
DMP Documentation
Release 23.4

Matija Kolarić

Apr 12, 2023

Contents

1 Introduction 3

2 Features and Limitations 5

3 Support 9

4 Quality Assurance 11

5 Release History 13

6 Related Videos 17

7 Installation 19

8 MIT License 31

9 User Manual 33

10 Integration (Rest API) 67

11 For Developers 69

Python Module Index 105

Index 107

i

ii

DMP Documentation, Release 23.4

DMP (Django-Music-Publisher) is open-source music catalogue management software for

• management of music metadata,

• registration of musical works,

• royalty statement processing, and

• basic data distribution.

DMP will work for most small publishers world-wide, but it does not try to solve first-world problems (e.g. US
PRO rules) for free. See Features and Limitations.

Based on Django web framework, DMP is primarily designed to be deployed to a cloud, but it can be installed to
a personal computer. (Linux, Mac OS or Windows). See Installation for details.

Contents 1

DMP Documentation, Release 23.4

2 Contents

CHAPTER 1

Introduction

1.1 Music Metadata Management

DMP (Django-Music-Publisher) is free, open-source software for managing music metadata:

• musical works and recordings (with audio files),

• writers, artists and labels (with photos/logos),

• releases/albums (with cover art), and

• music libraries.

Fig. 1: Simplified Class Diagram

1.2 Common Works Registration (CWR)

It implements CWR protocol for batch registration of musical works with Collective Management Organizations
(CMOs) and Digital Service Providers (DSPs).

Fig. 2: Sequence diagram: Work registration and incoming royalty statements

1.3 Royalty Management

Simple royalty processing calculations can split received royalties among controlled writers and calculate pub-
lisher fees.

Incoming data is accepted as a CSV file. If registrations are done using CWR, work matching is fully automatic.
Output is a similar CSV file with additional rows and columns.

Fig. 3: Sequence diagram: Processing incoming royalty statements

3

https://matijakolaric.com/articles/1/

DMP Documentation, Release 23.4

This file can be then imported into Excel and turned into individual outgoing statements and accounting data using
pivot tables. This process can be automated using Excel templates and simple scripts.

1.4 Data Distribution

Besides the aforementioned CWR protocol, music metadata can be exported in several other formats, or be ac-
cessed through the read-only REST API.

4 Chapter 1. Introduction

CHAPTER 2

Features and Limitations

Key features and limitations of DMP are listed below. DMP works for most publishers world-wide, but not nearly
for all.

By reading this section, you may save a lot of your time.

DMP is open-source, you are free to modify it to suit your needs. This may require serious software development
skills.

If you need additional features, That Green Thing (available as Software-as-a-Service) is the recommended solu-
tion. Notes about differences between it and DMP are in green.

2.1 Music metadata management

DMP can store detailed metadata for musical works and recordings, data about writers, recording and performing
artists, releases (albums), labels and music libraries, as well as CWR exports and acknowledgements.

2.2 Total data validation

All entered data is validated for CWR and DDEX compatibility on field-, record-, and transaction-level.

The flip side of the coin is that you can not enter incomplete data into DMP and hope to fix it later. The author
does not believe in fixing in post.

2.3 Single controlled original publisher

DMP supports only a single original controlled publisher (single publishing entity), entered through settings.

It will not work for publishers with multiple entities, most notably US publishers affiliated with multiple PROs.

That Green Thing fully supports multiple controlled publishers, administration, global sub-publishing, etc.

5

https://matijakolaric.com/thatgreenthing
https://matijakolaric.com/thatgreenthing

DMP Documentation, Release 23.4

2.4 No other publishers

DMP holds no data about other/uncontrolled publishers. Uncontrolled writers appear as unpublished in CWR
files.

That Green Thing holds data about uncontrolled original publishers and administrators.

2.5 Co-publishing

With DMP, co-publishing deals are possible, with each publisher registering their own shares. In this case, the
other publisher appears as unknown in CWR files.

That Green Thing has full support for co-publishing deals.

2.6 Manuscript shares

DMP uses a single manuscript share model, splits between writers (prior to publishing) are same for perfor-
mance, mechanical and synchronisation rights.

That Green Thing has share fields for performance, mechanical and sync shares for both writers and original
publishers. Manuscript shares are calculated back if required.

2.7 Original publishing agreement data

Basic original publishing agreement data can be entered, sufficient for registrations in societies that require
society-assigned agreement numbers.

2.8 Share transfer

Share transfer from a controlled writer to the publisher can be configured, in accordance with national regulations
and customs. There is only a single setting for all controlled writers.

Default is London rule (50% performance, 100% mechanical), but this can be reconfigured.

That Green Thing uses explicitly entered shares after original agreements. By default, they remain the same in
case of sub-publishing, but this can be overridden on per-work basis.

2.9 Publisher fees

Publisher fees are customisable per-writer, or even per-writer-per-work.

2.10 No support for composite works

Composite musical works, as well as recordings based on multiple musical works (e.g. medleys), are not sup-
ported.

6 Chapter 2. Features and Limitations

https://matijakolaric.com/thatgreenthing
https://matijakolaric.com/thatgreenthing
https://matijakolaric.com/thatgreenthing
https://matijakolaric.com/thatgreenthing

DMP Documentation, Release 23.4

2.11 Registrations

Registrations can be exported as CWR files. Supported versions are: 2.1, 2.2, 3.0, and 3.1.

Acknowledgement files in CWR format can be imported.

CWR preview features syntax highlighting with additional data on mouse-over, for both CWR files generated by
DMP and imported acknowledgements.

2.12 Defaults when creating CWR files

When creating CWR, many fields are left with blank/zero values. When the fields are required in CWR, it uses
reasonable defaults, e.g.:

• Musical Work Distribution is set to Unclassified,

• Recorded indicator is set to Yes or Unknown, depending if recording metadatawas entered, and

• Work for Hire, Grand Rights Indicator, Reversionary Indicator, and First Recording Refusal Indicator are
set to No.

2.13 Royalty management

Incoming royalty statements in CSV format can be processed, resulting in CSV statements containing data for
distribution between controlled interested parties. Statement processing is extremely fast.

Actual outgoing statements must be created in Excel using pivot tables. For experienced Excel user, this takes
about 10 minutes for the first statement and then about 30 seconds per statement for all others. This process can
be fully automated by using scripts.

That Green Thing can be configured with templates, so that outgoing statements come in any format you desire.

2.14 Data imports and exports

Data about works can be imported from CSV files.

Data for selected works can be exported as JSON (complete) or CSV (partial).

That Green Thing can import multiple formats, including EBR and CWR.

2.15 Audio files and images

If persistent file storage is available, images can be uploaded (photos for writers and artists, logos for labels, cover
arts for releases), as well as audio files.

2.16 Sharable playlists

Playlists can be created and shared, protected only by secret URLs.

2.11. Registrations 7

https://matijakolaric.com/thatgreenthing
https://matijakolaric.com/thatgreenthing

DMP Documentation, Release 23.4

2.17 REST API

Read-only REST API, with basic HTTP authentication, is available. It can be used for:

• Complete data export

• Metadata exchange

• Content exchange

8 Chapter 2. Features and Limitations

CHAPTER 3

Support

No individual support is available for DMP, which is usual for open-source projects. Because most music profes-
sionals are unfamiliar with this concept, an explanation is due here.

Creator of this software is not the vendor for your instance of DMP. You are.

If you run into an issue with any third party, most notably a CMO or their administrative agency, and they tell you
to ask your software vendor for support, that would be you.

If you forget your password and have to reset it, there is no one who can do it but you.

If you have any issues whatsoever, solving them is solely your responsibility.

Having said that, here is what you can try.

3.1 Documentation

The first step in resolving any issues is reading the relevant parts of this documentation, most notably the User
Manual. If you are not sure what is relevant, use search. If it does not help, read everything.

3.2 Videos

Go to Videos and watch the videos. If you are not familiar with all terms from Music Metadata Basics series,
watch the relevant videos. Then watch the whole DMP series.

3.3 Questions and Discussions

If you still don’t know how to resolve the issue, you should try asking in the Facebook Group Music Publisher
Support. Before you do, search the group for similar questions.

Alternatively, you can do it in Discussions within the code repository.

9

https://www.facebook.com/groups/musicpublishersupport
https://www.facebook.com/groups/musicpublishersupport
https://github.com/matijakolaric-com/django-music-publisher/discussions

DMP Documentation, Release 23.4

3.4 Bug and Feature Requests

If you believe you have encountered a bug in DMP, you can search through issues, or raise a new one.

How can you be sure if it is a bug? Here are some rules.

3.4.1 Bug

If you repeatedly encounter 500 Server Error, it is a bug. Please report it. All such bugs are usually fixed within a
week. Make sure you are following the thread, so you know when the bug is fixed. You still need to update your
DMP instance yourself.

3.4.2 Not a bug

If you see errors, that are incomprehensible to you, during data imports or acknowledgement imports, this is not a
bug. You can still report it as issue, but that will not help you in short term. Creator of DMP might make the error
more comprehensible in one of the next versions, but don’t count on it.

3.4.3 Unlikely a bug

If things work, but not the way you would like, that is probably not a bug. You can still raise an issue, and it will
be investigated. However, if it is not a bug, it might be rejected without an explanation.

3.4.4 Upgrade to Commercial

That Green Thing is the commercial upgrade to DMP. It has many more features and comes with professional
support. Migration from an unmodified DMP instance is included in the price.

10 Chapter 3. Support

https://github.com/matijakolaric-com/django-music-publisher/issues
https://matijakolaric.com/thatgreenthing

CHAPTER 4

Quality Assurance

This project is now close to five years old and, as any continuously developed project, has legacy issues. If anyone
tells you that their project has no legacy issues, they are either ignorant or lying. Probably both.

Here is how issues are reduced, caught and fixed in this project.

4.1 Test coverage, Continuous Integration, Continuous Deploy-
ment

4.1.1 Test Coverage

For years, test coverage was around 99% (mostly functional tests), and the goal is to keep it over 99.5% (rounded
to 100%) for major releases.

4.1.2 Continuous Integration

These tests are run on every push to the code repository, (together with code style validation).

4.1.3 Manual Testing

Before each major release, all functionality is manually tested.

Of course, there is a small chance that some edge case is not covered, and that someone will hit a bug in production,
but it is reduced to the minimum.

4.2 Code Style, Complexity and Maintainability

Some of these issues can be detected and/or measured, sometimes even fixed, with standard tools. Code style,
complexity and maintainability are good examples.

11

DMP Documentation, Release 23.4

4.2.1 Code Style

Code style in this project is current Black, with line length of 79 characters. This is validated on every push.

4.2.2 Code Complexity

Recently, code complexity has been improved. No code block has nor should have complexity over C (20).
Average should remain around A (3.0).

4.2.3 Code Maintainability

Code maintainability is to be improved, currently 2 files have dead low index, due to their size. The goal is to have
A across all files for the next major release (in 2024).

12 Chapter 4. Quality Assurance

CHAPTER 5

Release History

Django-Music-Publisher was originally released in July 2018, and for the rest of 2018, development was very
rapid, with major improvements being released in August, September and November.

From January 2019 to January 2022, major versions were released twice per year.

Minor versions, with bug fixes and security updates, are released when required. They are not mentioned in this
document.

5.1 Major Release History

5.1.1 18.7 - 18.11

Initial release in July 2018 had a very simple data structure. It used external API for CWR generation. The code
was open-source, but it was dependant on a free tier of a commercial service.

5.1.2 19.1 Epiphany

This version was focused on making DMP completely independent of any software not available as open-source
and compatible with the MIT license.

CWR generation and complete data validation was added to the open-source code. Full support for modified
works was added, as well as basic co-publishing support. Data export in JSON format was added.

5.1.3 19.7 Metanoia

This version was about making DMP compatible with both current and future requirements within the precisely
defined scope: single publisher, single manuscript share. (This scope has not changed since, nor will in the
future.)

Most notably, support for multiple recordings per work and CWR 3.0 (labeled as “experimental”) were added.
CWR preview, for both versions, received basic syntax highlighting. Since this version, CWR files are zipped.

13

DMP Documentation, Release 23.4

5.1.4 20 Twenty

Twenty-twenty was primarily about simplified deployment. Since this version, DMP can be deployed to the Free
Heroku dyno (container) by non-techies.

Note: This free service was cancelled in late 2022. See “Rubicon” below.

Support for custom global share splits was added. MR/SR affiliations for writers were also added. Syntax high-
lighting for CWR acknowledgements was added, to simplify dealing with conflicts and other registration-related
issues.

5.1.5 20.7 Endemic

This version added a lot of new features!

Processing of royalty statements is the most important new feature since the initial release. It can import statements
in practically any CSV format. Processing is extremely fast.

Basic CSV imports and exports for musical works, and JSON exports for releases were added.

ISWCs can now be imported from CWR acknowledgements. Controlled writers with no society affiliation are
now fully supported.

Index (home) page became clearer due to grouping of views. User manual was reorganised to follow the same
structure. User manual links now lead to the relevant page in the user manual.

5.1.6 21.1 Victor

This version was focused on improving and extending existing features.

Support for CWR was extended to include latest revisions:

• CWR 2.1 Revision 8,

• CWR 2.2 Revision 2 (includes cross-references),

• CWR 3.0 Revision 0 (includes cross-references, experimental), and

• CWR 3.1 DRAFT (includes cross-references, experimental).

CWR Syntax highlighting was improved and now includes all fields DMP generates from data, with more detailed
descriptions on mouse-over, for all supported CWR versions.

A side menu was added to all add/change/view pages, making navigation faster.

5.1.7 21.5 Mayday

The version focuses on improving data exchange with other solutions, most notably That Green Thing.

• Support for writers with IPI numbers, but without CMO affiliations was improved

• Internal notes for writers, artists and labels were added

• More data is available in CSV exports:

– separate manuscript, performance, mechanical and sync shares for writers,

– data about an original publisher, with performance, mechanical and sync shares,

– data about recordings, including recording ID, record labels and recording artists, and

– society Work IDs.

• More data is available in CSV imports:

14 Chapter 5. Release History

https://matijakolaric.com/thatgreenthing

DMP Documentation, Release 23.4

– data about recordings: ISRC, duration, release date, and

– society work IDs.

• Improved support for ISWC imports and duplicate handling.

• Interface now also available in dark mode

5.1.8 22.1 Exofile

With very little to do in the realm of music publishing, within the defined scope, DMP has moved towards sup-
porting music companies who are both publishers and labels.

This version added support for file uploads, either locally (for traditional installations) or to S3 storage (for con-
tainers). Please consult Installation for instructions how to enable and configure file storage.

Writers, artists, labels and releases received image and description fields, to be used in front-end represen-
tations. Recordings received an audio_file field.

Read-only REST API endpoints are available for releases and recording artists, enabling integration with websites.

Playlists can now be created, either by manually adding recordings, or by using batch actions in various list views,
and shared using secret URLs.

Full metadata backup can be download using REST API endpoint.

5.1.9 23.4 Rubicon

As the release name suggests, this release is a game changer. Not necessarily in a good way for small music
publishers without development/IT skills.

Since version 20 Twenty, it was possible for anyone to deploy DMP to a free cloud account using a wizard. The
free cloud service no longer exists, so the wizard was removed.

Deploying to Heroku and Digital Ocean is still possible for those who can read and follow installation instructions.

Account # field was added to the Writer model. This field can be used for linking royalty statement data with
accounting. This is the only visible change to an end user within DMP.

Several important projects based on TGT were released in the previous 3 years, not only targeting music publish-
ers, but also CMOs (societies). That is what open source projects are really about, and DMP will in the future be
more focused on providing the core for such projects. Optionally combined with consulting by the author and the
team.

Source code has been reviewed and partly cleaned up, with average complexity reduced to A and no block more
complex than C. Code style is now validated with Black.

Introduction chapter of this documentation was extended with graphs, and split into two separate documents.
Several external articles were linked to improve clarity.

5.2 Future open-source features

Nothing is planned for the foreseeable future. Unless there is a significant change in the industry, the next major
release will be out in 2024. Bugfix and security releases will be coming out when required.

5.2. Future open-source features 15

https://black.readthedocs.io/en/stable/

DMP Documentation, Release 23.4

16 Chapter 5. Release History

CHAPTER 6

Related Videos

Note: All videos listed here were released before Heroku cancelled their free tier. Any information about DMP
installation (deployment) is outdated and probably wrong. Otherwise, all videos are still completely accurate.

6.1 DMP

2022 video series about DMP.

Total playlist duration is around 30 minutes.

6.2 Music Publishing 101

Music Publishing 101 videos are good, technically oriented introduction into music publishing with practical
software examples. DMP is used in videos 2-8, serving as video tutorials for DMP.

Total playlist duration is around 1 hour.

6.3 Music Royalty Management

Music Royalty Management videos cover royalty management, using DMP for examples in several episodes.

Total playlist duration is around 20 minutes.

17

https://www.youtube.com/watch?list=PLQ3e-DuNTFt-mwtKvFLK1euk5uCZdhCUP&v=duqgzK3JitU
https://www.youtube.com/watch?v=yFyIje5w5Y8&list=PLQ3e-DuNTFt-HjNC2jTRdmN1DZW1URvJ0
https://www.youtube.com/watch?v=CnhhAPQxqiA&list=PLQ3e-DuNTFt-tltdyPNxv4IIylrEH-F6g

DMP Documentation, Release 23.4

18 Chapter 6. Related Videos

CHAPTER 7

Installation

Code repository for DMP can be found at https://github.com/matijakolaric-com/django-music-publisher.

7.1 Installation to a cloud

DMP (Django-Music-Publisher) is based on Django Web Framework (https://djangoproject.org), and requires
Python 3 (https://python.org). It can be installed to a PC, but installing it into a cloud is highly recommended.

Digital Ocean is the recommended provider.

7.1.1 Digital Ocean

Minimal monthly cost is $5 for the application, $7 for the database, so $12 in total. Optional $5 for file storage is
only required for experimental features.

They usually give free credits that must be used within 60 days.

1. Click on the button below. (This is an affiliate link, providing you with free credits.)

2. Wizard

Once you have registered, click on the next button to start the installation wizard.

2.1. In the first step, edit the plan and select Basic, then the cheapest plan, this is enough for publishers with up to
several thousand works.

19

https://github.com/matijakolaric-com/django-music-publisher
https://djangoproject.org
https://python.org

DMP Documentation, Release 23.4

2.2 Edit web environment variables. See settings for details. Click on SAVE!!

2.3 Select region closest to you.

2.4 Review and click on “create resources”.

3. Installation takes several minutes. Once it is done, click on the console tab and enter:

python manage.py migrate
python manage.py createsuperuser

Then enter your user name and password (twice). You can leave e-mail empty, it is not used.

If you forget your login/password, you can use the console for adding a new superuser or change the password
with:

python manage.py changepassword

7.1.2 Heroku

This is another provider with semi-automated deployment. The deployment to Heroku using the button below is
NOT tested, and issues with deployment will not be tested nor fixed.

7.2 Custom installation

For everything else, basic programming and/or system administration skills are required.

Start with Deploying Django documentation.

