Configure thumbnailing applications

To improve the user experience and performance of django-newsletter,
a thumbnailing application is used to automatically thumbnail
article images in newsletter messages.

Currently two applications are supported by default:
easy-thumbnails [https://pypi.org/project/easy-thumbnails/] and
sorl-thumbnail [https://pypi.org/project/sorl-thumbnail/].

First you will need to install the thumbnailing application (as per the
applications instructions). Afterwards the thumbnailing application can be
selected as follows:

Using sorl-thumbnail
NEWSLETTER_THUMBNAIL = 'sorl-thumbnail'

Using easy-thumbnails
NEWSLETTER_THUMBNAIL = 'easy-thumbnails'

This configures django-newletter to use these applications for relevant
model fields, admin fields, and template thumbnails.

Optional Settings

The following optional features may be configured.

Disabling email confirmation

Disable email confirmation for subscribe, unsubscribe and update actions for subscriptions.

By default subscribe, unsubscribe and update requests made by a user who is
not logged in need to be confirmed by clicking on an activation link in an
email. If you want all requested actions to be performed without email
confirmation, add following line to settings.py:

NEWSLETTER_CONFIRM_EMAIL = False

For more granular control the NEWSLETTER_CONFIRM_EMAIL setting can be
overridden for each of subscribe, unsubscribe and update actions, by adding
NEWSLETTER_CONFIRM_EMAIL_SUBSCRIBE and/or
NEWSLETTER_CONFIRM_EMAIL_UNSUBSCRIBE and/or
NEWSLETTER_CONFIRM_EMAIL_UPDATE set to True or False.

Configure rich text widget

Known to work are django-imperavi [http://pypi.python.org/pypi/django-imperavi]
as well as for django-tinymce [http://pypi.python.org/pypi/django-tinymce].
Be sure to follow installation instructions for respective widgets. After
installation, the widgets can be selected as follows:

Using django-imperavi
NEWSLETTER_RICHTEXT_WIDGET = "imperavi.widget.ImperaviWidget"

Using django-tinymce
NEWSLETTER_RICHTEXT_WIDGET = "tinymce.widgets.TinyMCE"

If not set, django-newsletter will fall back to Django’s default TextField
widget.

Note

django-tinymce 3 and higher do not support Python 3.5.

Configure thumbnailing applications

To improve the user experience and performance of django-newsletter,
you may use various thumbnailing applications to automatically thumbnail
article images in newsletter messages.

Currently two applications are supported by default:
easy-thumbnails [https://pypi.org/project/easy-thumbnails/] and
sorl-thumbnail [https://pypi.org/project/sorl-thumbnail/].

First you will need to install the thumbnailing application (as per the
applications instructions). Afterwards the thumbnailing application can be
selected as follows:

Using sorl-thumbnail
NEWSLETTER_THUMBNAIL = 'sorl-thumbnail'

Using easy-thumbnails
NEWSLETTER_THUMBNAIL = 'easy-thumbnails'

This configures django-newletter to use these applications for relevant
model fields, admin fields, and template thumbnails.

If not set, django-newsletter will fall back to Django’s default ImageField
and implement rudimentary thumbnailing with Pillow.

Delay and batch size

The delay between each email, batches en batch size can be specified with e.g.:

Amount of seconds to wait between each email. Here 100ms is used.
``NEWSLETTER_EMAIL_DELAY = 0.1``

Amount of seconds to wait between each batch. Here one minute is used.
``NEWSLETTER_BATCH_DELAY = 60``

Number of emails in one batch
``NEWSLETTER_BATCH_SIZE = 100``

For both delays, sub-second delays can also be used. If the delays are not
set, it will default to not sleeping.

Usage

	Start the development server:

./manage.py runserver

	Navigate to /admin/ and: behold!

	Setup a newsletter and create an initial message.

	Preview the message and create submission.

	Queue the submission for submission.

	Process the submission queue:

./manage.py submit_newsletter

	For a proper understanding, please take a look at the Reference.