20 Chapter 7. Installation

https://docs.djangoproject.com/en/3.0/howto/deployment/

DMP Documentation, Release 23.4

If you plan to use Django-Music-Publisher as one of the apps in your Django project, there is nothing special
about it:

pip install --upgrade django_music_publisher

Add music_publisher.apps.MusicPublisherConfig to INSTALLED_APPS. Almost everything
goes through the Django Admin. The only exception is royalty calculation, which has to be added to urls.
py

from music_publisher.royalty_calculation import RoyaltyCalculationView

urlpatterns = [
...
path('royalty_calculation/', RoyaltyCalculationView.as_view(), name='royalty_

→˓calculation'),
]

Experimental features (involving file system) may require additional work.

Good luck!

7.3 Settings

There are several environment variables that need to be set, and several optional ones. Note that if invalid data is
entered or required data is not entered, deployment may fail and/or application may break down.

7.3.1 Secret key

Django requires SECRET_KEY to be set. It can be any random string. You can use https://miniwebtool.com/
django-secret-key-generator/ to generate one, but do change it somewhat after pasting for complete security.

7.3.2 Publisher-related settings

• PUBLISHER_NAME - Name of the publisher using Django-Music-Publisher, required

• PUBLISHER_IPI_NAME - Publisher’s IPI Name Number, required

• PUBLISHER_CODE - Publisher’s CWR Delivery code, defaults to 000, which is not accepted by CMOs,
but may be accepted by (sub-)publishers.

• PUBLISHER_SOCIETY_PR - Publisher’s performance collecting society (PRO) numeric code, required.
See Collective management organisations.

• PUBLISHER_IPI_BASE - Publisher’s IPI Base Number, rarely used

• PUBLISHER_SOCIETY_MR - Publisher’s mechanical collecting society (MRO) numeric code

• PUBLISHER_SOCIETY_SR - Publisher’s synchronization collecting society numeric code, rarely used

For the list of codes, please have a look at societies.csv file in the music_publisher folder of the code repository.

7.3.3 Agreement-related settings

These settings define the percentage of the manuscript share transferred to the publisher. The default is “London
Split”, where 50% of performance and 100% of mechanical and sync rights are transferred.

• PUBLISHING_AGREEMENT_PUBLISHER_PR - Performance share transferred to the publisher, default
is ‘0.5’ (50%)

7.3. Settings 21

https://miniwebtool.com/django-secret-key-generator/
https://miniwebtool.com/django-secret-key-generator/

DMP Documentation, Release 23.4

• PUBLISHING_AGREEMENT_PUBLISHER_MR - Mechanical share transferred to the publisher, default is
‘1.0’ (100%)

• PUBLISHING_AGREEMENT_PUBLISHER_SR - Synchronization share transferred to the publisher, de-
fault is ‘1.0’ (100%)

Enter 1.0 for 100%, 0.5 for 50%, 0.3333 for 33.33%, etc.

7.3.4 S3 storage

For Digital Ocean Spaces, you need to set up only four config (environment) variables. AWS and other S3
providers will also work.

• S3_REGION (alias for AWS_S3_REGION_NAME) and S3_BUCKET (alias for
AWS_STORAGE_BUCKET_NAME), you get them when you set up your Spaces, and

22 Chapter 7. Installation

DMP Documentation, Release 23.4

• S3_ID (alias for AWS_ACCESS_KEY_ID) and S3_SECRET (alias for AWS_SECRET_ACCESS_KEY),
you get them when you generate your Spaces API key.

If you want to use AWS or some other S3 provider, the full list of settings is available here.

7.3.5 Other options

• OPTION_FORCE_CASE - available options are upper, title and smart, converting nearly all strings
to UPPER CASE or Title Case or just UPPERCASE fields to Title Case, respectively. If unset, everything
is left as entered.

• OPTION_FILES - enables support for file uploads (audio files and images), using local file storage (PC &
VPS)

7.4 Collective management organisations

Following list contains official CWR codes for CMOs, to be entered in PUBLISHER_SOCIETY_PR,
PUBLISHER_SOCIETY_MR and rarely PUBLISHER_SOCIETY_SR environment variables.

1 ACUM ISRAEL
2 ADDAF BRAZIL
3 AEPI GREECE
4 AGADU URUGUAY
5 AKM AUSTRIA
6 BUCADA CENTRAL AFRICAN REPUBLIC
7 APDAYC PERU
8 APRA AUSTRALIA
9 ARTISJUS HUNGARY
10 ASCAP UNITED STATES
11 AUSTRO-MECHANA (AUME) AUSTRIA
12 AMCOS AUSTRALIA
14 ARGENTORES ARGENTINA
15 APA PARAGUAY
16 BUMDA MALI
17 AMRA UNITED STATES
18 BGDA GUINEA
19 BMDA MOROCCO
20 SODRAC CANADA
21 BMI UNITED STATES
22 MCSN NIGERIA
23 BUMA NETHERLANDS
24 BURIDA COTE D’IVOIRE
25 SODAV SENEGAL
26 CASH HONG KONG
28 LITA SLOVAKIA
29 SCD CHILE
30 AMAR BRAZIL
31 DILIA CZECH REPUBLIC
32 FILSCAP PHILIPPINES
33 OMDA MADAGASCAR
34 HFA UNITED STATES
35 GEMA GERMANY
36 IPRS INDIA
37 BUBEDRA BENIN

Continued on next page

7.4. Collective management organisations 23

https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html

DMP Documentation, Release 23.4

Table 1 – continued from previous page
38 JASRAC JAPAN
39 MUSICAUTOR BULGARIA
40 KODA DENMARK
41 LITERAR-MECHANA AUSTRIA
43 MCSK KENYA
44 MCPS UNITED KINGDOM
45 BBDA BURKINA FASO
47 BCDA CONGO
48 NCB DENMARK
49 ONDA ALGERIA
50 OSA CZECH REPUBLIC
51 PROLITTERIS SWITZERLAND
52 PRS UNITED KINGDOM
54 ALCS UNITED KINGDOM
55 SABAM BELGIUM
56 SACD FRANCE
57 SACERAU EGYPT
58 SACEM FRANCE
59 SACM MEXICO
60 SACVEN VENEZUELA
61 SADAIC ARGENTINA
62 SADEMBRA BRAZIL
63 SAMRO SOUTH AFRICA
64 SOKOJ SERBIA AND MONTENEGRO
65 SAYCE ECUADOR
66 SBACEM BRAZIL
67 SBAT BRAZIL
68 SDRM FRANCE
69 SPA PORTUGAL
70 SOGEM MEXICO
71 SESAC Inc. UNITED STATES
72 SGAE SPAIN
73 SCAM FRANCE
74 SIAE ITALY
75 SUISSIMAGE SWITZERLAND
76 ACEMLA PUERTO RICO
77 STEF ICELAND
78 STEMRA NETHERLANDS
79 STIM SWEDEN
80 SUISA SWITZERLAND
82 OTPDA TUNISIA
84 SAYCO COLOMBIA
85 SOZA SLOVAKIA
86 SICAM BRAZIL
87 SPACEM FRANCE
88 CMRRA CANADA
89 TEOSTO FINLAND
90 TONO NORWAY
91 SSA SWITZERLAND
93 UBC BRAZIL
94 RAO RUSSIAN FEDERATION
95 VG WORT GERMANY
96 COTT TRINIDAD AND TOBAGO
97 ZAIKS POLAND

Continued on next page

24 Chapter 7. Installation

DMP Documentation, Release 23.4

Table 1 – continued from previous page
98 ZIMURA ZIMBABWE
101 SOCAN CANADA
102 NASCAM NAMIBIA
103 ACDAM CUBA
104 MACP MALAYSIA
105 MASA (RMS) MAURITIUS
106 COMPASS SINGAPORE
107 ACAM COSTA RICA
108 CHA TAIWAN, CHINESE TAIPEI
109 KCI INDONESIA
110 LATGA-A LITHUANIA
111 HDS-ZAMP CROATIA
112 SAZAS SLOVENIA
115 UCMR-ADA ROMANIA
116 EAU ESTONIA
117 MESAM TURKEY
118 KOMCA KOREA, REPUBLIC OF
119 MCSC CHINA
120 LIRA NETHERLANDS
121 VDFS AUSTRIA
122 AKKA-LAA LATVIA
124 COSOMA MALAWI
125 BNDA NIGER
126 MCT THAILAND
127 ALBAUTOR ALBANIA
128 IMRO IRELAND
129 SOBODAYCOM BOLIVIA
130 BUTODRA TOGO
131 SADA GREECE
132 BILD-KUNST GERMANY
133 ZAMCOPS ZAMBIA
134 SLPRS SRI LANKA
135 SADH GREECE
136 ZAMP - Macédoine MACEDONIA
137 SOFAM BELGIUM
138 KOPIOSTO FINLAND
139 VISDA DENMARK
140 UACRR UKRAINE
141 ATN CHILE
142 DALRO SOUTH AFRICA
143 TEATERAUTOR BULGARIA
144 HAA CROATIA
145 DIRECTORS UK UNITED KINGDOM
146 SPAC PANAMA
147 FILMAUTOR BULGARIA
148 ADAGP FRANCE
149 ARS UNITED STATES
151 BONO NORWAY
152 Bildupphovsrätt (Visual Copyright Society) SWEDEN
153 DACS UNITED KINGDOM
154 HUNGART HUNGARY
155 SOMAAP MEXICO
156 VAGA UNITED STATES
157 BILDRECHT GmbH AUSTRIA

Continued on next page

7.4. Collective management organisations 25

DMP Documentation, Release 23.4

Table 1 – continued from previous page
158 VEGAP SPAIN
159 VISCOPY AUSTRALIA
160 NCIP BELARUS
161 MÜST TAIWAN, CHINESE TAIPEI
162 AMPAL AUSTRALIA
163 APG-Japan JAPAN
164 APSAV PERU
166 AUTORARTE VENEZUELA
168 CA AUSTRALIA
169 COSCAP BARBADOS
170 CPSN NEPAL
171 CREAIMAGEN CHILE
172 DGA UNITED STATES
173 DIRECTORES MEXICO
174 FILMJUS HUNGARY
175 CopyRo ROMANIA
176 JACAP JAMAICA
177 KazAK KAZAKSTAN
178 KOSA KOREA, REPUBLIC OF
179 KUVASTO FINLAND
181 NMPA UNITED STATES
182 PAPPRI INDONESIA
183 SACK KOREA, REPUBLIC OF
184 SARTEC CANADA
186 SGDL FRANCE
187 SNAC FRANCE
189 SOCINPRO BRAZIL
190 SOPE GREECE
191 SPACQ CANADA
192 SFF SWEDEN
193 The Society of Authors (SOA) UNITED KINGDOM
194 UFFICIO GIURIDICO HOLY SEE (VATICAN CITY STATE)
195 VEVAM NETHERLANDS
196 WGA UNITED STATES
197 WGJ JAPAN
198 ZAMP Association of Slovenia SLOVENIA
199 SFP-ZAPA POLAND
200 MSG TURKEY
201 ABRAMUS BRAZIL
202 AsDAC MOLDOVA, REPUBLIC OF
203 AWGACS AUSTRALIA
204 GCA (former SSA) GEORGIA
206 UFW FINLAND
207 The Author’s Registry Inc. UNITED STATES
208 SGA GUINEA-BISSAU
209 ARMAUTHOR NGO ARMENIA
210 ACCESS COPYRIGHT CANADA
212 CSCS CANADA
213 DRCC CANADA
214 ECCO SAINT LUCIA
215 Kyrgyzpatent KYRGYZSTAN
216 SQN BOSNIA AND HERZEGOVINA
217 ABRAC BRAZIL
218 ANACIM BRAZIL

Continued on next page

26 Chapter 7. Installation

DMP Documentation, Release 23.4

Table 1 – continued from previous page
219 ASSIM BRAZIL
220 ATIDA BRAZIL
221 SABEM BRAZIL
222 FONOPERU PERU
223 COSOTA TANZANIA, UNITED REPUBLIC OF
224 SOMAS MOZAMBIQUE
225 SAIF FRANCE
226 AACIMH HONDURAS
227 SGACEDOM DOMINICAN REPUBLIC
228 ROMS RUSSIAN FEDERATION
229 ICG UNITED STATES
230 ADAVIS CUBA
231 AUTVIS BRAZIL
232 GESTOR CZECH REPUBLIC
233 SACEMLUXEMBOURG LUXEMBOURG
234 UPRS UGANDA
235 SACENC FRANCE
236 ARTEGESTION ECUADOR
237 TALI ISRAEL
238 BSCAP BELIZE
239 CMC CAMEROON
240 DAMA SPAIN
241 NICAUTOR NICARAGUA
242 SACIM EL SALVADOR
243 SADIA ANGOLA
244 SASUR SURINAME
245 SETEM TURKEY
246 VCPMC VIET NAM
247 IVARO IRELAND
248 DAC ARGENTINA
249 PAM CG MONTENEGRO
250 AEI-GUATEMALA GUATEMALA
251 ASDACS AUSTRALIA
252 COLCCMA TAIWAN, CHINESE TAIPEI
253 AAS AZERBAIJAN
254 SOCILADRA CAMEROON
256 PICTORIGHT NETHERLANDS
257 SAVA ARGENTINA
258 MRCSN NEPAL
259 SDCSI IRELAND
260 ACS UNITED KINGDOM
261 GAI Uz UZBEKISTAN
262 SINEBIR TURKEY
263 SACS SEYCHELLES
264 CARCC CANADA
265 MACA MACAU
266 BeAT BRUNEI DARUSSALAM
267 UPRAVIS RUSSIAN FEDERATION
268 COSON NIGERIA
269 WAMI INDONESIA
270 JASPAR JAPAN
271 DHFR CROATIA
272 MOSCAP MONGOLIA
273 AMUS BOSNIA AND HERZEGOVINA

Continued on next page

7.4. Collective management organisations 27

DMP Documentation, Release 23.4

Table 1 – continued from previous page
274 AuPO CINEMA UKRAINE
275 AUTODIAHIRISI GREECE
276 DASC COLOMBIA
277 RSAU RWANDA
278 RUR RUSSIA
279 SDADV ANDORRA
280 SANASTO FINLAND
281 ATHINA- SADA - S.A.D.A. GREECE
282 UNAC-SA ANGOLA
283 CAPASSO SOUTH AFRICA
284 COSOZA ZANZIBAR
285 GHAMRO GHANA
286 ODDA DJIBOUTI
287 KORRA KOREA
288 ABYROY KAZAKHSTAN
289 AIPA SLOVENIA
290 AZDG AZERBAIJAN
291 OFA SERBIA
292 ZPAP POLAND
293 DBCA BRAZIL
294 REDES COLOMBIA
295 SAGCRYT MEXICO
296 DACIN-SARA ROMANIA
297 GEDAR BRAZIL
298 OOA-S CZECH REPUBLIC
299 SCM-COOPERATIVA CAPE VERDE
300 WID Centre UNITED STATES
301 GESAC BELGIUM
302 LATINAUTOR URUGUAY
303 NORD-DOC SWEDEN
304 SONGCODE UNITED STATES
306 ACCS TRINIDAD AND TOBAGO
307 MIS@ASIA SINGAPORE
308 ECAD BRAZIL
309 LatinNet SPAIN
310 DIVA HONG KONG
311 MCPS-PRS Alliance UNITED KINGDOM
312 CISAC FRANCE
313 FastTrack DCN FRANCE
314 IDA FRANCE
315 CSI FRANCE
316 CIS-Net AVI FRANCE
317 INTL-REP FRANCE
318 SGS
319 ICE Services AB SWEDEN
320 ARMONIA FRANCE
321 PUBLISHERS
322 EVA BELGIUM
635 GEMA-US Additional CIS-Net Node
658 SACEM-US Additional CIS-Net Node
672 SGAE-NY Additional CIS-Net Node
707 MusicMark USA
758 SACEM-LIBAN Additional CIS-Net Node
775 Solar EMI GERMANY/UK

Continued on next page

28 Chapter 7. Installation

mailto:MIS@ASIA

DMP Documentation, Release 23.4

Table 1 – continued from previous page
776 Solar Sony GERMANY/UK
777 CELAS GERMANY/UK
778 GMR
779 Polaris Nordic SCANDINAVIA
780 UNISON Spain
781 SOUNDREEF ENGLAND and WALES
782 NexTone JAPAN
888 PAECOL Additional CIS-Net Node

7.4. Collective management organisations 29

DMP Documentation, Release 23.4

30 Chapter 7. Installation

CHAPTER 8

MIT License

Copyright (c) 2018-2023 Matija Kolarić

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

31

DMP Documentation, Release 23.4

32 Chapter 8. MIT License

CHAPTER 9

User Manual

Note: This user manual applies to version 23.4 Rubicon.

9.1 Basics

This section explains the very basics, logging in, home view and general overview of model views.

9.1.1 Login

Fig. 1: Default log-in view

33

DMP Documentation, Release 23.4

The first screen that appears is the log-in screen. Please log in with your credentials.

9.1.2 Home view

Fig. 2: Home view for superusers

The home view will show up after a successfull login. It changes, based on user permissions. In this example,
it is the view superusers see – everything.

In the header, the left part shows the name of the publisher and the link to the maintainer’s website. The right
shows links to this user manual, for changing the password and logging out. This header is present in all views.

We have two columns, the left one shows sections of models, with links to change and add views. The right
column shows up to 10 latest actions of the current user.

9.1.3 Model Views

Every model has at least 4 views:

• List - view listing objects, includes search, filtering and batch actions

• Add - view for adding new objects

• Change - view for changing an object, includes delete button

• History - view where changes to an object are shown, accessible from change view

Add and change are usually very similar. They often contain forms for editing related models. E.g. in add
musical work, one can also add alternate titles, recordings, etc.

The views are explained in detail in Musical Works.

9.2 User Administration

This section is covering user administration.

34 Chapter 9. User Manual

DMP Documentation, Release 23.4

Note: If you don’t have the permission to manage other users, you don’t see the Authentication and
Authorization Section.

Warning: If you have deployed DMP to Heroku, the password you used for the superuser account was written
in plain text to the config variables. It is strongly recommended that you change the password upon the first
login.

Warning: Superusers should not do everyday tasks. Create staff users.

You add users by clicking on + add link for the users in the Authentication and Authorization.
The following view is shown:

Fig. 3: Add User view

Add a username and a password twice and click on Save and continue editing. Then, in the next view,
add additional data.

9.2. User Administration 35

DMP Documentation, Release 23.4

Fig. 4: Change User view

Note: Passwords are not visible, and not saved in plaintext. To change a password for another user, use this
form link.

36 Chapter 9. User Manual

DMP Documentation, Release 23.4

Staff status has to be set for all users of Django-Music-Publisher, and they have to be assigned to an appro-
priate permission group. Two permission groups are set during installation:

• Publishing staff gives all permissions required for everyday publishing work

• Publishing audit gives read-only permissions to all data in Music Publisher module

Select one of them and click on the icon that will move it to chosen groups. Then you can click on save.

Fig. 5: User list view

You will be taken to the user list view. All users are shown here. Just as the add and change views, list views
are quite standard. They will be covered a bit later.

Now you can log out, and log in as the newly added staff user. The home view is a bit different, according to
the assigned permissions.

9.3 Section: Musical Works

Models are divided into sections for more intuitive navigation.

This section contains all models and actions closely related to managing musical works, including Musical
Works model, the workhorse in this software.

Note: CWR exports and CWR Acknowledgement imports will not work unless PUBLISHER_CODE is defined
in the settings, regardless of user permissions.

Note: Data imports require additional permissions, not given to staff users by default. Use the superuser account
for importing data.

9.3. Section: Musical Works 37

DMP Documentation, Release 23.4

9.3.1 Musical Works

This part explains views for Musical Work model specifically, but much of it applies to views of other models as
well.

• Add/Change View

– General

– Library

– Writers in Work

– Recordings (With Recording Artists and Record Labels)

– Alternative Titles

– Artists Performing Works

– Registration Acknowledgements

– Saving and Deleting

• List View

– Exporting JSON

– Exporting CSV

– CWR Exporting Wizard

38 Chapter 9. User Manual

DMP Documentation, Release 23.4

Add/Change View

Fig. 6: Add work view

The view for adding and changing works is shown in this screenshot. It is the most complex view in Django-
Music-Publisher (DMP). It has several parts, which will be covered one by one.

General

This fieldset contains basic fields.

Field work ID is not editable in this view.

Note: Work ID is set by DMP, but it can also be imported. See Importing Data for details.

Work title is entered into title field.

ISWC (International Standard Musical Work Code) is a unique identifier assigned to works by a central authority
through collecting societies. It can be edited manually or imported either through data imports or CWR acknowl-
edgements.

Fields title of original work and version type, with only the former being editable, are used
for modifications. By filling out title of original work field, the version type will be set to
modification and a more complex set of validation rules will apply.

9.3. Section: Musical Works 39

DMP Documentation, Release 23.4

Library

DMP has support for music libraries. If a work is part of a music library, then a Library release must be
set here. Details can be found in library release.

Writers in Work

This is where you put in the information about writers (composers and lyricists) of the work. At least one record
is required, to add more, click on add another writer in work.

Each column in this table is described next.

Writer

This is where you select a writer.

This field is conditionally required for controlled writers, and at least one writer in work must be controlled.

Like many other fields, this field is searchable. You can search by writer’s last name or ipi name number.
Click on the desired writer to select them. To unselect a writer, click the black x icon in the box.

To add a new writer, click the green plus sign next to it. To edit the selected writer, click the yellow pencil icon. To
delete the selected writer, click the red X icon outside the box. For all three cases, a pop-up window will appear.

Fig. 7: Add writer pop-up view

The details about the fields in the pop-up window are covered in writer.

Note: If writer field is left empty, it means that the writer is unknown. This is often used with modifications
of traditional musical works.

40 Chapter 9. User Manual

DMP Documentation, Release 23.4

Role

This is where you select how this writer contributed to the work. This field is required for controlled writers.

At least one of the writers should be a composer or a composer and lyricist.

Options for original works are composer, lyricist and composer and lyricist.

Roles arranger, adaptor or translator can only be used in modifications.

For modifications, at least two rows are required, one being (original) composer or a composer and
lyricist, and one being arranger, adaptor or translator.

For modifications of traditional works, set the capacity of the unknown writer to composer and lyricist
or composer, depending on whether the original work has lyrics or not.

Manuscript Share

Django-Music-Publisher (DMP) uses a very simple single-field share model.

Writers create a work and decide how they want to split the shares among themselves. This is referred to as
manuscript share.

Each of the writers may choose a publisher and transfer part of their manuscript shares to the publisher, according
to their publishing agreement. This does not influence other writers.

In DMP, publishing agreements between all controlled writers and you as the original publisher have same splits,
globally defined in settings.

Note: The sum of relative shares in a work must be 100%.

Note: For a musical work that is a modification of a work in public domain, set the share of original writers
(composer, lyricist, composer and lyricist) to 0.

Fig. 8: Writers in work for a work that is a modification of a work in public domain

Controlled

This is where you select whether you control the writer or not. Select it for at least one writer in work row.

A writer can be entered in two rows, once as controlled, once as not. This allows for co-publishing deals. If there
is more than one other publisher per writer, add their shares to a single row.

9.3. Section: Musical Works 41

DMP Documentation, Release 23.4

Fig. 9: Writers in work for a co-published work

Society-assigned agreement number

In this field, society-assigned agreement numbers for specific agreements are entered. For general agreements,
they are set when defining the writer. If both exist and are different, the specific one is used.

Note: This field is required for controlled writers in some collecting societies, while not used in most.

Publisher fee

This is the fee kept by the publisher when royalties are paid and distributed.

Note: This field is not used in registrations. It is used only for royalty statement processing. Details are explained
in that section.

Recordings (With Recording Artists and Record Labels)

This is where the details about a recording based on this musical works are added. There is a separate set of views
for recordings, fields are explained there.

Alternative Titles

Alternative titles section is for alternative titles. There is no need to enter the recording or version titles already
entered in the recordings section.

Field alternative title is where you enter the title, or it’s suffix, based on the field suffix. If the latter
is checked, then the suffix will be appended to the work title. The actual alternative title is always shown in
the read-only field complete alt title.

Artists Performing Works

Here you list the artists who are performing the work, there is no need to repeat the artists already set as
recording artists in the recordings section.

The field artist behaves similarly to the field Writer.

Registration Acknowledgements

This is where the work registration acknowledgements are recorded.

42 Chapter 9. User Manual

DMP Documentation, Release 23.4

Note: In the default configuration, only superusers can modify this section, as it is automatically filled out from
uploaded acknowledgement files.

Saving and Deleting

At the bottom, there is a delete button and three save buttons.

Delete button starts the deletion of the work and all related objects. A confirmation screen shows all objects
being deleted.

Note: Deleting a work is not always allowed, regardless of user permissions. E.g. if a CWR acknowledgement
for this work exists. If you are sure you want to delete a work, a superuser must delete such linked objects first.

The save buttons do following:

• Save and add another (when adding new work) saves the work and then opens a new, empty form
for the next one.

• Save as new (when editing existing work) saves this data as a new work (with a different work ID).
Note that you must change all unique fields as well, e.g. ISWC.

• Save and continue editing saves the work and then opens the same work for further editing.

• SAVE saves the work and returns to the list view, covered next.

The combination is extremely powerful, especially when the changes between works is small.

Enter the first work, using suffixes as much as possible, click on save and continue editing. If success-
ful, then data make the changes for the next work, and click on save as new, and this new work is saved.

9.3. Section: Musical Works 43

DMP Documentation, Release 23.4

List View

Fig. 10: Work list view

The work list view, just as all other list views, has a search field, an action bar, a table with works
and, once there are over 100 works, pagination, all on the left side.

Search looks for titles, writer’s last names, ISWCs, ISRCs (in related recordings) and work IDs.

Data table can be sorted by almost any column or combination of the columns.

Counts of related objects are also links to recording and CWR export list views, filtered for this work.

On the right side, there is the add musical work button, which takes you to the appropriate view, and the set
of filters.

Filters change, based on the number of options. For four options or less, they are simple links, and for more, they
turn into a pull-down menus.

Has ISWC will show only works with ISWCs or only works without them.

Has recordings will show only works with recordings or only works without them.

Library will list only works in a particular library.

Library Release will list only works in a particular library release.

Writers will list only works by a particular writer.

Last edited filter allows you to find all works that have changed recently.

Filters and search can be combined. Only works fulfilling all the criteria will be shown.

44 Chapter 9. User Manual

DMP Documentation, Release 23.4

Exporting JSON

Fig. 11: Exporting musical works in JSON format.

Select several (or all) works in the musical work list view, select the Export selected works
(JSON) action and click Go. A JSON file will be downloaded, containing all the information about your works.

Exporting CSV

Select several (or all) works in the musical work list view, select the Export selected works
(CSV) action and click Go. A CSV file will be downloaded, containing most information about your works.

This CSV format is similar to the one used for Importing data.

CWR Exporting Wizard

Currently, the only other available action is to create CWR from selected works. Once you run it, you
will be taken to CWR Export view with your work selection.

Note: Create CWR from selected works action is only visible if PUBLISHER_CODE is defined in
settings.

9.3.2 Writers

9.3. Section: Musical Works 45

DMP Documentation, Release 23.4

Add/Change View

Fig. 12: Add writer view

Add and change views for writers have several fieldsets.

Writer ID and Account Number

At the top, before the first fieldset are two fields, Writer ID, assigned by the system and not editable, and
Account #, used for linking data from DMP with your accounting, when processing royalty statements.

Name

Last name and first name fields in the first, quite self-explanatory. Only last name is required.

IPI

IPI name # and IPI Base # in the second. If you are unfamiliar with these identifiers, see IPI name and
base numbers.

Societies

Performance Rights Society in the third. In most cases, writers are only affiliated with performance
rights societies. Depending on settings, fields for mechanical and even sync affiliation might be visible.

General Agreement

In the last group, we have three fields:

46 Chapter 9. User Manual

https://matijakolaric.com/articles/identifiers/ipi/
https://matijakolaric.com/articles/identifiers/ipi/

DMP Documentation, Release 23.4

• General agreement to mark that there is an original general agreement with this writer. This means
that this writer must be controlled in all works.

• Society-assigned agreement number for the original general agreement between you and this
writer (required in some societies)

• Publisher fee is the fee kept by the publisher when royalties are paid and distributed.

Note: Publisher fee is not used in registrations. It is used only for royalty statement processing. Details
are explained in that section.

Public

Note: This section is only visible if file uploads are configured.

This section has two fields:

• Image - for uploading an image of the writer

• Description - for public description

Internal

This section has only a single field Notes. You can use it in any way you like.

List View

Fig. 13: List writers view

The last column is both a work counter and link to the list of works by this writer.

9.3. Section: Musical Works 47

DMP Documentation, Release 23.4

Can be controlled column requires an explanation.

For writers who are controlled (whose works are published by you), more data is required than for those who are
not. This column shows if data is sufficient for the writer to be marked as controlled.

Controlled writers without affiliation and/or IPI name number

In very rare cases, writers choose not to affiliate with any society and even get an IPI name number. And conse-
quently not getting paid.

If you control such a writer, you can still enter them. If they don’t have an IPI name number, you can enter
00000000000. If they are not affiliated with any performance rights society, there is a NO SOCIETY option at
the bottom of the list.

This has to be manually re-entered on every save of the writer form. It is a feature, not a bug. In almost all cases,
both IPI name number and PR affiliations should be entered for controlled writers. Entering edge case exceptions
should not be simple.

Other writers

For writers you do not control, you should still provide as much data as possible.

Note: Only if ALL writers are identified with their IPI numbers, the work can receive an International Standard
Musical Work Code (ISWC).

9.3.3 Common Works Registration Exports

Common Works Registration (CWR) is a protocol and a file format for batch registrations of musical works with
collecting societies worldwide. Publishers send registrations and societies reply with acknowledgement files.
Registrations in this formats are usually called CWRs and acknowledgement ACKs.

Unofficially, CWRs are also used for data exchange among publishers.

CWR is an extremely complex topic. Only technical aspects of creating CWR files and importing acknowledge-
ments are covered in this manual.

Note: Collecting societies and other receivers of CWR files may, if issues arise, refer you to the software vendor
for support. According to the MIT license, that is you, not the creator of this software.

48 Chapter 9. User Manual

https://matijakolaric.com/articles/identifiers/iswc/
https://matijakolaric.com/articles/identifiers/iswc/
https://matijakolaric.com/articles/1/

DMP Documentation, Release 23.4

Add View

Fig. 14: Add CWR export view

Note: If CWR delivery code is not entered as PUBLISHER_CODE in settings, 000 will be used. Such CWR files
will not be accepted by most CMOs, but may be accepted by (sub-)publishers.

Warning: Do NOT use an arbitratry CWR delivery code for creating CWR exports.

There are several ways to get to Add CWR Export view:

• by clicking Add CWR Export button or

• by using Create CWR from selected works batch action in Musical Works.

There are only three fields:

• CWR version/type is where you select the version of CWR and transaction type. Here are current
options:

– CWR 2.1: New work registrations

– CWR 2.1: Revisions of registered works

– CWR 2.2: New work registrations

– CWR 2.2: Revisions of registered works

– CWR 3.0: Work registration

– CWR 3.0: ISWC request (EDI)

– CWR 3.1 DRAFT: Work registration

9.3. Section: Musical Works 49

DMP Documentation, Release 23.4

Note: Consult with the receiver which version they can process. If they can process multiple versions, choose
the highest.

• Internal note is a field where you can put a meaningful description of the export.

Warning: File naming is part of the CWR specifications. CWR file names should NOT be changed.

• Works is a multi-select field for works to be included in CWR exports.

CWR Export model does not have change view, nor delete button. CWR files once created should NOT be
deleted, although they may not be used. Use internal note to mark a CWR file as not sent.

List View

Fig. 15: List CWR export view

CWR export list view. Besides the link in the first column with the file name, which opens a view with
additional information, and the counter that opens the list of works in this file, it has two additional links in each
row: View CWR and Download.

The latter downloads the zipped CWR file, and the former opens the CWR file for viewing.

50 Chapter 9. User Manual

DMP Documentation, Release 23.4

View CWR

Fig. 16: CWR 2.1 NWR (work registration) file with basic syntax highlighting

The example shown above shows the CWR file with basic syntax highlighting. When you hover over the fields
with your cursor, additional information is shown.

9.3.4 Importing CWR Acknowledgements

Societies and administrative agencies (that handle CWR registrations for some societies) send CWR acknowl-
edgement files in response to publishers’ registrations. They are also in CWR format. You may receive more than
one CWR acknowledgement file for every CWR file you delivered.

Note: CWR acknowledgement file means group of transactions of type ACK in a CWR file. Work registration
acknowledgement means one of these transactions.

Django-Music-Publisher can import basic information from CWR acknowledgements sent in response to your
CWR registrations:

• Date of the CWR acknowledgement file

• Sender of the CWR acknowledgement file

• Remote Work ID (work ID assigned by the sender of the CWR acknowledgement file)

• Status of the work registration

• ISWCs (optional)

Only CWR 2.1 acknowledgement files are fully supported, with an experimental support for CWR 3.0.

9.3. Section: Musical Works 51

DMP Documentation, Release 23.4

Add view

Fig. 17: Add view

This view only has two fields:

• Acknowledgement file is where you select the file from your file system

• Import ISWCs selects whether to import ISWCs or not.

Once you click on Save (any of them), the file is processed.

A brief report is created, with links to all works that received work acknowledgements, work titles and statuses. It
can also hold detailed information about encountered issues. All issues are also reported as messages.

Note: Only works present in at least one of CWR exports are matched.

Actual work acknowledgements are shown in the last section of the change work view, described below.

List view

List view is very simple and self-explanatory. Just as with CWR exports, the file name is a link to a page with
slightly more information, and the last one opens the CWR file with syntax highlighting. See CWR exports for
more information.

Work registration acknowledgements

Fig. 18: Work registration acknowledgement

52 Chapter 9. User Manual

DMP Documentation, Release 23.4

They show the aforementioned information, with the exception of imported ISWCs, that go into the ISWC field at
the top of the change work view. Column status is the most important one.

The registration process should end with Registration accepted.

Registration accepted with changes is usually also OK.

Transaction accepted is sent by societies with a two-step process of importing CWR files. This means
that the first step for this work was succesfull, and the second step is pending.

Any other status requires investigation. That is far beyond the scope of this user manual. Or any manual. Syntax
highlighting of CWR acknowledgement files, mentioned above, may help in the process. Consult the official CWR
documentation as well as inquiry with your society.

Note: If you are instructed to contact the software vendor, according to the MIT license, it is you, not the creator
of this software.

9.3.5 Importing Data

Note: Default Publishing Staff permission group does not include data imports because importing data is not
everyday routine.

Musical works metadata can be imported from CSV files.

Warning: There is no way to undo a successful import other than by restoring your database from a backup.
If you don’t know how to back up and restore your database, do not import data!

What is being imported?

The import process will add works, including alternative titles, writers, recordings (partial), performing artists,
libraries, library releases and society work references.

No data is ever modified, with only one exception. A general agreement for an existing writer may be set and a
society-assigned agreement number may be added.

Why are errors reported?

If data in the file is incomplete or conflicting with data in the database (or other data in the same file), an error will
be thrown. Not all errors shown in a user-friendly way.

Note: When an error is thrown, no changes to the database occur.

Work IDs

The template contains Work ID column. If you never assigned IDs to works, leave this blank. The system will
generate work IDs. Note that this is not the ID given by your society or any third party.

On the other hand, work IDs must be maintained when moving from one software to another. Failing to do so may
overwrite your existing registrations at collecting societies or create duplicates.

9.3. Section: Musical Works 53

DMP Documentation, Release 23.4

Warning: Not assigning work IDs when required will lead to double registrations and other issues.

Warning: Assigning wrong work IDs will lead to registrations cancelling each other.

How to import?

Obtaining and extending the template

Download the CSV template from the Add Data Import view. You can edit it in Excel or another spreadsheet tool.

Alternativelly, you can go to CWR Tools - CSV to CWR, and download the template in Excel format. You still
need to save it as CSV before uploading to DMP.

It contains 6 columns for alternative titles, as well as 6 column sets for writers, recordings and artists.

For another writer column set, add all of: Writer 7 Last, Writer 7 First, Writer 7 IPI, Writer
7 PRO, Writer 7 Role, Writer 7 Manuscript Share, Writer 7 Controlled, Writer 7
SAAN.

You can add as many writer-, recording-, artist- and alternative-title-sets as you require. Just keep incrementing
the counter.

Note that this file has a subset of columns described in Exporting CSV .

Filling out the template

Fill out the template. Make sure to save as CSV.

Values in Writer PRO, Writer Role and Writer Controlled columns must start with correct codes.

Writer PRO must start with society code without the leading zero. 10, 10 ASCAP, 10 - ASCAP or 10 -
BMI will all resolve as ASCAP. ASCAP without the code will throw an error.

Writer Role must start with one of C, A, CA, AR, TR or AD, e.g. C - Composer.

Writer Controlled should be set to No, Yes or General (see Writer for details).

Data upload

Upload the CSV file through the data import form. If all goes well, the import report will show links to imported
works.

9.3.6 Royalty Calculations

If you are interested in the complete Royalty Management process, please read the articles about Royalty Man-
agement with DMP, or watch the relevant videos from Related Videos. This document describes only a single step
in this process.

Fig. 19: Outgoing royalty statement

54 Chapter 9. User Manual

https://cwr.tools/csv_to_cwr/
https://matijakolaric.com/articles/royalty-management/
https://matijakolaric.com/articles/royalty-management/

DMP Documentation, Release 23.4

DMP is extremely fast in calculating royalty distributions. Incoming royalty statements in almost any CSV format
can be processed. Output will be in a similar CSV format, with several additional columns.

Incoming formats

Incoming statement must be a CSV file with a header row. It can have any number of columns, in any order, as
long as it has:

• a column with one of these identifiers:

– internal work ID

– sender’s work ID, imported through work acknowledgements

– ISWC

– ISRC

• a column with amount to be distributed, values must be numeric

Note: Matching by internal work ID only works for musical works that have been exported at least once (as CSV,
CWR or JSON).

Values for these columns must be present in all rows.

In most cases, no pre-processing is required. Most of societies and other senders of royalty statements have an
option of sending them in CSV format.

Outgoing formats

Outgoing format is a CSV file. It has all the columns of the incoming file. Each incoming row will be copied for
every participant who shares in distribution. Additional data will be provided in additional columns at the end.

If no matching work is found, the original row is still copied, and an error is shown in Interested party
column.

Additional columns depend on the used algorithm.

Algorithms

DMP has two different algorithms for calculating royalty distributions.