Embed A Sign-up Form Within Any Page

If you want to include a sign-up form on any page of your site, similar to the code that MailChimp or other email services may provide, you simply paste the following code snippet where you want the form to appear:

<form enctype="multipart/form-data" method="post" action="/newsletter/[NAME-OF-NEWSLETTER]/subscribe/">
{% csrf_token %}
<label for="id_email_field">E-mail:</label> <input type="email" name="email_field" required="" id="id_email_field">
<button id="id_submit" name="submit" value="Subscribe" type="submit">Subscribe</button>
</form>

Replace [NAME-OF-NEWSLETTER] with the name of your newsletter. You do not need to add anything to views, urls, or any other file. This snippet alone should simply work. Take note that the name field is removed from this, since most people only want the user to have to enter an email address to sign up for a newsletter. If you want to include the name field, you’d add this line before the <button> line:

<label for="id_name_field">Name:</label> <input type="text" name="name_field" maxlength="30" id="id_name_field">optional

Templates

To get started, we recommend copying the existing ‘stub’-templates from
the module directory to your project’s templates dir:

cp -rv `python -c 'import newsletter; from os import path; print(path.dirname(newsletter.__file__))'`/templates/newsletter <project_dir>/templates/

Web view templates

	newsletter_list.html

	Newsletter list view, showing all newsletters marked as public and allowing
authenticated Django users to (un)subscribe directly.

	newsletter_detail.html

	Newsletter detail view, linking to subscribe, update,
unsubscribe and archive views for a particular newsletter.

	submission_archive.html

	Archive; list of public submissions for a particular newsletter.

	subscription_subscribe.html

	Subscribe form for unauthenticated users.

	subscription_subscribe_email_sent.html

	Confirmation of subscription request.

	subscription_activate.html

	Activation form for (un)subscriptions or updates of unauthenticated users.

	subscription_subscribe_activated.html

	Confirmation of activation of subscription.

	subscription_unsubscribe_activated.html

	Confirmation of activation of unsubscription.

	subscription_update_activated.html

	Confirmation of activation of update.

	subscription_subscribe_user.html

	Subcribe form for authenticated users.

	subscription_unsubscribe.html

	Unsubscribe form for unauthenticated users.

	subscription_unsubscribe_email_sent.html

	Confirmation of unsubscription request.

	subscription_unsubscribe_user.html

	Unsubscribe form for authenticated users.

	subscription_update.html

	Update form for unauthenticated users.

	subscription_update_email_sent.html

	Confirmation of update request.

Email templates

Email templates can be specified per newsletter in message/<newsletter_slug>.
If no newsletter-specific templates are found, the defaults in the message
folder are used.

When a newsletter is configured to send HTML-messages, the HTML and txt are
both used to create a multipart message. When the use of HTML is not configured
only the text templates are used.

The following templates can be defined:

	message.(html|txt)

	
	Template for rendering a messages with the following context available:

	
	subscription: Subscription containing name and email of recipient.

	site: Current site object.

	submission: Current submission.

	message: Current message.

	newsletter: Current newsletter.

	date: Publication date of submission.

	STATIC_URL: Django’s STATIC_URL setting.

	MEDIA_URL: Django’s MEDIA_URL setting.

	message_subject.txt

	Template for the subject of an email newsletter. Context is the same as
with messages.

	subscribe.(html|txt)

	Template with confirmation link for subscription.

	subscribe_subject.txt

	Subject template with confirmation link for subscription.

	unsubscribe.(html|txt)

	Template with confirmation link for unsubscription.

	unsubscribe_subject.txt

	Subject template with confirmation link for unsubscription.

	update.(html|txt)

	Template with confirmation link for updating subscriptions.unsubscription.

	update_subject.txt

	Subject template with confirmation link for updating subscriptions.

Using a premailer

A premailer is a program that translates embedded CSS into inline CSS. Inline
CSS is much more widely supported in emails, but can make templates very messy
if you have more than a couple lines of styling.

django-premailer [https://pypi.python.org/pypi/django-premailer] is an
open-source package on PyPI that adds a template tag that applies
a premailer. Unfortunately, the package was
broken for Django 1.6 and upwards [https://github.com/alexhayes/django-premailer/issues/3]
at the time of writing.
An example of a working version is available at this
gist [https://gist.github.com/Sheepzez/2f06f0bf54fc33cdcaab]
(requires premailer [https://pypi.python.org/pypi/premailer] to be
installed).