In both algorithms, user has to select:

• column containing the identifier

• type of identifier

• column containing the amount

Both algorithms add these columns:

• Controlled by publisher (%)

• Interested party

• IP Account Number

• Role

• Share in amount received (%)

• Net amount

9.3. Section: Musical Works 55

DMP Documentation, Release 23.4

Split by calculated share

Fig. 20: Royalty calculation form: Split by calculated share

In this algorithm, one additional information is required:

• column containing the type of right (performance, mechanical, sync) or the type of right applicable to the
whole file.

The amount in each row is split between controlled writers and the publisher, using the publishing agreement
shares from the settings and manuscript shares.

Outgoing rows are generated for each controlled writer in work and the publisher.

In addition to columns added by both algorithms, this one also adds:

• Right type

• Owned Share (%)

56 Chapter 9. User Manual

DMP Documentation, Release 23.4

Split by manuscript share and apply fees

Fig. 21: Royalty calculation form: Split by manuscript share and apply fees

This is default algorithm.

One additional information is required:

• default publisher fee, to be used when the fee is set neither in the writer in work, nor in the writer.

For each incoming row, each controlled writer in work receives one row in the output file. The amount is split
among controlled writers, based on their relative manuscript shares. The fee is deducted from this gross amount,
resulting in net amount to be paid to the writer.

Publisher fee is taken from the first available of:

• writer in work

• writer (for general agreements only)

• default publisher fee from this form

Note: If publisher fee is empty, it is not used, and the next option is taken. If it has value 0, then no fee is applied
(zero fee), and next option is not considered.

In addition to columns added by both algorithms, this one also adds:

• Manuscript share (%)

• Amount before fee

• Fee (%)

• Fee amount

Post-processing

Excel or an alternative is the best tool for post-processing, especially creating outgoing statements.

9.3. Section: Musical Works 57

DMP Documentation, Release 23.4

Outgoing royalty statements

For creating outgoing statement, use pivot tables, filtering by Interested party column. You can design
outgoing statements however you wish.

Note: If no matching work was found, there will be a row with an error message in Interested party
column. Use the same filter to make a statement with unmatched rows.

Foreign currencies

All amounts calculated by DMP are in the same currency as the incoming data. Use a dedicated exchange rate
table and VLOOKUP function for conversions.

Precision

For calculations, precision exceeds the number of decimal places in any currency. You are advised to round up
only the totals, not the amounts in rows.

9.4 Section: Recordings

This section contains the model Recordings and closely related models Performing Artists and Music
Labels.

9.4.1 Recordings

Note: Django-Music-Publisher is primarily software for music publishers. It can store metadata about record-
ings, but not audio files.

Add/Change view

There are three ways to add or edit recordings in DMP, in order of importance:

• in add/change view of musical works, in section Recordings

• in add/change view of releases (commercial and library), through pop-ups in tracks

• in add/change view of recordings (described here)

The first exists because that is the most natural way for publishers to add them. The second exists because
recordings are released on releases (albums, products) as tracks. The last, for consistent user experience.

58 Chapter 9. User Manual

DMP Documentation, Release 23.4

Fig. 22: Add recording

Compared to the Recordings section in add work view, there is only one additional field at the top, where
the work can be chosen or added through a popup.

Note: DMP only supports recordings based on a single musical works. The link between a recording and the
underlying musical work is required.

Metadata

Recording title should only be used if the title is different than the work title. Version title should
only be used if different from the recording title. The use of suffixes is explained in works, section
Alternative titles. section.

ISRC is International Standard Recording Code.

Record label, recording artist, duration and release date are obvious. Duration can be
entered in seconds or in HH:MM:SS format. It will always be shown in the latter format.

Audio

Audio field is for uploading audio files. DMP currently only supports MP3 files.

9.4. Section: Recordings 59

DMP Documentation, Release 23.4

List view

Fig. 23: Recording list view

Recording list view provides a nice overview, with search and filter capabilities and links for work, record-
ing artist and record label.

9.4.2 Performing Artists

60 Chapter 9. User Manual

DMP Documentation, Release 23.4

Add View

Fig. 24: Add view

Add and change views for writers have four fieldsets.

Name

Last name and first name fields in the first, quite self-explanatory. Only last name is required. For bands,
band name goes into last name field.

ISNI

ISNI is a unique and unambiguous identifier for performing artists.

Public

Note: This section is only visible if file uploads are configured.

This section has two fields:

• Image - for uploading an image of the artist

• Description - for public description

9.4. Section: Recordings 61

DMP Documentation, Release 23.4

Internal

This section has only a single field Notes. You can use it in any way you like.

List View

Fig. 25: List view

There are no filters, only a search field. In the table, beside the three fields, there are two counters with links, to
the list of recordings by this artist the list of works performed by this artist LIVE. It is also used if the recording
data is not available.

62 Chapter 9. User Manual

DMP Documentation, Release 23.4

9.4.3 Labels

Add View

Name

Name - for label name

Public

Note: This section is only visible if file uploads are configured.

This section has two fields:

• Logo - for uploading label logo

• Description - for public description

Internal

This section has only a single field Notes. You can use it in any way you like.

List View

The list views have counters with links:

• for recordings, where this label was the record label,

• for library releases, where this label is the release (album) label,

9.4. Section: Recordings 63

DMP Documentation, Release 23.4

• for commercial releases, where this label is the release (album) label.

9.5 Section: Releases

This section contains the models related to releases.

9.5.1 Commercial (General) Releases

The most typical example of a release used to be a vinyl record album, then a CD. It is often referred to as product.

Add view

Commercial (general) and library releases are actually one model with two different sets of views.

They share basic 4 fields, as well as inline tracks:

• Release title

• Release EAN

• Release label

• Release date

• Tracks:

– Recording

64 Chapter 9. User Manual

DMP Documentation, Release 23.4

– Cut number

Note: Track in this software means recording in a release.

List view

List view is quite simple, only three columns, Release (album) title, Release (album)
label and count of tracks with link to Recordings.

9.5.2 Library Releases

Add view

Commercial (general) and library releases are actually one model with two different sets of views. The only
difference is that library releases have two additional fields, both required:

• Library

• CD identifier - a CWR field name for release code

List view

List view has 6 columns, 3 more than commercial releases. Two of them are for the two aforementioned field.
The last one is a counter and a link to works. This field will list works that have library release field set to
this library release.

9.5. Section: Releases 65

DMP Documentation, Release 23.4

9.5.3 Libraries

Label model only has a single field: name.

However, the list views have counters with links:

• for works in this library,

• for library releases in this library.

66 Chapter 9. User Manual

CHAPTER 10

Integration (Rest API)

DMP is very good at data management and validation, but not made for public presentation of this data. Still, it
makes no sense to enter the same data over and over again. Now you don’t have to.

DMP has provides several browsable read-only API endpoints for integration with other software, most notably
user’s website.

The address of the API root, relative to the home page, is: api/v1/.

10.1 Featured Releases and Artists

Releases, artists, writers and labels now feature fields image and description, to be used for public content
presentation. Recordings feature audio file field for the same reason.

There are endpoints for getting lists of all artists and releases (both commercial and library), with data in ei-
ther image or description field, as well as details about an artist or a release. Details contain data about
recordings (including audio files if they exist), record labels, underlying musical works and writers.

• /api/v1/artists/

• /api/v1/releases/

These endpoints are not publicly available, they are protected by Basic HTTP Authentication. It is rec-
ommended to create a dedicated user, has to be active, and has to have permission Can view Performing
Artist and/or Can view Release.

One use example is to provide list of artists and/or releases on your website through a plugin. You do it once, and
then your website will always be up-to-date, as long as you enter the data in DMP.

Warning: THIS FEATURE IS BEING DEVELOPED, IT IS NOT READY FOR PRODUCTION!

10.2 Shareable Playlists

A sharable playlist can be accessed through a normal HTML interface, or through a REST API endpoint. Both
URLs can be found in the change view.

There is currently no way to get a list of all secret playlist.

67

DMP Documentation, Release 23.4

10.3 Backup Metadata

• /api/v1/backup_metadata/

This endpoint can be used to get all the metadata about all works and releases. However, public data (descriptions,
images and audio files) are not included.

It is available only to a superuser, because it’s purpose is to provide one-time backup if you choose to move
to a different system.

Note: If you are moving from DMP to That Green Thing, the migration is fully automated.

68 Chapter 10. Integration (Rest API)

https://thatgreenthing.eu/

CHAPTER 11

For Developers

This technical section is targeting software developers.

• Code: https://github.com/matijakolaric-com/django-music-publisher/

• PYPI: https://pypi.org/project/django-music-publisher/

11.1 music_publisher

Django-Music-Publisher (DMP) is open source software for managing music metadata, registration/licencing of
musical works and royalty processing.

music_publisher app is the only Django app in this project.

11.1.1 music_publisher.apps

Django app definition for music_publisher.

class music_publisher.apps.MusicPublisherConfig(app_name, app_module)
Bases: django.apps.config.AppConfig

Configuration for Music Publisher app.

label
app label

Type str

name
app name

Type str

verbose_name
app verbose name

Type str

ready()
Validate settings when ready to prevent deployments with invalid settings.

69

https://github.com/matijakolaric-com/django-music-publisher/
https://pypi.org/project/django-music-publisher/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

DMP Documentation, Release 23.4

11.1.2 music_publisher.societies

Create society tuple and dict.

music_publisher.societies.SOCIETIES
(tis-n, Name (Country))

Type tuple

music_publisher.societies.SOCIETY_DICT
{tis-n, Name (Country)}

Type dict

11.1.3 music_publisher.validators

CWR-compatibility field-level validation.

For formats that allow dashes and dots (ISWC, IPI Base), the actual format is from CWR 2.x specification: ISWC
without and IPI Base with dashes.

music_publisher.validators.check_ean_digit(ean)
EAN checksum validation.

Parameters ean (str) – EAN

Raises ValidationError

music_publisher.validators.check_iswc_digit(iswc, weight)
ISWC / IPI Base checksum validation.

Parameters

• iswc (str) – ISWC or IPI Base #

• weight (int) – 1 for ISWC, 2 for IPI Base #

Raises ValidationError

music_publisher.validators.check_ipi_digit(all_digits)
IPI Name checksum validation.

Parameters all_digits (str) – IPI Name #

Raises ValidationError

music_publisher.validators.check_isni_digit(all_digits)
ISNI checksum validation.

Parameters all_digits (str) – ISNI

Raises ValidationError

music_publisher.validators.check_dpid(dpid)
Calculate the checksum. A valid number should have a checksum of 1.

class music_publisher.validators.CWRFieldValidator(field: str)
Bases: object

Validate fields for CWR compliance.

field
Validation service name of the field being validated

Type str

deconstruct()
Return a 3-tuple of class import path, positional arguments, and keyword arguments.

70 Chapter 11. For Developers

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

DMP Documentation, Release 23.4

music_publisher.validators.validate_publisher_settings()
CWR-compliance validation for publisher settings.

music_publisher.validators.validate_settings()
CWR-compliance validation for settings.

This is used to prevent deployment with invalid settings.

11.1.4 music_publisher.base

Contains base (abstract) classes used in models

class music_publisher.base.NotesManager
Bases: django.db.models.manager.Manager

Manager for objects inheriting from NotesBase.

Defers NotesBase.notes field.

get_queryset()
Defer NotesBase.notes field.

class music_publisher.base.NotesBase(*args, **kwargs)
Bases: django.db.models.base.Model

Abstract class for all classes that have notes.

notes
Notes, free internal text field

Type django.db.models.TextField

class music_publisher.base.DescriptionBase(*args, **kwargs)
Bases: django.db.models.base.Model

Abstract class for all classes that have publicly visible descriptions.

description
Public description

Type django.db.models.TextField

class music_publisher.base.TitleBase(*args, **kwargs)
Bases: django.db.models.base.Model

Abstract class for all classes that have a title.

title
Title, used in work title, alternate title, etc.

Type django.db.models.CharField

class music_publisher.base.PersonBase(*args, **kwargs)
Bases: django.db.models.base.Model

Base class for all classes that contain people with first and last name.

This includes writers and artists. For bands, only the last name field is used.

first_name
First Name

Type django.db.models.CharField

last_name
Last Name

Type django.db.models.CharField

11.1. music_publisher 71

https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.TextField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.TextField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField

DMP Documentation, Release 23.4

class music_publisher.base.SocietyAffiliationBase(*args, **kwargs)
Bases: django.db.models.base.Model

Abstract base for all objects with CMO affiliations

pr_society
Performing Rights Society Code

Type django.db.models.CharField

mr_society
Mechanical Rights Society Code

Type django.db.models.CharField

sr_society
Sync. Rights Society Code

Type django.db.models.CharField

class music_publisher.base.IPIBase(*args, **kwargs)
Bases: django.db.models.base.Model

Abstract base for all objects containing IPI numbers.

ipi_base
IPI Base Number

Type django.db.models.CharField

ipi_name
IPI Name Number

Type django.db.models.CharField

_can_be_controlled
used to determine if there is enough data for a writer to be controlled.

Type django.db.models.BooleanField

clean_fields(*args, **kwargs)
Data cleanup, allowing various import formats to be converted into consistently formatted data.

class music_publisher.base.IPIWithGeneralAgreementBase(*args, **kwargs)
Bases: music_publisher.base.IPIBase, music_publisher.base.
SocietyAffiliationBase

Abstract base for all objects with general agreements.

saan
Society-assigned agreement number, in this context it is used for general agreements, for specific
agreements use models.WriterInWork.saan.

Type django.db.models.CharField

generally_controlled
flags if a writer is generally controlled (in all works)

Type django.db.models.BooleanField

publisher_fee
this field is used in calculating publishing fees

Type django.db.models.DecimalField

clean()
Clean the data and validate.

clean_fields(*args, **kwargs)
Data cleanup, allowing various import formats to be converted into consistently formatted data.

72 Chapter 11. For Developers

https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.BooleanField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.BooleanField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.DecimalField

DMP Documentation, Release 23.4

class music_publisher.base.AccountNumberBase(*args, **kwargs)
Bases: django.db.models.base.Model

Abstract base for all objects with an account number.

account_number
account number, used for royalty processing

Type django.db.models.CharField

clean_fields(*args, **kwargs)
Account Number cleanup

class music_publisher.base.ArtistBase(*args, **kwargs)
Bases: music_publisher.base.PersonBase, music_publisher.base.NotesBase,
music_publisher.base.DescriptionBase

Performing artist base class.

isni
International Standard Name Id

Type django.db.models.CharField

clean_fields(*args, **kwargs)
ISNI cleanup

class music_publisher.base.WriterBase(*args, **kwargs)
Bases: music_publisher.base.PersonBase, music_publisher.base.
IPIWithGeneralAgreementBase, music_publisher.base.NotesBase,
music_publisher.base.DescriptionBase, music_publisher.base.
AccountNumberBase

Base class for writers.

class music_publisher.base.LabelBase(*args, **kwargs)
Bases: music_publisher.base.NotesBase, music_publisher.base.
DescriptionBase

Music Label base class.

name
Label Name

Type django.db.models.CharField

class music_publisher.base.LibraryBase(*args, **kwargs)
Bases: django.db.models.base.Model

Music Library base class.

name
Library Name

Type django.db.models.CharField

class music_publisher.base.ReleaseBase(*args, **kwargs)
Bases: music_publisher.base.DescriptionBase

Music Release base class

cd_identifier
CD Identifier, used when origin is library

Type django.db.models.CharField

library
Library Name

Type django.db.models.CharField

11.1. music_publisher 73

https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField

DMP Documentation, Release 23.4

release_date
Date of the release

Type django.db.models.DateField

ean
EAN code

Type django.db.models.CharField

release_label
Label Name

Type django.db.models.CharField

release_title
Title of the release

Type django.db.models.CharField

11.1.5 music_publisher.models

Concrete models.

They mostly inherit from classes in base.

class music_publisher.models.Artist(*args, **kwargs)
Bases: music_publisher.base.ArtistBase

Performing artist.

get_dict()
Get the object in an internal dictionary format

Returns internal dict format

Return type dict

artist_id
Artist identifier

Returns Artist ID

Return type str

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

class music_publisher.models.Label(*args, **kwargs)
Bases: music_publisher.base.LabelBase

Music Label.

label_id
Label identifier

Returns Label ID

Return type str

get_dict()
Get the object in an internal dictionary format

Returns internal dict format

Return type dict

74 Chapter 11. For Developers

https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.DateField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

DMP Documentation, Release 23.4

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

class music_publisher.models.Library(*args, **kwargs)
Bases: music_publisher.base.LibraryBase

Music Library.

library_id
Library identifier

Returns Library ID

Return type str

get_dict()
Get the object in an internal dictionary format

Returns internal dict format

Return type dict

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

class music_publisher.models.Release(*args, **kwargs)
Bases: music_publisher.base.ReleaseBase

Music Release (album / other product)

library
Foreign key to models.Library

Type django.db.models.ForeignKey

release_label
Foreign key to models.Label

Type django.db.models.ForeignKey

recordings
M2M to models.Recording through models.Track

Type django.db.models.ManyToManyField

release_id
Release identifier.

Returns Release ID

Return type str

get_dict(with_tracks=False)
Get the object in an internal dictionary format

Parameters with_tracks (bool) – add track data to the output

Returns internal dict format

Return type dict

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

11.1. music_publisher 75

https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ForeignKey
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ForeignKey
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ManyToManyField
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned

DMP Documentation, Release 23.4

class music_publisher.models.LibraryReleaseManager
Bases: django.db.models.manager.Manager

Manager for a proxy class models.LibraryRelease

get_queryset()
Return only library releases

Returns Queryset with instances of models.LibraryRelease

Return type django.db.models.query.QuerySet

get_dict(qs)
Get the object in an internal dictionary format

Parameters qs (django.db.models.query.QuerySet) –

Returns internal dict format

Return type dict

class music_publisher.models.LibraryRelease(*args, **kwargs)
Bases: music_publisher.models.Release

Proxy class for Library Releases (AKA Library CDs)

objects
Database Manager

Type LibraryReleaseManager

clean()
Make sure that release title is required if one of the other “non-library” fields is present.

Raises ValidationError – If not compliant.

get_origin_dict()
Get the object in an internal dictionary format.

This is used for work origin, not release data.

Returns internal dict format

Return type dict

exception DoesNotExist
Bases: music_publisher.models.DoesNotExist

exception MultipleObjectsReturned
Bases: music_publisher.models.MultipleObjectsReturned

class music_publisher.models.CommercialReleaseManager
Bases: django.db.models.manager.Manager

Manager for a proxy class models.CommercialRelease

get_queryset()
Return only commercial releases

Returns Queryset with instances of models.CommercialRelease

Return type django.db.models.query.QuerySet

get_dict(qs)
Get the object in an internal dictionary format

Parameters qs (django.db.models.query.QuerySet) –

Returns internal dict format

Return type dict

76 Chapter 11. For Developers

https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet
https://docs.python.org/3/library/stdtypes.html#dict

DMP Documentation, Release 23.4

class music_publisher.models.CommercialRelease(*args, **kwargs)
Bases: music_publisher.models.Release

Proxy class for Commercial Releases

objects
Database Manager

Type CommercialReleaseManager

exception DoesNotExist
Bases: music_publisher.models.DoesNotExist

exception MultipleObjectsReturned
Bases: music_publisher.models.MultipleObjectsReturned

class music_publisher.models.PlaylistManager
Bases: django.db.models.manager.Manager

Manager for a proxy class models.Playlist

get_queryset()
Return only commercial releases

Returns Queryset with instances of models.CommercialRelease

Return type django.db.models.query.QuerySet

get_dict(qs)
Get the object in an internal dictionary format

Parameters qs (django.db.models.query.QuerySet) –

Returns internal dict format

Return type dict

class music_publisher.models.Playlist(*args, **kwargs)
Bases: music_publisher.models.Release

Proxy class for Playlists

objects
Database Manager

Type CommercialReleaseManager

clean(*args, **kwargs)
Hook for doing any extra model-wide validation after clean() has been called on every field by
self.clean_fields. Any ValidationError raised by this method will not be associated with a particu-
lar field; it will have a special-case association with the field defined by NON_FIELD_ERRORS.

exception DoesNotExist
Bases: music_publisher.models.DoesNotExist

exception MultipleObjectsReturned
Bases: music_publisher.models.MultipleObjectsReturned

class music_publisher.models.Writer(*args, **kwargs)
Bases: music_publisher.base.WriterBase

Writers.

original_publishing_agreement
Foreign key to models.OriginalPublishingAgreement

Type django.db.models.ForeignKey

clean(*args, **kwargs)
Check if writer who is controlled still has enough data.

11.1. music_publisher 77

https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet
https://docs.python.org/3/library/stdtypes.html#dict
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ForeignKey

DMP Documentation, Release 23.4

writer_id
Writer ID for CWR

Returns formatted writer ID

Return type str

get_dict()
Create a data structure that can be serialized as JSON.

Returns JSON-serializable data structure

Return type dict

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

class music_publisher.models.WorkManager
Bases: django.db.models.manager.Manager

Manager for class models.Work

get_queryset()
Get an optimized queryset.

Returns Queryset with instances of models.Work

Return type django.db.models.query.QuerySet

get_dict(qs)
Return a dictionary with works from the queryset

Parameters qs (django.db.models.query import QuerySet) –

Returns dictionary with works

Return type dict

class music_publisher.models.Work(*args, **kwargs)
Bases: music_publisher.base.TitleBase

Concrete class, with references to foreign objects.

_work_id
permanent work id, either imported or fixed when exports are created

Type django.db.models.CharField

iswc
ISWC

Type django.db.models.CharField

original_title
title of the original work, implies modified work

Type django.db.models.CharField

release_label
Foreign key to models.LibraryRelease

Type django.db.models.ForeignKey

last_change
when the last change was made to this object or any of the child objects, basically used in filtering

Type django.db.models.DateTimeField

artists
Artists performing the work

78 Chapter 11. For Developers

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet
https://docs.python.org/3/library/stdtypes.html#dict
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ForeignKey
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.DateTimeField

DMP Documentation, Release 23.4

Type django.db.models.ManyToManyField

writers
Writers who created the work

Type django.db.models.ManyToManyField

objects
Database Manager

Type WorkManager

work_id
Create Work ID used in registrations.

Returns Internal Work ID

Return type str

is_modification()
Check if the work is a modification.

Returns True if modification, False if original

Return type bool

clean_fields(*args, **kwargs)
Deal with various ways ISWC is written.

static get_publisher_dict()
Create data structure for the publisher.

Returns JSON-serializable data structure

Return type dict

get_dict(with_recordings=True)
Create a data structure that can be serialized as JSON.

Normalize the structure if required.

Returns JSON-serializable data structure

Return type dict

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

class music_publisher.models.AlternateTitle(*args, **kwargs)
Bases: music_publisher.base.TitleBase

Concrete class for alternate titles.

work
Foreign key to Work model

Type django.db.models.ForeignKey

suffix
implies that the title should be appended to the work title

Type django.db.models.BooleanField

get_dict()
Create a data structure that can be serialized as JSON.

Returns JSON-serializable data structure

Return type dict

11.1. music_publisher 79

https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ManyToManyField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ManyToManyField
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ForeignKey
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.BooleanField
https://docs.python.org/3/library/stdtypes.html#dict

DMP Documentation, Release 23.4

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

class music_publisher.models.ArtistInWork(*args, **kwargs)
Bases: django.db.models.base.Model

Artist performing the work (live in CWR 3).

artist
FK to Artist

Type django.db.models.ForeignKey

work
FK to Work

Type django.db.models.ForeignKey

get_dict()

Returns taken from models.Artist.get_dict()

Return type dict

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

class music_publisher.models.WriterInWork(*args, **kwargs)
Bases: django.db.models.base.Model

Writers who created this work.

At least one writer in work must be controlled. Sum of relative shares must be (roughly) 100%. Capacity is
limited to roles for original writers.

work
FK to Work

Type django.db.models.ForeignKey

writer
FK to Writer

Type django.db.models.ForeignKey

saan
Society-assigned agreement number between the writer and the original publisher, please note that this
field is for SPECIFIC agreements, for a general agreement, use base.IPIBase.saan

Type django.db.models.CharField

controlled
A complete mistery field

Type django.db.models.BooleanField

relative_share
Initial split among writers, prior to publishing

Type django.db.models.DecimalField

capacity
Role of the writer in this work

Type django.db.models.CharField

80 Chapter 11. For Developers

https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ForeignKey
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ForeignKey
https://docs.python.org/3/library/stdtypes.html#dict
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ForeignKey
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ForeignKey
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.BooleanField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.DecimalField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField

DMP Documentation, Release 23.4

publisher_fee
Percentage of royalties kept by publisher

Type django.db.models.DecimalField

clean_fields(*args, **kwargs)
Turn SAAN into uppercase.

Parameters

• *args – passing through

• **kwargs – passing through

Returns SAAN in uppercase

Return type str

clean()
Make sure that controlled writers have all the required data.

Also check that writers that are not controlled do not have data that can not apply to them.

get_agreement_dict()
Get agreement dictionary for this writer in work.

get_dict()
Create a data structure that can be serialized as JSON.

Returns JSON-serializable data structure

Return type dict

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

class music_publisher.models.Recording(*args, **kwargs)
Bases: django.db.models.base.Model

Recording.

release_date
Recording Release Date

Type django.db.models.DateField

duration
Recording Duration

Type django.db.models.TimeField

isrc
International Standard Recording Code

Type django.db.models.CharField

record_label
Record Label

Type django.db.models.CharField

clean_fields(*args, **kwargs)
ISRC cleaning, just removing dots and dashes.

Parameters

• *args – may be used in upstream

• **kwargs – may be used in upstream

11.1. music_publisher 81

https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.DecimalField
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.DateField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.TimeField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField

DMP Documentation, Release 23.4

Returns return from django.db.models.Model.clean_fields()

complete_recording_title
Return complete recording title.

Returns str

complete_version_title
Return complete version title.

Returns str

title
Generate title from various fields.

recording_id
Create Recording ID used in registrations

Returns Internal Recording ID

Return type str

get_dict(with_releases=False, with_work=True)
Create a data structure that can be serialized as JSON.

Parameters

• with_releases (bool) – add releases data (through tracks)

• with_work (bool) – add work data

Returns JSON-serializable data structure

Return type dict

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

class music_publisher.models.Track(*args, **kwargs)
Bases: django.db.models.base.Model

Track, a recording on a release.

recording
Recording

Type django.db.models.ForeignKey

release
Release

Type django.db.models.ForeignKey

cut_number
Cut Number

Type django.db.models.PositiveSmallIntegerField

get_dict()
Create a data structure that can be serialized as JSON.

Returns JSON-serializable data structure

Return type dict

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

82 Chapter 11. For Developers

https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model.clean_fields
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ForeignKey
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ForeignKey
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.PositiveSmallIntegerField
https://docs.python.org/3/library/stdtypes.html#dict
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned

DMP Documentation, Release 23.4

class music_publisher.models.DeferCwrManager
Bases: django.db.models.manager.Manager

Manager for CWR Exports and ACK Imports.

Defers CWRExport.cwr and AckImport.cwr fields.

get_queryset()
Return a new QuerySet object. Subclasses can override this method to customize the behavior of the
Manager.

class music_publisher.models.CWRExport(*args, **kwargs)
Bases: django.db.models.base.Model

Export in CWR format.

Common Works Registration format is a standard format for registration of musical works world-wide.
Exports are available in CWR 2.1 revision 8 and CWR 3.0 (experimental).

nwr_rev
choice field where user can select which version and type of CWR it is

Type django.db.models.CharField

cwr
contents of CWR file

Type django.db.models.TextField

year
2-digit year format

Type django.db.models.CharField

num_in_year
CWR sequential number in a year

Type django.db.models.PositiveSmallIntegerField

works
included works

Type django.db.models.ManyToManyField

description
internal note

Type django.db.models.CharField

version
Return CWR version.

filename
Return CWR file name.

Returns CWR file name

Return type str

filename3
Return proper CWR 3.x filename.

Format is: CWYYnnnnSUB_REP_VM - m - r.EXT

Returns CWR file name

Return type str

filename2
Return proper CWR 2.x filename.

Returns CWR file name

11.1. music_publisher 83

https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.TextField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.PositiveSmallIntegerField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ManyToManyField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

DMP Documentation, Release 23.4

Return type str

get_record(key, record)
Create CWR record (row) from the key and dict.

Parameters

• key (str) – type of record

• record (dict) – field values

Returns CWR record (row)

Return type str

get_transaction_record(key, record)
Create CWR transaction record (row) from the key and dict.

This methods adds transaction and record sequences.

Parameters

• key (str) – type of record

• record (dict) – field values

Returns CWR record (row)

Return type str

yield_iswc_request_lines(works)
Yield lines for an ISR (ISWC request) in CWR 3.x

yield_publisher_lines(publisher, controlled_relative_share)
Yield SPU/SPT lines.

Parameters

• publisher (dict) – dictionary with publisher data

• controlled_relative_share (Decimal) – sum of manuscript shares for
controlled writers

Yields str – CWR record (row/line)

yield_registration_lines(works)
Yield lines for CWR registrations (WRK in 3.x, NWR and REV in 2.x)

Parameters works (list) – list of work dicts

Yields str – CWR record (row/line)

get_party_lines(work)
Yield SPU, SPT, OPU, SWR, SWT, OPT and PWR lines

Parameters work – musical work

Yields str – CWR record (row/line)

get_other_lines(work)
Yield ALT and subsequent lines

Parameters work – musical work

Yields str – CWR record (row/line)

get_header()
Construct CWR HDR record.

yield_lines(works)
Yield CWR transaction records (rows/lines) for works

Parameters works (query) – models.Work query

84 Chapter 11. For Developers

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

DMP Documentation, Release 23.4

Yields str – CWR record (row/line)

create_cwr(publisher_code=None)
Create CWR and save.

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

class music_publisher.models.WorkAcknowledgement(*args, **kwargs)
Bases: django.db.models.base.Model

Acknowledgement of work registration.

date
Acknowledgement date

Type django.db.models.DateField

remote_work_id
Remote work ID

Type django.db.models.CharField

society_code
3-digit society code

Type django.db.models.CharField

status
2-letter status code

Type django.db.models.CharField

TRANSACTION_STATUS_CHOICES
choices for status

Type tuple

work
FK to Work

Type django.db.models.ForeignKey

get_dict()
Return dictionary with external work IDs.

Returns JSON-serializable data structure

Return type dict

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

class music_publisher.models.ACKImport(*args, **kwargs)
Bases: django.db.models.base.Model

CWR acknowledgement file import.

filename
Description

Type django.db.models.CharField

society_code
3-digit society code, please note that choices is not set.

11.1. music_publisher 85

https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.DateField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://docs.python.org/3/library/stdtypes.html#tuple
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ForeignKey
https://docs.python.org/3/library/stdtypes.html#dict
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField

DMP Documentation, Release 23.4

Type models.CharField

society_name
Society name, used if society code is missing.

Type models.CharField

date
Acknowledgement date

Type django.db.models.DateField

report
Basically a log

Type django.db.models.CharField

cwr
contents of CWR file

Type django.db.models.TextField

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

class music_publisher.models.DataImport(*args, **kwargs)
Bases: django.db.models.base.Model

Importing basic work data from a CSV file.

This class just acts as log, the actual logic is in data_import.

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

music_publisher.models.smart_str_conversion(value)
Convert to Title Case only if UPPER CASE.

music_publisher.models.change_case(sender, instance, **kwargs)
Change case of CharFields from music_publisher.

11.1.6 music_publisher.cwr_templates

Django templates for CWR generation.

music_publisher.cwr_templates.TEMPLATES_21
Record templates for CWR 2.1

Type dict

music_publisher.cwr_templates.TEMPLATES_22
Record templates for CWR 2.2, based on 2.1

Type dict

music_publisher.cwr_templates.TEMPLATES_30
Record templates for CWR 3.0

Type dict

music_publisher.cwr_templates.TEMPLATES_31
Record templates for CWR 3.1, based on 3.0

Type dict

86 Chapter 11. For Developers

https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.DateField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.CharField
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.TextField
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

DMP Documentation, Release 23.4

11.1.7 music_publisher.templatetags

Template tags for music_publisher

11.1.8 music_publisher.templatetags.cwr_filters

Filters used in parsing of CWR files.

music_publisher.templatetags.cwr_filters.perc(value)
Display shares as human-readable string.

music_publisher.templatetags.cwr_filters.soc_name(value)
Display society name

music_publisher.templatetags.cwr_filters.capacity(value)
Display writer capacity/role

music_publisher.templatetags.cwr_filters.agreement_type(value)
Display publishing agreement type

music_publisher.templatetags.cwr_filters.status(value)
Display acknowledgement status

music_publisher.templatetags.cwr_filters.flag(value)
Display flag value

music_publisher.templatetags.cwr_filters.orimod(value)
Display original or modification

music_publisher.templatetags.cwr_filters.terr(value)
Display territory

music_publisher.templatetags.cwr_filters.ie(value)
Display Included / Excluded

music_publisher.templatetags.cwr_filters.role(value)
Display publisher role/capacity

11.1.9 music_publisher.templatetags.cwr_generators

Filters used in generation of CWR files.

music_publisher.templatetags.cwr_generators.rjust(value, length)
Format general numeric fields.

music_publisher.templatetags.cwr_generators.ljust(value, length)
Format general alphanumeric fields.

music_publisher.templatetags.cwr_generators.soc(value)
Format society fields.

music_publisher.templatetags.cwr_generators.cwrshare(value)
Get CWR-compatible output for share fields

11.1.10 music_publisher.templatetags.dmp_dashboard

Filter used in DMP dashboard.

music_publisher.templatetags.dmp_dashboard.yield_sections(model_dict, sec-
tions)

Convert model dictionary according to section structure

music_publisher.templatetags.dmp_dashboard.dmp_model_groups(model_list)
Return groups of models.

11.1. music_publisher 87

DMP Documentation, Release 23.4

11.1.11 music_publisher.forms

Forms and formsets.

class music_publisher.forms.LibraryReleaseForm(*args, **kwargs)
Bases: django.forms.models.ModelForm

Custom form for models.LibraryRelease.

class music_publisher.forms.PlaylistForm(*args, **kwargs)
Bases: django.forms.models.ModelForm

Custom form for models.LibraryRelease.

class music_publisher.forms.AlternateTitleFormSet(data=None, files=None,
instance=None,
save_as_new=False, pre-
fix=None, queryset=None,
**kwargs)

Bases: django.forms.models.BaseInlineFormSet

Formset for AlternateTitleInline.

clean()

Performs these checks: if suffix is used, then validates the total length

Returns None

Raises ValidationError

class music_publisher.forms.WorkForm(*args, **kwargs)
Bases: django.forms.models.ModelForm

Custom form for models.Work.

Calculate values for readonly field version_type.

class music_publisher.forms.ACKImportForm(data=None, files=None,
auto_id=’id_%s’, prefix=None, ini-
tial=None, error_class=<class
’django.forms.utils.ErrorList’>,
label_suffix=None,
empty_permitted=False, instance=None,
use_required_attribute=None, ren-
derer=None)

Bases: django.forms.models.ModelForm

Form used for CWR acknowledgement imports.

acknowledgement_file
Field for file upload

Type FileField

clean()
Perform usual clean, then process the file, returning the content field as if it was the TextField.

class music_publisher.forms.WriterInWorkFormSet(data=None, files=None,
instance=None,
save_as_new=False, prefix=None,
queryset=None, **kwargs)

Bases: django.forms.models.BaseInlineFormSet

Formset for WriterInWorkInline.

clean()

88 Chapter 11. For Developers

https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#django.forms.models.BaseInlineFormSet
https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#django.forms.models.BaseInlineFormSet

DMP Documentation, Release 23.4

Performs these checks: at least one writer must be controlled, at least one writer music be Composer
or Composer&Lyricist sum of relative shares must be ~100%

Returns None

Raises ValidationError

class music_publisher.forms.DataImportForm(data=None, files=None,
auto_id=’id_%s’, prefix=None,
initial=None, error_class=<class
’django.forms.utils.ErrorList’>,
label_suffix=None,
empty_permitted=False, instance=None,
use_required_attribute=None, ren-
derer=None)

Bases: django.forms.models.ModelForm

Form used for data imports.

data_file
Field for file upload

Type FileField

clean()
This is the actual import process, if all goes well, the report is saved.

Raises ValidationError

11.1.12 music_publisher.admin

Main interface for music_publisher.

All views are here, except for royalty_calculation.

class music_publisher.admin.ImageWidget(attrs=None)
Bases: django.forms.widgets.ClearableFileInput

class music_publisher.admin.AudioPlayerWidget(attrs=None)
Bases: django.forms.widgets.ClearableFileInput

class music_publisher.admin.MusicPublisherAdmin(model, admin_site)
Bases: django.contrib.admin.options.ModelAdmin

Parent class to all admin classes.

class music_publisher.admin.ArtistInWorkInline(parent_model, admin_site)
Bases: django.contrib.admin.options.TabularInline

Inline interface for models.ArtistInWork.

model
alias of music_publisher.models.ArtistInWork

class music_publisher.admin.RecordingInline(parent_model, admin_site)
Bases: django.contrib.admin.options.StackedInline

Inline interface for models.Recording, used in WorkAdmin.

get_fieldsets(request, obj=None)
Hook for specifying fieldsets.

model
alias of music_publisher.models.Recording

11.1. music_publisher 89

DMP Documentation, Release 23.4

class music_publisher.admin.ArtistAdmin(model, admin_site)
Bases: music_publisher.admin.MusicPublisherAdmin

Admin interface for models.Artist.

get_fieldsets(request, obj=None)
Hook for specifying fieldsets.

last_or_band(obj)
Placeholder for models.Artist.last_name.

save_model(request, obj, form, *args, **kwargs)
Save, then update last_change of the works whose CWR registration changes due to this change.

get_queryset(request)
Optimized queryset for changelist view.

work_count(obj)
Return the work count from the database field, or count them. (dealing with legacy)

recording_count(obj)
Return the work count from the database field, or count them. (dealing with legacy)

class music_publisher.admin.LabelAdmin(model, admin_site)
Bases: music_publisher.admin.MusicPublisherAdmin

Admin interface for models.Label.

get_fieldsets(request, obj=None)
Hook for specifying fieldsets.

get_queryset(request)
Optimized queryset for changelist view.

commercialrelease_count(obj)
Return the work count from the database field, or count them. (dealing with legacy)

libraryrelease_count(obj)
Return the work count from the database field, or count them. (dealing with legacy)

recording_count(obj)
Return the work count from the database field, or count them. (dealing with legacy)

save_model(request, obj, form, *args, **kwargs)
Save, then update last_change of the corresponding works.

class music_publisher.admin.LibraryAdmin(model, admin_site)
Bases: music_publisher.admin.MusicPublisherAdmin

Admin interface for models.Library .

get_queryset(request)
Optimized queryset for changelist view.

libraryrelease_count(obj)
Return the work count from the database field, or count them. (dealing with legacy)

work_count(obj)
Return the work count from the database field, or count them. (dealing with legacy)

save_model(request, obj, form, *args, **kwargs)
Save, then update last_change of the corresponding works.

class music_publisher.admin.TrackInline(parent_model, admin_site)
Bases: django.contrib.admin.options.TabularInline

Inline interface for models.Track, used in LibraryReleaseAdmin and
CommercialReleaseAdmin.