You can then use the template tag in your templates as follows:

{% load premailer}{% premailer %}
<html>
<style type="text/css">
h1 { border:1px solid black }
p { color:red;}
</style>

<h1 style="font-weight:bolder">Hey</h1>
<p>Hej</p>
</html>
{% endpremailer %}

Reference

For now, this documentation is automatically generated from the
source code.

Models

[image: _images/graph_models.png]

	
class Newsletter(id, title, slug, email, sender, visible, send_html)

	Bases: django.db.models.base.Model

	
get_templates(action)

	Return a subject, text, HTML tuple with e-mail templates for
a particular action. Returns a tuple with subject, text and e-mail
template.

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist [https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist]

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned [https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned]

	
class Subscription(id, user, name_field, email_field, ip, newsletter, create_date, activation_code, subscribed, subscribe_date, unsubscribed, unsubscribe_date)

	Bases: django.db.models.base.Model

	
update(action)

	Update subscription according to requested action:
subscribe/unsubscribe/update/, then save the changes.

	
save(*args, **kwargs)

	Perform some basic validation and state maintenance of Subscription.
TODO: Move this code to a more suitable place (i.e. clean()) and
cleanup the code. Refer to comment below and
https://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model.clean

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist [https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist]

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned [https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned]

	
class Article(*args, **kwargs)

	Bases: django.db.models.base.Model

An Article within a Message which will be send through a Submission.

	
save(**kwargs)

	Save the current instance. Override this in a subclass if you want to
control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist
that the “save” must be an SQL insert or update (or equivalent for
non-SQL backends), respectively. Normally, they should not be set.

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist [https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist]

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned [https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned]

	
class Attachment(*args, **kwargs)

	Bases: django.db.models.base.Model

Attachment for a Message.

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist [https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist]

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned [https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned]

	
class Message(*args, **kwargs)

	Bases: django.db.models.base.Model

Message as sent through a Submission.

	
get_next_article_sortorder()

	Get next available sortorder for Article.

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist [https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist]

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned [https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned]

	
class Submission(*args, **kwargs)

	Bases: django.db.models.base.Model

Submission represents a particular Message as it is being submitted
to a list of Subscribers. This is where actual queueing and submission
happen.

	
save(**kwargs)

	Set the newsletter from associated message upon saving.

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist [https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist]

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned [https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned]

Forms

	
class NewsletterForm(*args, **kwargs)

	Bases: django.forms.models.ModelForm

This is the base class for all forms managing subscriptions.

	
class SubscribeRequestForm(*args, **kwargs)

	Bases: newsletter.forms.NewsletterForm

Request subscription to the newsletter. Will result in an activation email
being sent with a link where one can edit, confirm and activate one’s
subscription.

	
class UpdateRequestForm(*args, **kwargs)

	Bases: newsletter.forms.NewsletterForm

Request updating or activating subscription. Will result in an activation
email being sent.

	
clean()

	Hook for doing any extra form-wide cleaning after Field.clean() has been
called on every field. Any ValidationError raised by this method will
not be associated with a particular field; it will have a special-case
association with the field named ‘__all__’.

	
class UnsubscribeRequestForm(*args, **kwargs)

	Bases: newsletter.forms.UpdateRequestForm

Similar to previous form but checks if we have not
already been unsubscribed.

	
clean()

	Hook for doing any extra form-wide cleaning after Field.clean() has been
called on every field. Any ValidationError raised by this method will
not be associated with a particular field; it will have a special-case
association with the field named ‘__all__’.

	
class UpdateForm(*args, **kwargs)

	Bases: newsletter.forms.NewsletterForm

This form allows one to actually update to or unsubscribe from the
newsletter. To do this, a correct activation code is required.

	
class UserUpdateForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, instance=None, use_required_attribute=None, renderer=None)

	Bases: django.forms.models.ModelForm

Form for updating subscription information/unsubscribing as a logged-in
user.