90 Chapter 11. For Developers

DMP Documentation, Release 23.4

model
alias of music_publisher.models.Track

class music_publisher.admin.PlaylistTrackInline(parent_model, admin_site)
Bases: music_publisher.admin.TrackInline

class music_publisher.admin.ReleaseAdmin(model, admin_site)
Bases: music_publisher.admin.MusicPublisherAdmin

Admin interface for models.Release.

has_module_permission(request)
Return False

has_add_permission(request)
Return False

has_change_permission(request, obj=None)
Return False

has_delete_permission(request, obj=None)
Return False

class music_publisher.admin.LibraryReleaseAdmin(model, admin_site)
Bases: music_publisher.admin.MusicPublisherAdmin

Admin interface for models.LibraryRelease.

form
alias of music_publisher.forms.LibraryReleaseForm

get_fieldsets(request, obj=None)
Hook for specifying fieldsets.

get_inline_instances(request, obj=None)
Limit inlines in popups.

save_model(request, obj, form, *args, **kwargs)
Save, then update last_change of the corresponding works.

get_queryset(request)
Optimized queryset for changelist view.

work_count(obj)
Return the work count from the database field, or count them. (dealing with legacy)

track_count(obj)
Return the work count from the database field, or count them. (dealing with legacy)

create_json(request, qs)
Batch action that downloads a JSON file containing library releases.

Returns JSON file with selected works

Return type JsonResponse

get_actions(request)
Custom action disabling the default delete_selected.

class music_publisher.admin.PlaylistAdmin(model, admin_site)
Bases: music_publisher.admin.MusicPublisherAdmin

Admin interface for models.Playlist.

form
alias of music_publisher.forms.PlaylistForm

get_inline_instances(request, obj=None)
Limit inlines in popups.

11.1. music_publisher 91

DMP Documentation, Release 23.4

get_queryset(request)
Optimized queryset for changelist view.

track_count(obj)
Return the work count from the database field, or count them. (dealing with legacy)

class music_publisher.admin.CommercialReleaseAdmin(model, admin_site)
Bases: music_publisher.admin.MusicPublisherAdmin

Admin interface for models.CommercialRelease.

get_fieldsets(request, obj=None)
Hook for specifying fieldsets.

get_inline_instances(request, obj=None)
Limit inlines in popups.

get_queryset(request)
Optimized queryset for changelist view.

track_count(obj)
Return the work count from the database field, or count them. (dealing with legacy)

create_json(request, qs)
Batch action that downloads a JSON file containing commercial releases.

Returns JSON file with selected commercial releases

Return type JsonResponse

get_actions(request)
Custom action disabling the default delete_selected.

class music_publisher.admin.WriterAdmin(model, admin_site)
Bases: music_publisher.admin.MusicPublisherAdmin

Interface for models.Writer.

get_fieldsets(request, obj=None)
Return the fieldsets.

Depending on settings, MR and PR affiliations may not be needed. See WriterAdmin.
get_society_list()

static get_society_list()
List which society fields are required.

Mechanical and Sync affiliation is not required if writers don’t collect any of it, which is the most
usual case.

save_model(request, obj, form, *args, **kwargs)
Perform normal save_model, then update last_change of all connected works.

get_queryset(request)
Optimized queryset for changelist view.

work_count(obj)
Return the work count from the database field, or count them. (dealing with legacy)

class music_publisher.admin.AlternateTitleInline(parent_model, admin_site)
Bases: django.contrib.admin.options.TabularInline

Inline interface for models.AlternateTitle.

model
alias of music_publisher.models.AlternateTitle

formset
alias of music_publisher.forms.AlternateTitleFormSet

92 Chapter 11. For Developers

DMP Documentation, Release 23.4

complete_alt_title(obj)
Return the complete title, see models.AlternateTitle.__str__()

class music_publisher.admin.WriterInWorkInline(parent_model, admin_site)
Bases: django.contrib.admin.options.TabularInline

Inline interface for models.WriterInWork.

model
alias of music_publisher.models.WriterInWork

formset
alias of music_publisher.forms.WriterInWorkFormSet

class music_publisher.admin.WorkAcknowledgementInline(parent_model, ad-
min_site)

Bases: django.contrib.admin.options.TabularInline

Inline interface for models.WorkAcknowledgement, used in WorkAdmin.

Note that normal users should only have a ‘view’ permission.

model
alias of music_publisher.models.WorkAcknowledgement

class music_publisher.admin.WorkAdmin(model, admin_site)
Bases: music_publisher.admin.MusicPublisherAdmin

Admin interface for models.Work.

This is by far the most important part of the interface.

actions
batch actions used: create_cwr(), create_json()

Type tuple

inlines
inlines used in change view: AlternateTitleInline, WriterInWorkInline,
RecordingInline, ArtistInWorkInline, WorkAcknowledgementInline,

Type tuple

form
alias of music_publisher.forms.WorkForm

writer_last_names(obj)
This is a standard way how writers are shown in other apps.

percentage_controlled(obj)
Controlled percentage (sum of relative shares for controlled writers)

Please note that writers in work are already included in the queryset for other reasons, so no overhead
except summing.

work_id(obj)
Return models.Work.work_id, make it sortable.

cwr_export_count(obj)
Return the count of CWR exports with the link to the filtered changelist view for CWRExportAdmin.

recording_count(obj)
Return the count of CWR exports with the link to the filtered changelist view for CWRExportAdmin.

get_queryset(request)
Optimized queryset for changelist view.

class InCWRListFilter(request, params, model, model_admin)
Bases: django.contrib.admin.filters.SimpleListFilter

Custom list filter if work is included in any of CWR files.

11.1. music_publisher 93

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

DMP Documentation, Release 23.4

lookups(request, model_admin)
Simple Yes/No filter

queryset(request, queryset)
Filter if in any of CWR files.

class ACKSocietyListFilter(request, params, model, model_admin)
Bases: django.contrib.admin.filters.SimpleListFilter

Custom list filter of societies from ACK files.

lookups(request, model_admin)
Simple Yes/No filter

queryset(request, queryset)
Filter on society sending ACKs.

class ACKStatusListFilter(request, params, model, model_admin)
Bases: django.contrib.admin.filters.SimpleListFilter

Custom list filter on ACK status.

lookups(request, model_admin)
Simple Yes/No filter

queryset(request, qs)
Filter on ACK status.

class HasISWCListFilter(request, params, model, model_admin)
Bases: django.contrib.admin.filters.SimpleListFilter

Custom list filter on the presence of ISWC.

lookups(request, model_admin)
Simple Yes/No filter

queryset(request, queryset)
Filter on presence of iswc.

class HasRecordingListFilter(request, params, model, model_admin)
Bases: django.contrib.admin.filters.SimpleListFilter

Custom list filter on the presence of recordings.

lookups(request, model_admin)
Simple Yes/No filter

queryset(request, queryset)
Filter on presence of models.Recording.

get_search_results(request, queryset, search_term)
Deal with the situation term is work ID.

save_model(request, obj, form, *args, **kwargs)
Set last_change if the work form has changed.

save_formset(request, form, formset, change)
Set last_change for the work if any of the inline forms has changed.

create_cwr(request, qs)
Batch action that redirects to the add view for CWRExportAdmin with selected works.

create_json(request, qs)
Batch action that downloads a JSON file containing selected works.

Returns JSON file with selected works

Return type JsonResponse

get_labels_for_csv(works, repeating_column_nr=0, simple=False)
Return the list of labels for the CSV file.

94 Chapter 11. For Developers

DMP Documentation, Release 23.4

get_rows_for_csv(works)
Return rows for the CSV file, including the header.

create_csv(request, qs)
Batch action that downloads a CSV file containing selected works.

Returns JSON file with selected works

Return type JsonResponse

get_actions(request)
Custom action disabling the default delete_selected.

get_inline_instances(request, obj=None)
Limit inlines in popups.

class music_publisher.admin.RecordingAdmin(model, admin_site)
Bases: music_publisher.admin.MusicPublisherAdmin

Admin interface for models.Recording.

class HasISRCListFilter(request, params, model, model_admin)
Bases: django.contrib.admin.filters.SimpleListFilter

Custom list filter on the presence of ISRC.

lookups(request, model_admin)
Simple Yes/No filter

queryset(request, queryset)
Filter on presence of iswc.

class HasAudioFilter(request, params, model, model_admin)
Bases: django.contrib.admin.filters.SimpleListFilter

Custom list filter on the presence of audio file.

lookups(request, model_admin)
Simple Yes/No filter

queryset(request, queryset)
Filter on presence of iswc.

get_fieldsets(request, obj=None)
Hook for specifying fieldsets.

get_queryset(request)
Optimized query regarding work name

recording_id(obj)
Return models.Recording.recording_id, make it sortable.

title(obj)
Return the recording title, which is not the necessarily the title field.

work_link(obj)
Link to the work the recording is based on.

artist_link(obj)
Link to the recording artist.

label_link(obj)
Link to the recording label.

class music_publisher.admin.CWRExportAdmin(model, admin_site)
Bases: django.contrib.admin.options.ModelAdmin

Admin interface for models.CWRExport.

work_count(obj)
Return the work count from the database field, or count them. (dealing with legacy)

11.1. music_publisher 95

DMP Documentation, Release 23.4

get_preview(obj)
Get CWR preview.

If you are using highlighing, then override this method.

view_link(obj)
Link to the CWR preview.

download_link(obj)
Link for downloading CWR file.

get_queryset(request)
Optimized query with count of works in the export.

get_readonly_fields(request, obj=None)
Read-only fields differ if CWR has been completed.

get_fields(request, obj=None)
Shown fields differ if CWR has been completed.

has_add_permission(request)
Return false if CWR delivery code is not present.

has_delete_permission(request, obj=None)
If CWR has been created, it can no longer be deleted, as it may have been sent. This may change once
the delivery is automated.

has_change_permission(request, obj=None)
If object exists, it can only be edited in changelist.

get_form(request, obj=None, **kwargs)
Set initial values for work IDs.

add_view(request, form_url=”, extra_context=None, work_ids=None)
Added work_ids as default for wizard from WorkAdmin.create_cwr().

change_view(request, object_id, form_url=”, extra_context=None)
Normal change view with two sub-views defined by GET parameters:

Parameters

• preview – that returns the preview of CWR file,

• download – that downloads the CWR file.

save_related(request, form, formsets, change)
save_model() passes the main object, which is needed to fetch CWR from the external service,
but only after related objects are saved.

class music_publisher.admin.AdminWithReport(model, admin_site)
Bases: django.contrib.admin.options.ModelAdmin

The parent class for all admin classes with a report field.

print_report(obj)
Mark report as HTML-safe.

class music_publisher.admin.ACKImportAdmin(model, admin_site)
Bases: music_publisher.admin.AdminWithReport

Admin interface for models.ACKImport.

get_form(request, obj=None, **kwargs)
Returns a custom form for new objects, default one for changes.

get_fields(request, obj=None)
Return different fields for add vs change.

96 Chapter 11. For Developers

DMP Documentation, Release 23.4

process(request, ack_import, file_content, import_iswcs=False)
Create appropriate WorkAcknowledgement objects, without duplicates.

Big part of this code should be moved to the model, left here because messaging is simpler.

save_model(request, obj, form, change)
Custom save_model, it ignores changes, validates the form for new instances, if valid, it processes the
file and, upon success, calls super().save_model.

has_add_permission(request)
Return false if CWR delivery code is not present.

has_delete_permission(request, obj=None, *args, **kwargs)
Deleting ACK imports is a really bad idea.

has_change_permission(request, obj=None)
Deleting this would make no sense, since the data is processed.

get_preview(obj)
Get CWR preview.

If you are using highlighing, then override this method.

view_link(obj)
Link to CWR ACK preview.

change_view(request, object_id, form_url=”, extra_context=None)
Normal change view with a sub-view defined by GET parameters:

Parameters preview – that returns the preview of CWR file.

class music_publisher.admin.DataImportAdmin(model, admin_site)
Bases: music_publisher.admin.AdminWithReport

Data import from CSV files.

Only the interface is here, the whole logic is in data_import.

form
alias of music_publisher.forms.DataImportForm

get_fields(request, obj=None)
Return different fields for add vs change.

has_delete_permission(request, obj=None, *args, **kwargs)
Deleting data imports is a really bad idea.

has_change_permission(request, obj=None)
Deleting this would make no sense, since the data is processed.

get_form(request, obj=None, change=False, **kwargs)
Return a Form class for use in the admin add view. This is used by add_view and change_view.

save_model(request, obj, form, change)
Custom save_model, it ignores changes, validates the form for new instances, if valid, it processes the
file and, upon success, calls super().save_model.

11.1.13 music_publisher.data_import

All the code related to importing data from external files.

Currently, only works (with writers, artists, library data and ISRCs) are imported. (ISRCs will be used for import-
ing recording data the in future.)

class music_publisher.data_import.DataImporter(filelike, user=None)
Bases: object

11.1. music_publisher 97

https://docs.python.org/3/library/functions.html#object

DMP Documentation, Release 23.4

log(obj, message, change=False)
Helper function for logging history.

static get_clean_key(value, tup, name)
Try to match either key or value from a user input mess.

process_writer_value(key, key_elements, value)
Clean a value for a writer and return it.

If it is a ‘controlled’, then also calculate general agreement. Always return a tuple.

unflatten(in_dict)
Create a well-structured dictionary with cleaner values.

get_writers(writer_dict)
Yield Writer objects, create if needed.

get_artists(artist_dict)
Yield Artist objects, create if needed.

get_library_release(library_name, cd_identifier)
Yield LibraryRelease objects, create if needed.

process_row(row)
Process one row from the incoming data.

run()
Run the import.

11.1.14 music_publisher.royalty_calculation

This module is about processing royalty statements.

It processes files in the request-response cycle, not in background workers. Therefore, focus is on speed. Nothing
is written to the database, and SELECTs are optimised and performed in one batch.

music_publisher.royalty_calculation.get_id_sources()
Yield choices, fixed and societies.

music_publisher.royalty_calculation.get_right_types()
Yield fixed options.

They will be extended with columns in JS and prior to validation.

class music_publisher.royalty_calculation.RoyaltyCalculationForm(*args,
**kwargs)

Bases: django.forms.forms.Form

The form for royalty calculations.

is_valid()
Append additional choices to various fields, prior to the actual validation.

class music_publisher.royalty_calculation.RoyaltyCalculation(form)
Bases: object

The process of royalty calculation.

filename
Return the filename of the output file.

fieldnames
Return the list of field names in the output file.

get_work_ids()
Find work unambiguous work identifiers.

Returns set of work identifier from the file

98 Chapter 11. For Developers

https://docs.python.org/3/library/functions.html#object

DMP Documentation, Release 23.4

get_work_queryset(work_ids)
Return the appropriate queryset based on work ID source and ids.

Returns queryset with models.WriterInWork objects. query_id has the matched
field value.

generate_works_dict(qs)
Generate the works cache.

Returns dict (works) of lists (writerinwork) of dicts

generate_writer_dict()
Generate the writers cache. :returns: dict (writer) of dicts

get_works_and_writers()
Get work and writer data.

Extract all work IDs, then perform the queries and put them in dictionaries. When the actual file
processing happens, no further queries are required.

process_row(row)
Process one incoming row, yield multiple output rows.

out_file_path
This method creates the output file and outputs the temporary path.

Note that the process happens is several passes.

class music_publisher.royalty_calculation.RoyaltyCalculationView(**kwargs)
Bases: django.contrib.auth.mixins.PermissionRequiredMixin, django.views.
generic.edit.FormView

The view for royalty calculations.

form_class
alias of RoyaltyCalculationForm

render_to_response(context, **response_kwargs)
Prepare the context, required since we use admin template.

dispatch(request, *args, **kwargs)
Royalty processing works only with TemporaryFileUploadHandler.

form_valid(form)
This is where the magic happens.

11.1.15 music_publisher.tests

Tests for music_publisher.

The folder includes these files:

• CW200001DMP_000.V21 - CWR 2.1 registration file

• CW200002DMP_0000_V3-0-0.SUB - CWR 3.0 registration file

• CW200003DMP_0000_V3-0-0.ISR - CWR3.0 ISWC request file

• CW200001052_DMP.V21 - CWR 2.1 acknowledgement file

• dataimport.csv - used for data imports

• royaltystatement.csv - CSV royalty statement

• royaltystatement_200k_rows.csv - CSV royalty statement with 200.000 rows, used for load testing.

Actual tests are in music_publisher.tests.tests.

11.1. music_publisher 99

https://django.readthedocs.io/en/latest/topics/auth/default.html#django.contrib.auth.mixins.PermissionRequiredMixin
https://django.readthedocs.io/en/latest/ref/class-based-views/generic-editing.html#django.views.generic.edit.FormView
https://django.readthedocs.io/en/latest/ref/class-based-views/generic-editing.html#django.views.generic.edit.FormView

DMP Documentation, Release 23.4

11.1.16 music_publisher.tests.tests

Tests for music_publisher.

This software has almost full test coverage. The only exceptions are instances of Exception being caught
during data imports. (User idiocy is boundless.)

Most of the tests are functional end-to-end tests. While they test that code works, they don’t always test that it
works as expected.

Still, it must be noted that exports are tested against provided templates (made in a different software, not using
the same code beyond Python standard library).

More precise tests would be better.

music_publisher.tests.tests.get_data_from_response(response)
Helper for extracting data from HTTP response in a way that can be fed back into POST that works with
Django Admin.

class music_publisher.tests.tests.DataImportTest(methodName=’runTest’)
Bases: django.test.testcases.TestCase

Functional test for data import from CSV files.

classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.

test_log()
Test logging during import.

test_unknown_key_exceptions()
Test exceptions not tested in functional tests.

class music_publisher.tests.tests.AdminTest(methodName=’runTest’)
Bases: django.test.testcases.TestCase

Functional tests on the interface, and several related unit tests.

Note that tests build one atop another, simulating typical work flow.

classmethod create_original_work()
Create original work, three writers, one controlled, with recording, alternate titles, included in a com-
mercial release.

classmethod create_modified_work()
Create modified work, original writer plus arranger, with recording, alternate titles.

classmethod create_copublished_work()
Create work, two writers, one co-published

classmethod create_duplicate_work()
Create work, two writers, one co-published, duplicate.

classmethod create_writers()
Create four writers with different properties.

classmethod create_cwr2_export()
Create a NWR and a REV CWR2 Export.

classmethod create_cwr3_export()
Create a WRK and an ISR CWR3 Export.

classmethod create_work_acknowledgements()
Create work acknowledgements.

classmethod setUpClass()
Class setup.