Views

	
is_authenticated(user)

	

	
class NewsletterViewBase

	Bases: object

Base class for newsletter views.

	
queryset = <QuerySet []>

	

	
allow_empty = False

	

	
slug_url_kwarg = 'newsletter_slug'

	

	
class NewsletterDetailView(**kwargs)

	Bases: newsletter.views.NewsletterViewBase, django.views.generic.detail.DetailView [https://django.readthedocs.io/en/latest/ref/class-based-views/generic-display.html#django.views.generic.detail.DetailView]

	
class NewsletterListView(**kwargs)

	Bases: newsletter.views.NewsletterViewBase, django.views.generic.list.ListView [https://django.readthedocs.io/en/latest/ref/class-based-views/generic-display.html#django.views.generic.list.ListView]

List available newsletters and generate a formset for (un)subscription
for authenticated users.

	
post(request, **kwargs)

	Allow post requests.

	
get_context_data(**kwargs)

	Get the context for this view.

	
get_formset()

	Return a formset with newsletters for logged in users, or None.

	
class ProcessUrlDataMixin

	Bases: object

Mixin providing the ability to process args and kwargs from url
before dispatching request.

	
process_url_data(*args, **kwargs)

	Subclasses should put url data processing in this method.

	
dispatch(*args, **kwargs)

	

	
class NewsletterMixin

	Bases: newsletter.views.ProcessUrlDataMixin

Mixin retrieving newsletter based on newsletter_slug from url
and adding it to context and form kwargs.

	
process_url_data(*args, **kwargs)

	Get newsletter based on newsletter_slug from url
and add it to instance attributes.

	
get_form_kwargs()

	Add newsletter to form kwargs.

	
get_context_data(**kwargs)

	Add newsletter to context.

	
class ActionMixin

	Bases: newsletter.views.ProcessUrlDataMixin

Mixin retrieving action from url and adding it to context.

	
action = None

	

	
process_url_data(*args, **kwargs)

	Add action from url to instance attributes if not already set.

	
get_context_data(**kwargs)

	Add action to context.

	
get_template_names()

	Return list of template names for proper action.

	
class ActionTemplateView(**kwargs)

	Bases: newsletter.views.NewsletterMixin, newsletter.views.ActionMixin, django.views.generic.base.TemplateView [https://django.readthedocs.io/en/latest/ref/class-based-views/base.html#django.views.generic.base.TemplateView]

View that renders a template for proper action,
with newsletter and action in context.

	
class ActionFormView(**kwargs)

	Bases: newsletter.views.NewsletterMixin, newsletter.views.ActionMixin, django.views.generic.edit.FormView [https://django.readthedocs.io/en/latest/ref/class-based-views/generic-editing.html#django.views.generic.edit.FormView]

FormView with newsletter and action support.

	
get_url_from_viewname(viewname)

	Return url for given viename
and associated with this view newsletter and action.

	
class ActionUserView(**kwargs)

	Bases: newsletter.views.ActionTemplateView

Base class for subscribe and unsubscribe user views.

	
template_name = 'newsletter/subscription_%(action)s_user.html'

	

	
process_url_data(*args, **kwargs)

	Add confirm to instance attributes.

	
post(request, *args, **kwargs)

	

	
dispatch(*args, **kwargs)

	

	
class SubscribeUserView(**kwargs)

	Bases: newsletter.views.ActionUserView

	
action = 'subscribe'

	

	
get(request, *args, **kwargs)

	

	
class UnsubscribeUserView(**kwargs)

	Bases: newsletter.views.ActionUserView

	
action = 'unsubscribe'

	

	
get(request, *args, **kwargs)

	

	
class ActionRequestView(**kwargs)

	Bases: newsletter.views.ActionFormView

Base class for subscribe, unsubscribe and update request views.

	
template_name = 'newsletter/subscription_%(action)s.html'

	

	
process_url_data(*args, **kwargs)

	Add error to instance attributes.

	
get_context_data(**kwargs)

	Add error to context.

	
get_subscription(form)

	Return subscription for the current request.

	
no_email_confirm(form)

	Subscribe/unsubscribe user and redirect to action activated page.

	
get_success_url()

	Return the URL to redirect to after processing a valid form.

	
form_valid(form)

	If the form is valid, redirect to the supplied URL.

	
class SubscribeRequestView(**kwargs)

	Bases: newsletter.views.ActionRequestView

	
action = 'subscribe'

	

	
form_class

	alias of newsletter.forms.SubscribeRequestForm

	
confirm = False

	

	
get_form_kwargs()

	Add ip to form kwargs for submitted forms.

	
get_subscription(form)

	Return subscription for the current request.

	
dispatch(request, *args, **kwargs)

	

	
class UnsubscribeRequestView(**kwargs)

	Bases: newsletter.views.ActionRequestView

	
action = 'unsubscribe'

	

	
form_class

	alias of newsletter.forms.UnsubscribeRequestForm

	
confirm = False

	

	
dispatch(request, *args, **kwargs)

	

	
class UpdateRequestView(**kwargs)

	Bases: newsletter.views.ActionRequestView

	
action = 'update'

	

	
form_class

	alias of newsletter.forms.UpdateRequestForm

	
no_email_confirm(form)

	Redirect to update subscription view.

	
class UpdateSubscriptionView(**kwargs)

	Bases: newsletter.views.ActionFormView

	
form_class

	alias of newsletter.forms.UpdateForm

	
template_name = 'newsletter/subscription_activate.html'

	

	
process_url_data(*args, **kwargs)

	Add email, subscription and activation_code
to instance attributes.

	
get_initial()

	Returns the initial data to use for forms on this view.

	
get_form_kwargs()

	Add instance to form kwargs.

	
get_success_url()

	Return the URL to redirect to after processing a valid form.

	
form_valid(form)

	Get our instance, but do not save yet.

	
class SubmissionViewBase

	Bases: newsletter.views.NewsletterMixin

Base class for submission archive views.

	
date_field = 'publish_date'

	

	
allow_empty = True

	

	
queryset = <QuerySet []>

	

	
slug_field = 'message__slug'

	

	
year_format = '%Y'

	

	
month_format = '%m'

	

	
day_format = '%d'

	

	
process_url_data(*args, **kwargs)

	Use only visible newsletters.

	
get_queryset()

	Filter out submissions for current newsletter.

	
class SubmissionArchiveIndexView(**kwargs)

	Bases: newsletter.views.SubmissionViewBase, django.views.generic.dates.ArchiveIndexView [https://django.readthedocs.io/en/latest/ref/class-based-views/generic-date-based.html#django.views.generic.dates.ArchiveIndexView]

	
class SubmissionArchiveDetailView(**kwargs)

	Bases: newsletter.views.SubmissionViewBase, django.views.generic.dates.DateDetailView [https://django.readthedocs.io/en/latest/ref/class-based-views/generic-date-based.html#django.views.generic.dates.DateDetailView]

	
get_context_data(**kwargs)

	Make sure the actual message is available.

	
get_template()

	Get the message template for the current newsletter.

	
render_to_response(context, **response_kwargs)

	Return a simplified response; the template should be rendered without
any context. Use a SimpleTemplateResponse as a RequestContext should
not be used.

Upgrading

0.7: Management command instead of django-extensions cron job

In this version, we have deprecated support for the django-extensions cron
job. Hence, it will become necessary to update the crontab; whereas before
messages where submitted with the runjobs hourly cron job, this has now
become submit_newsletter.

0.6: Upgrading from South to Django Migrations

Based on https://docs.djangoproject.com/en/1.9/topics/migrations/#upgrading-from-south, the procedure should be:

	Remove 'south' from INSTALLED_APPS.

	Run python manage.py migrate --fake-initial.

If you are upgrading from below 0.5, you need to upgrade to 0.5 first to
perform required South migrations before moving to 0.6.

0.5: Message templates in files

As of 0.5 message templates are living in the filesystem like normal files
instead of resorting in the EmailTemplate in the database. In most cases,
South should take care of writing your existing templates to disk and deleting
the database models.

0.4: South migrations

Since 5f79f40, the app makes use of South [http://south.aeracode.org/] for
schema migrations. As of this version, using South with django-newsletter
is the official recommendation and installing it [http://south.readthedocs.org/en/latest/installation.html] is easy.