Creating users. Creating instances of classes of less importance:

100 Chapter 11. For Developers

https://docs.python.org/3/library/exceptions.html#Exception

DMP Documentation, Release 23.4

• label,

• library,

• artist,

• releases,

then calling the methods above.

test_strings()
Test __str__ methods for created objects.

test_unknown_user()
Several fast test to make sure that an unregistered user is blind.

test_super_user()
Testing index for superuser covers all the cases.

test_super_user_with_files()
Testing index for superuser covers all the cases.

test_staff_user()
Test that a staff user can access some urls.

Please note that most of the work is in other tests.

test_staff_user_with_files()
Testing index for superuser covers all the cases.

test_cwr_previews()
Test that CWR preview works.

test_cwr_downloads()
Test that the CWR file can be downloaded.

test_json()
Test that JSON export works.

test_cwr_nwr()
Test that CWR export works.

test_csv()
Test that CSV export works.

test_label_change()
Test that models.Label objects can be edited.

test_library_change()
Test that models.Library objects can be edited.

test_library_change_2()
Test that models.Library objects can be edited.

test_artist_change()
Test that models.Artist objects can be edited.

test_commercialrelease_change()
Test that models.CommercialRelease can be edited.

test_libraryrelease_change()
Test that models.LibraryRelease can be edited.

test_audit_user()
Test that audit user can see, but not change things.

test_generally_controlled_not_controlled()
Test that a controlled flag must be set for a writer who is generally controlled.

test_generally_controlled_missing_capacity()
Test that if controlled flag is set, the capacity must be set as well.

11.1. music_publisher 101

DMP Documentation, Release 23.4

test_controlled_but_no_writer()
Test that a line without a writer can not have controlled set.

test_controlled_but_missing_data()
The requirements for a controlled writer are higher, make sure they are obeyed when setting a writer
as controlled.

test_writer_switch()
Just replace one writer with another, just to test last change

test_not_controlled_extra_saan()
SAAN can not be set if a writer is not controlled.

test_not_controlled_extra_fee()
Publisher fee can not be set if a writer is not controlled.

test_bad_alt_title()
Test that alternate title can not have disallowed characters.

test_unallowed_capacity()
Some capacieties are allowed only in modifications.

test_missing_capacity()
At least one of the additional capacieties must be set for modifications.

test_none_controlled()
At least one Writer in Work line must be set as controlled.

test_wrong_sum_of_shares()
Sum of shares must be (roughly) 100%

test_wrong_capacity_in_copublishing_modification()
Test the situation where one writer appears in two rows, once as controlled, once as not with different
capacities.

test_altitle_sufix_too_long()
A suffix plus the base title plus one space in between must be 60 characters or less.

test_ack_import_and_work_filters()
Test acknowledgement import and then filters on the change view, as well as other related views.

These tests must be together, ack import is used in filters.

test_data_import_and_royalty_calculations()
Test data import, ack import and royalty calculations.

This is the normal process, work data is entered, then the registration follows and then it can be
processed in royalty statements.

This test also includes load testing, 200.000 rows must be imported in under 10-15 seconds, performed
4 times with different algos and ID types.

test_bad_data_import()
Test bad data import.

test_recording_filters()
Test Work changelist filters.

test_search()
Test Work search.

test_simple_save()
Test saving changed Work form.

test_create_cwr_wizard()
Test if CWR creation action works as it should.

test_create_cwr_wizard_no_publisher_code()
Publisher code is required for CWR generation, it must fail if attempted otherwise.

102 Chapter 11. For Developers

DMP Documentation, Release 23.4

class music_publisher.tests.tests.CWRTemplatesTest(methodName=’runTest’)
Bases: django.test.testcases.SimpleTestCase

A test related to CWR Templates.

test_templates()
Test CWR 2.1, 2.2 and 3.0 generation with empty values.

class music_publisher.tests.tests.ValidatorsTest(methodName=’runTest’)
Bases: django.test.testcases.TestCase

Test all validators.

Note that validators are also validating settings.

class music_publisher.tests.tests.ModelsSimpleTest(methodName=’runTest’)
Bases: django.test.testcases.TransactionTestCase

These tests are modifying objects directly.

test_work()
A complex test where a complete Work objects with all related objects is created.

class music_publisher.tests.tests.OtherFunctionalTest(methodName=’runTest’)
Bases: django.test.testcases.SimpleTestCase

These tests are testing things not tested otherwise.

11.1. music_publisher 103

DMP Documentation, Release 23.4

104 Chapter 11. For Developers

Python Module Index

m
music_publisher, 69
music_publisher.admin, 89
music_publisher.apps, 69
music_publisher.base, 71
music_publisher.cwr_templates, 86
music_publisher.data_import, 97
music_publisher.forms, 88
music_publisher.models, 74
music_publisher.royalty_calculation,

98
music_publisher.societies, 70
music_publisher.templatetags, 87
music_publisher.templatetags.cwr_filters,

87
music_publisher.templatetags.cwr_generators,

87
music_publisher.templatetags.dmp_dashboard,

87
music_publisher.tests, 99
music_publisher.tests.tests, 100
music_publisher.validators, 70

105

DMP Documentation, Release 23.4

106 Python Module Index

Index

Symbols
_can_be_controlled (music_publisher.base.IPIBase attribute),

72
_work_id (music_publisher.models.Work attribute), 78

A
account_number (music_publisher.base.AccountNumberBase

attribute), 73
AccountNumberBase (class in music_publisher.base), 72
ACKImport (class in music_publisher.models), 85
ACKImport.DoesNotExist, 86
ACKImport.MultipleObjectsReturned, 86
ACKImportAdmin (class in music_publisher.admin), 96
ACKImportForm (class in music_publisher.forms), 88
acknowledgement_file

(music_publisher.forms.ACKImportForm attribute), 88
actions (music_publisher.admin.WorkAdmin attribute), 93
add_view() (music_publisher.admin.CWRExportAdmin method),

96
AdminTest (class in music_publisher.tests.tests), 100
AdminWithReport (class in music_publisher.admin), 96
agreement_type() (in module

music_publisher.templatetags.cwr_filters), 87
AlternateTitle (class in music_publisher.models), 79
AlternateTitle.DoesNotExist, 79
AlternateTitle.MultipleObjectsReturned, 80
AlternateTitleFormSet (class in music_publisher.forms), 88
AlternateTitleInline (class in music_publisher.admin), 92
Artist (class in music_publisher.models), 74
artist (music_publisher.models.ArtistInWork attribute), 80
Artist.DoesNotExist, 74
Artist.MultipleObjectsReturned, 74
artist_id (music_publisher.models.Artist attribute), 74
artist_link() (music_publisher.admin.RecordingAdmin

method), 95
ArtistAdmin (class in music_publisher.admin), 89
ArtistBase (class in music_publisher.base), 73
ArtistInWork (class in music_publisher.models), 80
ArtistInWork.DoesNotExist, 80
ArtistInWork.MultipleObjectsReturned, 80
ArtistInWorkInline (class in music_publisher.admin), 89
artists (music_publisher.models.Work attribute), 78
AudioPlayerWidget (class in music_publisher.admin), 89

C
capacity (music_publisher.models.WriterInWork attribute), 80
capacity() (in module

music_publisher.templatetags.cwr_filters), 87
cd_identifier (music_publisher.base.ReleaseBase attribute),

73
change_case() (in module music_publisher.models), 86
change_view() (music_publisher.admin.ACKImportAdmin

method), 97

change_view() (music_publisher.admin.CWRExportAdmin
method), 96

check_dpid() (in module music_publisher.validators), 70
check_ean_digit() (in module music_publisher.validators), 70
check_ipi_digit() (in module music_publisher.validators), 70
check_isni_digit() (in module music_publisher.validators),

70
check_iswc_digit() (in module music_publisher.validators),

70
clean() (music_publisher.base.IPIWithGeneralAgreementBase

method), 72
clean() (music_publisher.forms.ACKImportForm method), 88
clean() (music_publisher.forms.AlternateTitleFormSet method),

88
clean() (music_publisher.forms.DataImportForm method), 89
clean() (music_publisher.forms.WriterInWorkFormSet method),

88
clean() (music_publisher.models.LibraryRelease method), 76
clean() (music_publisher.models.Playlist method), 77
clean() (music_publisher.models.Writer method), 77
clean() (music_publisher.models.WriterInWork method), 81
clean_fields() (music_publisher.base.AccountNumberBase

method), 73
clean_fields() (music_publisher.base.ArtistBase method), 73
clean_fields() (music_publisher.base.IPIBase method), 72
clean_fields()

(music_publisher.base.IPIWithGeneralAgreementBase
method), 72

clean_fields() (music_publisher.models.Recording method),
81

clean_fields() (music_publisher.models.Work method), 79
clean_fields() (music_publisher.models.WriterInWork

method), 81
CommercialRelease (class in music_publisher.models), 76
CommercialRelease.DoesNotExist, 77
CommercialRelease.MultipleObjectsReturned, 77
commercialrelease_count()

(music_publisher.admin.LabelAdmin method), 90
CommercialReleaseAdmin (class in music_publisher.admin),

92
CommercialReleaseManager (class in

music_publisher.models), 76
complete_alt_title()

(music_publisher.admin.AlternateTitleInline method), 92
complete_recording_title

(music_publisher.models.Recording attribute), 82
complete_version_title

(music_publisher.models.Recording attribute), 82
controlled (music_publisher.models.WriterInWork attribute), 80
create_copublished_work()

(music_publisher.tests.tests.AdminTest class method),
100

create_csv() (music_publisher.admin.WorkAdmin method), 95
create_cwr() (music_publisher.admin.WorkAdmin method), 94
create_cwr() (music_publisher.models.CWRExport method), 85

107

DMP Documentation, Release 23.4

create_cwr2_export() (music_publisher.tests.tests.AdminTest
class method), 100

create_cwr3_export() (music_publisher.tests.tests.AdminTest
class method), 100

create_duplicate_work()
(music_publisher.tests.tests.AdminTest class method),
100

create_json()
(music_publisher.admin.CommercialReleaseAdmin
method), 92

create_json() (music_publisher.admin.LibraryReleaseAdmin
method), 91

create_json() (music_publisher.admin.WorkAdmin method), 94
create_modified_work()

(music_publisher.tests.tests.AdminTest class method),
100

create_original_work()
(music_publisher.tests.tests.AdminTest class method),
100

create_work_acknowledgements()
(music_publisher.tests.tests.AdminTest class method),
100

create_writers() (music_publisher.tests.tests.AdminTest class
method), 100

cut_number (music_publisher.models.Track attribute), 82
cwr (music_publisher.models.ACKImport attribute), 86
cwr (music_publisher.models.CWRExport attribute), 83
cwr_export_count() (music_publisher.admin.WorkAdmin

method), 93
CWRExport (class in music_publisher.models), 83
CWRExport.DoesNotExist, 85
CWRExport.MultipleObjectsReturned, 85
CWRExportAdmin (class in music_publisher.admin), 95
CWRFieldValidator (class in music_publisher.validators), 70
cwrshare() (in module

music_publisher.templatetags.cwr_generators), 87
CWRTemplatesTest (class in music_publisher.tests.tests), 102

D
data_file (music_publisher.forms.DataImportForm attribute), 89
DataImport (class in music_publisher.models), 86
DataImport.DoesNotExist, 86
DataImport.MultipleObjectsReturned, 86
DataImportAdmin (class in music_publisher.admin), 97
DataImporter (class in music_publisher.data_import), 97
DataImportForm (class in music_publisher.forms), 89
DataImportTest (class in music_publisher.tests.tests), 100
date (music_publisher.models.ACKImport attribute), 86
date (music_publisher.models.WorkAcknowledgement attribute), 85
deconstruct() (music_publisher.validators.CWRFieldValidator

method), 70
DeferCwrManager (class in music_publisher.models), 83
description (music_publisher.base.DescriptionBase attribute),

71
description (music_publisher.models.CWRExport attribute), 83
DescriptionBase (class in music_publisher.base), 71
dispatch() (mu-

sic_publisher.royalty_calculation.RoyaltyCalculationView
method), 99

dmp_model_groups() (in module
music_publisher.templatetags.dmp_dashboard), 87

download_link() (music_publisher.admin.CWRExportAdmin
method), 96

duration (music_publisher.models.Recording attribute), 81

E
ean (music_publisher.base.ReleaseBase attribute), 74

F
field (music_publisher.validators.CWRFieldValidator attribute),

70

fieldnames (mu-
sic_publisher.royalty_calculation.RoyaltyCalculation
attribute), 98

filename (music_publisher.models.ACKImport attribute), 85
filename (music_publisher.models.CWRExport attribute), 83
filename (mu-

sic_publisher.royalty_calculation.RoyaltyCalculation
attribute), 98

filename2 (music_publisher.models.CWRExport attribute), 83
filename3 (music_publisher.models.CWRExport attribute), 83
first_name (music_publisher.base.PersonBase attribute), 71
flag() (in module music_publisher.templatetags.cwr_filters), 87
form (music_publisher.admin.DataImportAdmin attribute), 97
form (music_publisher.admin.LibraryReleaseAdmin attribute), 91
form (music_publisher.admin.PlaylistAdmin attribute), 91
form (music_publisher.admin.WorkAdmin attribute), 93
form_class (mu-

sic_publisher.royalty_calculation.RoyaltyCalculationView
attribute), 99

form_valid() (mu-
sic_publisher.royalty_calculation.RoyaltyCalculationView
method), 99

formset (music_publisher.admin.AlternateTitleInline attribute), 92
formset (music_publisher.admin.WriterInWorkInline attribute), 93

G
generally_controlled

(music_publisher.base.IPIWithGeneralAgreementBase
attribute), 72

generate_works_dict() (mu-
sic_publisher.royalty_calculation.RoyaltyCalculation
method), 99

generate_writer_dict() (mu-
sic_publisher.royalty_calculation.RoyaltyCalculation
method), 99

get_actions()
(music_publisher.admin.CommercialReleaseAdmin
method), 92

get_actions() (music_publisher.admin.LibraryReleaseAdmin
method), 91

get_actions() (music_publisher.admin.WorkAdmin method), 95
get_agreement_dict()

(music_publisher.models.WriterInWork method), 81
get_artists() (music_publisher.data_import.DataImporter

method), 98
get_clean_key() (music_publisher.data_import.DataImporter

static method), 98
get_data_from_response() (in module

music_publisher.tests.tests), 100
get_dict() (music_publisher.models.AlternateTitle method), 79
get_dict() (music_publisher.models.Artist method), 74
get_dict() (music_publisher.models.ArtistInWork method), 80
get_dict()

(music_publisher.models.CommercialReleaseManager
method), 76

get_dict() (music_publisher.models.Label method), 74
get_dict() (music_publisher.models.Library method), 75
get_dict() (music_publisher.models.LibraryReleaseManager

method), 76
get_dict() (music_publisher.models.PlaylistManager method),

77
get_dict() (music_publisher.models.Recording method), 82
get_dict() (music_publisher.models.Release method), 75
get_dict() (music_publisher.models.Track method), 82
get_dict() (music_publisher.models.Work method), 79
get_dict() (music_publisher.models.WorkAcknowledgement

method), 85
get_dict() (music_publisher.models.WorkManager method), 78
get_dict() (music_publisher.models.Writer method), 78
get_dict() (music_publisher.models.WriterInWork method), 81
get_fields() (music_publisher.admin.ACKImportAdmin

method), 96

108 Index

DMP Documentation, Release 23.4

get_fields() (music_publisher.admin.CWRExportAdmin
method), 96

get_fields() (music_publisher.admin.DataImportAdmin
method), 97

get_fieldsets() (music_publisher.admin.ArtistAdmin
method), 90

get_fieldsets()
(music_publisher.admin.CommercialReleaseAdmin
method), 92

get_fieldsets() (music_publisher.admin.LabelAdmin
method), 90

get_fieldsets()
(music_publisher.admin.LibraryReleaseAdmin method),
91

get_fieldsets() (music_publisher.admin.RecordingAdmin
method), 95

get_fieldsets() (music_publisher.admin.RecordingInline
method), 89

get_fieldsets() (music_publisher.admin.WriterAdmin
method), 92

get_form() (music_publisher.admin.ACKImportAdmin method),
96

get_form() (music_publisher.admin.CWRExportAdmin method),
96

get_form() (music_publisher.admin.DataImportAdmin method),
97

get_header() (music_publisher.models.CWRExport method), 84
get_id_sources() (in module

music_publisher.royalty_calculation), 98
get_inline_instances()

(music_publisher.admin.CommercialReleaseAdmin
method), 92

get_inline_instances()
(music_publisher.admin.LibraryReleaseAdmin method),
91

get_inline_instances()
(music_publisher.admin.PlaylistAdmin method), 91

get_inline_instances()
(music_publisher.admin.WorkAdmin method), 95

get_labels_for_csv() (music_publisher.admin.WorkAdmin
method), 94

get_library_release()
(music_publisher.data_import.DataImporter method),
98

get_origin_dict() (music_publisher.models.LibraryRelease
method), 76

get_other_lines() (music_publisher.models.CWRExport
method), 84

get_party_lines() (music_publisher.models.CWRExport
method), 84

get_preview() (music_publisher.admin.ACKImportAdmin
method), 97

get_preview() (music_publisher.admin.CWRExportAdmin
method), 96

get_publisher_dict() (music_publisher.models.Work static
method), 79

get_queryset() (music_publisher.admin.ArtistAdmin method),
90

get_queryset()
(music_publisher.admin.CommercialReleaseAdmin
method), 92

get_queryset() (music_publisher.admin.CWRExportAdmin
method), 96

get_queryset() (music_publisher.admin.LabelAdmin method),
90

get_queryset() (music_publisher.admin.LibraryAdmin
method), 90

get_queryset() (music_publisher.admin.LibraryReleaseAdmin
method), 91

get_queryset() (music_publisher.admin.PlaylistAdmin
method), 91

get_queryset() (music_publisher.admin.RecordingAdmin
method), 95

get_queryset() (music_publisher.admin.WorkAdmin method),
93

get_queryset() (music_publisher.admin.WriterAdmin method),
92

get_queryset() (music_publisher.base.NotesManager method),
71

get_queryset()
(music_publisher.models.CommercialReleaseManager
method), 76

get_queryset() (music_publisher.models.DeferCwrManager
method), 83

get_queryset()
(music_publisher.models.LibraryReleaseManager
method), 76

get_queryset() (music_publisher.models.PlaylistManager
method), 77

get_queryset() (music_publisher.models.WorkManager
method), 78

get_readonly_fields()
(music_publisher.admin.CWRExportAdmin method), 96

get_record() (music_publisher.models.CWRExport method), 84
get_right_types() (in module

music_publisher.royalty_calculation), 98
get_rows_for_csv() (music_publisher.admin.WorkAdmin

method), 94
get_search_results() (music_publisher.admin.WorkAdmin

method), 94
get_society_list() (music_publisher.admin.WriterAdmin

static method), 92
get_transaction_record()

(music_publisher.models.CWRExport method), 84
get_work_ids() (mu-

sic_publisher.royalty_calculation.RoyaltyCalculation
method), 98

get_work_queryset() (mu-
sic_publisher.royalty_calculation.RoyaltyCalculation
method), 98

get_works_and_writers() (mu-
sic_publisher.royalty_calculation.RoyaltyCalculation
method), 99

get_writers() (music_publisher.data_import.DataImporter
method), 98

H
has_add_permission()