When upgrading from a pre-South version of newsletter to a current
release (in a project for which South has been enabled), you might have to
fake the initial migration as the DB tables already exist. This can be done
by running the following command:

./manage.py migrate newsletter 0001 --fake

 Python Module Index

 .

 		 	

 		
 .	

 	
 	
 newsletter.forms	

 	
 	
 newsletter.models	

 	
 	
 newsletter.views	

Index

 A
 | C
 | D
 | F
 | G
 | I
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | Y

A

 	
 	action (ActionMixin attribute)

 	(SubscribeRequestView attribute)

 	(SubscribeUserView attribute)

 	(UnsubscribeRequestView attribute)

 	(UnsubscribeUserView attribute)

 	(UpdateRequestView attribute)

 	ActionFormView (class in newsletter.views)

 	ActionMixin (class in newsletter.views)

 	ActionRequestView (class in newsletter.views)

 	
 	ActionTemplateView (class in newsletter.views)

 	ActionUserView (class in newsletter.views)

 	allow_empty (NewsletterViewBase attribute)

 	(SubmissionViewBase attribute)

 	Article (class in newsletter.models)

 	Article.DoesNotExist

 	Article.MultipleObjectsReturned

 	Attachment (class in newsletter.models)

 	Attachment.DoesNotExist

 	Attachment.MultipleObjectsReturned

C

 	
 	clean() (UnsubscribeRequestForm method)

 	(UpdateRequestForm method)

 	
 	confirm (SubscribeRequestView attribute)

 	(UnsubscribeRequestView attribute)

D

 	
 	date_field (SubmissionViewBase attribute)

 	day_format (SubmissionViewBase attribute)

 	dispatch() (ActionUserView method)

 	(ProcessUrlDataMixin method)

 	(SubscribeRequestView method)

 	(UnsubscribeRequestView method)

F

 	
 	form_class (SubscribeRequestView attribute)

 	(UnsubscribeRequestView attribute)

 	(UpdateRequestView attribute)

 	(UpdateSubscriptionView attribute)

 	
 	form_valid() (ActionRequestView method)

 	(UpdateSubscriptionView method)

G

 	
 	get() (SubscribeUserView method)

 	(UnsubscribeUserView method)

 	get_context_data() (ActionMixin method)

 	(ActionRequestView method)

 	(NewsletterListView method)

 	(NewsletterMixin method)

 	(SubmissionArchiveDetailView method)

 	get_form_kwargs() (NewsletterMixin method)

 	(SubscribeRequestView method)

 	(UpdateSubscriptionView method)

 	get_formset() (NewsletterListView method)

 	
 	get_initial() (UpdateSubscriptionView method)

 	get_next_article_sortorder() (Message method)

 	get_queryset() (SubmissionViewBase method)

 	get_subscription() (ActionRequestView method)

 	(SubscribeRequestView method)

 	get_success_url() (ActionRequestView method)

 	(UpdateSubscriptionView method)

 	get_template() (SubmissionArchiveDetailView method)

 	get_template_names() (ActionMixin method)

 	get_templates() (Newsletter method)

 	get_url_from_viewname() (ActionFormView method)

I

 	
 	is_authenticated() (in module newsletter.views)

M

 	
 	Message (class in newsletter.models)

 	Message.DoesNotExist

 	
 	Message.MultipleObjectsReturned

 	month_format (SubmissionViewBase attribute)

N

 	
 	Newsletter (class in newsletter.models)

 	Newsletter.DoesNotExist

 	newsletter.forms (module)

 	newsletter.models (module)

 	Newsletter.MultipleObjectsReturned

 	newsletter.views (module)

 	
 	NewsletterDetailView (class in newsletter.views)

 	NewsletterForm (class in newsletter.forms)

 	NewsletterListView (class in newsletter.views)

 	NewsletterMixin (class in newsletter.views)

 	NewsletterViewBase (class in newsletter.views)

 	no_email_confirm() (ActionRequestView method)

 	(UpdateRequestView method)

P

 	
 	post() (ActionUserView method)

 	(NewsletterListView method)

 	process_url_data() (ActionMixin method)

 	(ActionRequestView method)

 	(ActionUserView method)

 	(NewsletterMixin method)

 	(ProcessUrlDataMixin method)

 	(SubmissionViewBase method)

 	(UpdateSubscriptionView method)

 	
 	ProcessUrlDataMixin (class in newsletter.views)

Q

 	
 	queryset (NewsletterViewBase attribute)

 	(SubmissionViewBase attribute)

R

 	
 	render_to_response() (SubmissionArchiveDetailView method)

S

 	
 	save() (Article method)

 	(Submission method)

 	(Subscription method)

 	slug_field (SubmissionViewBase attribute)

 	slug_url_kwarg (NewsletterViewBase attribute)

 	Submission (class in newsletter.models)

 	Submission.DoesNotExist

 	Submission.MultipleObjectsReturned

 	
 	SubmissionArchiveDetailView (class in newsletter.views)

 	SubmissionArchiveIndexView (class in newsletter.views)

 	SubmissionViewBase (class in newsletter.views)

 	SubscribeRequestForm (class in newsletter.forms)

 	SubscribeRequestView (class in newsletter.views)

 	SubscribeUserView (class in newsletter.views)

 	Subscription (class in newsletter.models)

 	Subscription.DoesNotExist

 	Subscription.MultipleObjectsReturned

T

 	
 	template_name (ActionRequestView attribute)

 	(ActionUserView attribute)

 	(UpdateSubscriptionView attribute)

U

 	
 	UnsubscribeRequestForm (class in newsletter.forms)

 	UnsubscribeRequestView (class in newsletter.views)

 	UnsubscribeUserView (class in newsletter.views)

 	update() (Subscription method)

 	
 	UpdateForm (class in newsletter.forms)

 	UpdateRequestForm (class in newsletter.forms)

 	UpdateRequestView (class in newsletter.views)

 	UpdateSubscriptionView (class in newsletter.views)

 	UserUpdateForm (class in newsletter.forms)

Y

 	
 	year_format (SubmissionViewBase attribute)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/graph_models.png
id
post
image
sortorder
text

title

url

AutoField
ForeignKey (id)
ImageReld
Positivelntegerfield
Textield

CharField

URLReld

Attachment

id ‘AutoF

1d

message ForeignKey (id)
file FleField

ost (articles) message (attachments)

id

newsletter
date_create
date_modify
slug
title

AutoField
ForeignKey (id)
DateTimeReld
DateTimeReld
Slugfield
Charfield

Submission

message ForeignKey (id)
newsletter ForeignKey (id)
prepared Booleanfield
publish Booleanfield
publish_date DateTimeReld
sending Booleanfield
sent Booleanfield
[]

message (submission]

newsletter (message)

Newsletter

id ‘AutoField
email Emailfield
send_html Booleanfield

sender Charfield
slug Slugfield
title Charfield
visible Booleanfield

site (newsletter)

newsletter (submission]

ubscriptions (submission)

newsletter
activation_code
create_date
email_field

i

name_field
subscribe_date
subscribed
unsub

lbe_date
unsubscribed

AutoField
ForeignKey (id)
ForeignKey (id)
Charfield
DateTimeReld
Emailfield

GenericlPaddressField
Charfield
DateTimeReld
Booleanfield
DateTimeReld
Booleanfield

frewsletter (subscription)

user (subscription)

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to django-newsletter’s documentation!

 		
 Installation

 		
 Settings

 		
 Required Settings

 		
 Configure thumbnailing applications

 		
 Optional Settings

 		
 Disabling email confirmation

 		
 Configure rich text widget

 		
 Configure thumbnailing applications

 		
 Delay and batch size

 		
 Usage

 		
 Embed A Sign-up Form Within Any Page

 		
 Templates

 		
 Web view templates

 		
 Email templates

 		
 Using a premailer

 		
 Reference

 		
 Models

 		
 Forms

 		
 Views

 		
 Upgrading

 		
 0.7: Management command instead of django-extensions cron job

 		
 0.6: Upgrading from South to Django Migrations

 		
 0.5: Message templates in files

 		
 0.4: South migrations

_static/up.png

_static/up-pressed.png