(music_publisher.admin.ACKImportAdmin method), 97
has_add_permission()

(music_publisher.admin.CWRExportAdmin method), 96
has_add_permission()

(music_publisher.admin.ReleaseAdmin method), 91
has_change_permission()

(music_publisher.admin.ACKImportAdmin method), 97
has_change_permission()

(music_publisher.admin.CWRExportAdmin method), 96
has_change_permission()

(music_publisher.admin.DataImportAdmin method), 97
has_change_permission()

(music_publisher.admin.ReleaseAdmin method), 91
has_delete_permission()

(music_publisher.admin.ACKImportAdmin method), 97
has_delete_permission()

(music_publisher.admin.CWRExportAdmin method), 96
has_delete_permission()

(music_publisher.admin.DataImportAdmin method), 97
has_delete_permission()

(music_publisher.admin.ReleaseAdmin method), 91
has_module_permission()

(music_publisher.admin.ReleaseAdmin method), 91

I
ie() (in module music_publisher.templatetags.cwr_filters), 87
ImageWidget (class in music_publisher.admin), 89

Index 109

DMP Documentation, Release 23.4

inlines (music_publisher.admin.WorkAdmin attribute), 93
ipi_base (music_publisher.base.IPIBase attribute), 72
ipi_name (music_publisher.base.IPIBase attribute), 72
IPIBase (class in music_publisher.base), 72
IPIWithGeneralAgreementBase (class in

music_publisher.base), 72
is_modification() (music_publisher.models.Work method), 79
is_valid() (mu-

sic_publisher.royalty_calculation.RoyaltyCalculationForm
method), 98

isni (music_publisher.base.ArtistBase attribute), 73
isrc (music_publisher.models.Recording attribute), 81
iswc (music_publisher.models.Work attribute), 78

L
Label (class in music_publisher.models), 74
label (music_publisher.apps.MusicPublisherConfig attribute), 69
Label.DoesNotExist, 74
Label.MultipleObjectsReturned, 75
label_id (music_publisher.models.Label attribute), 74
label_link() (music_publisher.admin.RecordingAdmin

method), 95
LabelAdmin (class in music_publisher.admin), 90
LabelBase (class in music_publisher.base), 73
last_change (music_publisher.models.Work attribute), 78
last_name (music_publisher.base.PersonBase attribute), 71
last_or_band() (music_publisher.admin.ArtistAdmin method),

90
Library (class in music_publisher.models), 75
library (music_publisher.base.ReleaseBase attribute), 73
library (music_publisher.models.Release attribute), 75
Library.DoesNotExist, 75
Library.MultipleObjectsReturned, 75
library_id (music_publisher.models.Library attribute), 75
LibraryAdmin (class in music_publisher.admin), 90
LibraryBase (class in music_publisher.base), 73
LibraryRelease (class in music_publisher.models), 76
LibraryRelease.DoesNotExist, 76
LibraryRelease.MultipleObjectsReturned, 76
libraryrelease_count()

(music_publisher.admin.LabelAdmin method), 90
libraryrelease_count()

(music_publisher.admin.LibraryAdmin method), 90
LibraryReleaseAdmin (class in music_publisher.admin), 91
LibraryReleaseForm (class in music_publisher.forms), 88
LibraryReleaseManager (class in music_publisher.models),

75
ljust() (in module

music_publisher.templatetags.cwr_generators), 87
log() (music_publisher.data_import.DataImporter method), 97
lookups() (mu-

sic_publisher.admin.RecordingAdmin.HasAudioFilter
method), 95

lookups() (mu-
sic_publisher.admin.RecordingAdmin.HasISRCListFilter
method), 95

lookups() (mu-
sic_publisher.admin.WorkAdmin.ACKSocietyListFilter
method), 94

lookups() (mu-
sic_publisher.admin.WorkAdmin.ACKStatusListFilter
method), 94

lookups()
(music_publisher.admin.WorkAdmin.HasISWCListFilter
method), 94

lookups() (mu-
sic_publisher.admin.WorkAdmin.HasRecordingListFilter
method), 94

lookups() (music_publisher.admin.WorkAdmin.InCWRListFilter
method), 93

M
model (music_publisher.admin.AlternateTitleInline attribute), 92
model (music_publisher.admin.ArtistInWorkInline attribute), 89
model (music_publisher.admin.RecordingInline attribute), 89
model (music_publisher.admin.TrackInline attribute), 90
model (music_publisher.admin.WorkAcknowledgementInline

attribute), 93
model (music_publisher.admin.WriterInWorkInline attribute), 93
ModelsSimpleTest (class in music_publisher.tests.tests), 103
mr_society (music_publisher.base.SocietyAffiliationBase

attribute), 72
music_publisher (module), 69
music_publisher.admin (module), 89
music_publisher.apps (module), 69
music_publisher.base (module), 71
music_publisher.cwr_templates (module), 86
music_publisher.data_import (module), 97
music_publisher.forms (module), 88
music_publisher.models (module), 74
music_publisher.royalty_calculation (module), 98
music_publisher.societies (module), 70
music_publisher.templatetags (module), 87
music_publisher.templatetags.cwr_filters

(module), 87
music_publisher.templatetags.cwr_generators

(module), 87
music_publisher.templatetags.dmp_dashboard

(module), 87
music_publisher.tests (module), 99
music_publisher.tests.tests (module), 100
music_publisher.validators (module), 70
MusicPublisherAdmin (class in music_publisher.admin), 89
MusicPublisherConfig (class in music_publisher.apps), 69

N
name (music_publisher.apps.MusicPublisherConfig attribute), 69
name (music_publisher.base.LabelBase attribute), 73
name (music_publisher.base.LibraryBase attribute), 73
notes (music_publisher.base.NotesBase attribute), 71
NotesBase (class in music_publisher.base), 71
NotesManager (class in music_publisher.base), 71
num_in_year (music_publisher.models.CWRExport attribute), 83
nwr_rev (music_publisher.models.CWRExport attribute), 83

O
objects (music_publisher.models.CommercialRelease attribute),

77
objects (music_publisher.models.LibraryRelease attribute), 76
objects (music_publisher.models.Playlist attribute), 77
objects (music_publisher.models.Work attribute), 79
original_publishing_agreement

(music_publisher.models.Writer attribute), 77
original_title (music_publisher.models.Work attribute), 78
orimod() (in module music_publisher.templatetags.cwr_filters),

87
OtherFunctionalTest (class in music_publisher.tests.tests),

103
out_file_path (mu-

sic_publisher.royalty_calculation.RoyaltyCalculation
attribute), 99

P
perc() (in module music_publisher.templatetags.cwr_filters), 87
percentage_controlled()

(music_publisher.admin.WorkAdmin method), 93
PersonBase (class in music_publisher.base), 71
Playlist (class in music_publisher.models), 77
Playlist.DoesNotExist, 77
Playlist.MultipleObjectsReturned, 77
PlaylistAdmin (class in music_publisher.admin), 91
PlaylistForm (class in music_publisher.forms), 88

110 Index

DMP Documentation, Release 23.4

PlaylistManager (class in music_publisher.models), 77
PlaylistTrackInline (class in music_publisher.admin), 91
pr_society (music_publisher.base.SocietyAffiliationBase

attribute), 72
print_report() (music_publisher.admin.AdminWithReport

method), 96
process() (music_publisher.admin.ACKImportAdmin method),

96
process_row() (music_publisher.data_import.DataImporter

method), 98
process_row() (mu-

sic_publisher.royalty_calculation.RoyaltyCalculation
method), 99

process_writer_value()
(music_publisher.data_import.DataImporter method),
98

publisher_fee
(music_publisher.base.IPIWithGeneralAgreementBase
attribute), 72

publisher_fee (music_publisher.models.WriterInWork
attribute), 80

Q
queryset() (mu-

sic_publisher.admin.RecordingAdmin.HasAudioFilter
method), 95

queryset() (mu-
sic_publisher.admin.RecordingAdmin.HasISRCListFilter
method), 95

queryset() (mu-
sic_publisher.admin.WorkAdmin.ACKSocietyListFilter
method), 94

queryset() (mu-
sic_publisher.admin.WorkAdmin.ACKStatusListFilter
method), 94

queryset()
(music_publisher.admin.WorkAdmin.HasISWCListFilter
method), 94

queryset() (mu-
sic_publisher.admin.WorkAdmin.HasRecordingListFilter
method), 94

queryset() (music_publisher.admin.WorkAdmin.InCWRListFilter
method), 94

R
ready() (music_publisher.apps.MusicPublisherConfig method), 69
record_label (music_publisher.models.Recording attribute), 81
Recording (class in music_publisher.models), 81
recording (music_publisher.models.Track attribute), 82
Recording.DoesNotExist, 82
Recording.MultipleObjectsReturned, 82
recording_count() (music_publisher.admin.ArtistAdmin

method), 90
recording_count() (music_publisher.admin.LabelAdmin

method), 90
recording_count() (music_publisher.admin.WorkAdmin

method), 93
recording_id (music_publisher.models.Recording attribute), 82
recording_id() (music_publisher.admin.RecordingAdmin

method), 95
RecordingAdmin (class in music_publisher.admin), 95
RecordingAdmin.HasAudioFilter (class in

music_publisher.admin), 95
RecordingAdmin.HasISRCListFilter (class in

music_publisher.admin), 95
RecordingInline (class in music_publisher.admin), 89
recordings (music_publisher.models.Release attribute), 75
relative_share (music_publisher.models.WriterInWork

attribute), 80
Release (class in music_publisher.models), 75
release (music_publisher.models.Track attribute), 82
Release.DoesNotExist, 75

Release.MultipleObjectsReturned, 75
release_date (music_publisher.base.ReleaseBase attribute), 73
release_date (music_publisher.models.Recording attribute), 81
release_id (music_publisher.models.Release attribute), 75
release_label (music_publisher.base.ReleaseBase attribute),

74
release_label (music_publisher.models.Release attribute), 75
release_label (music_publisher.models.Work attribute), 78
release_title (music_publisher.base.ReleaseBase attribute),

74
ReleaseAdmin (class in music_publisher.admin), 91
ReleaseBase (class in music_publisher.base), 73
remote_work_id

(music_publisher.models.WorkAcknowledgement
attribute), 85

render_to_response() (mu-
sic_publisher.royalty_calculation.RoyaltyCalculationView
method), 99

report (music_publisher.models.ACKImport attribute), 86
rjust() (in module

music_publisher.templatetags.cwr_generators), 87
role() (in module music_publisher.templatetags.cwr_filters), 87
RoyaltyCalculation (class in

music_publisher.royalty_calculation), 98
RoyaltyCalculationForm (class in

music_publisher.royalty_calculation), 98
RoyaltyCalculationView (class in

music_publisher.royalty_calculation), 99
run() (music_publisher.data_import.DataImporter method), 98

S
saan (music_publisher.base.IPIWithGeneralAgreementBase

attribute), 72
saan (music_publisher.models.WriterInWork attribute), 80
save_formset() (music_publisher.admin.WorkAdmin method),

94
save_model() (music_publisher.admin.ACKImportAdmin

method), 97
save_model() (music_publisher.admin.ArtistAdmin method), 90
save_model() (music_publisher.admin.DataImportAdmin

method), 97
save_model() (music_publisher.admin.LabelAdmin method), 90
save_model() (music_publisher.admin.LibraryAdmin method),

90
save_model() (music_publisher.admin.LibraryReleaseAdmin

method), 91
save_model() (music_publisher.admin.WorkAdmin method), 94
save_model() (music_publisher.admin.WriterAdmin method), 92
save_related() (music_publisher.admin.CWRExportAdmin

method), 96
setUpClass() (music_publisher.tests.tests.AdminTest class

method), 100
setUpClass() (music_publisher.tests.tests.DataImportTest class

method), 100
smart_str_conversion() (in module

music_publisher.models), 86
soc() (in module music_publisher.templatetags.cwr_generators),

87
soc_name() (in module

music_publisher.templatetags.cwr_filters), 87
SOCIETIES (in module music_publisher.societies), 70
society_code (music_publisher.models.ACKImport attribute),

85
society_code (music_publisher.models.WorkAcknowledgement

attribute), 85
SOCIETY_DICT (in module music_publisher.societies), 70
society_name (music_publisher.models.ACKImport attribute),

86
SocietyAffiliationBase (class in music_publisher.base), 71
sr_society (music_publisher.base.SocietyAffiliationBase

attribute), 72
status (music_publisher.models.WorkAcknowledgement attribute),

85

Index 111

DMP Documentation, Release 23.4

status() (in module music_publisher.templatetags.cwr_filters),
87

suffix (music_publisher.models.AlternateTitle attribute), 79

T
TEMPLATES_21 (in module music_publisher.cwr_templates), 86
TEMPLATES_22 (in module music_publisher.cwr_templates), 86
TEMPLATES_30 (in module music_publisher.cwr_templates), 86
TEMPLATES_31 (in module music_publisher.cwr_templates), 86
terr() (in module music_publisher.templatetags.cwr_filters), 87
test_ack_import_and_work_filters()

(music_publisher.tests.tests.AdminTest method), 102
test_altitle_sufix_too_long()

(music_publisher.tests.tests.AdminTest method), 102
test_artist_change() (music_publisher.tests.tests.AdminTest

method), 101
test_audit_user() (music_publisher.tests.tests.AdminTest

method), 101
test_bad_alt_title() (music_publisher.tests.tests.AdminTest

method), 102
test_bad_data_import()

(music_publisher.tests.tests.AdminTest method), 102
test_commercialrelease_change()

(music_publisher.tests.tests.AdminTest method), 101
test_controlled_but_missing_data()

(music_publisher.tests.tests.AdminTest method), 102
test_controlled_but_no_writer()

(music_publisher.tests.tests.AdminTest method), 102
test_create_cwr_wizard()

(music_publisher.tests.tests.AdminTest method), 102
test_create_cwr_wizard_no_publisher_code()

(music_publisher.tests.tests.AdminTest method), 102
test_csv() (music_publisher.tests.tests.AdminTest method), 101
test_cwr_downloads() (music_publisher.tests.tests.AdminTest

method), 101
test_cwr_nwr() (music_publisher.tests.tests.AdminTest

method), 101
test_cwr_previews() (music_publisher.tests.tests.AdminTest

method), 101
test_data_import_and_royalty_calculations()

(music_publisher.tests.tests.AdminTest method), 102
test_generally_controlled_missing_capacity()

(music_publisher.tests.tests.AdminTest method), 101
test_generally_controlled_not_controlled()

(music_publisher.tests.tests.AdminTest method), 101
test_json() (music_publisher.tests.tests.AdminTest method), 101
test_label_change() (music_publisher.tests.tests.AdminTest

method), 101
test_library_change()

(music_publisher.tests.tests.AdminTest method), 101
test_library_change_2()

(music_publisher.tests.tests.AdminTest method), 101
test_libraryrelease_change()

(music_publisher.tests.tests.AdminTest method), 101
test_log() (music_publisher.tests.tests.DataImportTest method),

100
test_missing_capacity()

(music_publisher.tests.tests.AdminTest method), 102
test_none_controlled()

(music_publisher.tests.tests.AdminTest method), 102
test_not_controlled_extra_fee()

(music_publisher.tests.tests.AdminTest method), 102
test_not_controlled_extra_saan()

(music_publisher.tests.tests.AdminTest method), 102
test_recording_filters()

(music_publisher.tests.tests.AdminTest method), 102
test_search() (music_publisher.tests.tests.AdminTest method),

102
test_simple_save() (music_publisher.tests.tests.AdminTest

method), 102
test_staff_user() (music_publisher.tests.tests.AdminTest

method), 101

test_staff_user_with_files()
(music_publisher.tests.tests.AdminTest method), 101

test_strings() (music_publisher.tests.tests.AdminTest
method), 101

test_super_user() (music_publisher.tests.tests.AdminTest
method), 101

test_super_user_with_files()
(music_publisher.tests.tests.AdminTest method), 101

test_templates()
(music_publisher.tests.tests.CWRTemplatesTest method),
103

test_unallowed_capacity()
(music_publisher.tests.tests.AdminTest method), 102

test_unknown_key_exceptions()
(music_publisher.tests.tests.DataImportTest method),
100

test_unknown_user() (music_publisher.tests.tests.AdminTest
method), 101

test_work() (music_publisher.tests.tests.ModelsSimpleTest
method), 103

test_writer_switch() (music_publisher.tests.tests.AdminTest
method), 102

test_wrong_capacity_in_copublishing_modification()
(music_publisher.tests.tests.AdminTest method), 102

test_wrong_sum_of_shares()
(music_publisher.tests.tests.AdminTest method), 102

title (music_publisher.base.TitleBase attribute), 71
title (music_publisher.models.Recording attribute), 82
title() (music_publisher.admin.RecordingAdmin method), 95
TitleBase (class in music_publisher.base), 71
Track (class in music_publisher.models), 82
Track.DoesNotExist, 82
Track.MultipleObjectsReturned, 82
track_count()

(music_publisher.admin.CommercialReleaseAdmin
method), 92

track_count() (music_publisher.admin.LibraryReleaseAdmin
method), 91

track_count() (music_publisher.admin.PlaylistAdmin method),
92

TrackInline (class in music_publisher.admin), 90
TRANSACTION_STATUS_CHOICES

(music_publisher.models.WorkAcknowledgement
attribute), 85

U
unflatten() (music_publisher.data_import.DataImporter

method), 98

V
validate_publisher_settings() (in module

music_publisher.validators), 70
validate_settings() (in module music_publisher.validators),

71
ValidatorsTest (class in music_publisher.tests.tests), 103
verbose_name (music_publisher.apps.MusicPublisherConfig

attribute), 69
version (music_publisher.models.CWRExport attribute), 83
view_link() (music_publisher.admin.ACKImportAdmin

method), 97
view_link() (music_publisher.admin.CWRExportAdmin

method), 96

W
Work (class in music_publisher.models), 78
work (music_publisher.models.AlternateTitle attribute), 79
work (music_publisher.models.ArtistInWork attribute), 80
work (music_publisher.models.WorkAcknowledgement attribute), 85
work (music_publisher.models.WriterInWork attribute), 80
Work.DoesNotExist, 79
Work.MultipleObjectsReturned, 79

112 Index

DMP Documentation, Release 23.4

work_count() (music_publisher.admin.ArtistAdmin method), 90
work_count() (music_publisher.admin.CWRExportAdmin

method), 95
work_count() (music_publisher.admin.LibraryAdmin method),

90
work_count() (music_publisher.admin.LibraryReleaseAdmin

method), 91
work_count() (music_publisher.admin.WriterAdmin method), 92
work_id (music_publisher.models.Work attribute), 79
work_id() (music_publisher.admin.WorkAdmin method), 93
work_link() (music_publisher.admin.RecordingAdmin method),

95
WorkAcknowledgement (class in music_publisher.models), 85
WorkAcknowledgement.DoesNotExist, 85
WorkAcknowledgement.MultipleObjectsReturned, 85
WorkAcknowledgementInline (class in

music_publisher.admin), 93
WorkAdmin (class in music_publisher.admin), 93
WorkAdmin.ACKSocietyListFilter (class in

music_publisher.admin), 94
WorkAdmin.ACKStatusListFilter (class in

music_publisher.admin), 94
WorkAdmin.HasISWCListFilter (class in

music_publisher.admin), 94
WorkAdmin.HasRecordingListFilter (class in

music_publisher.admin), 94
WorkAdmin.InCWRListFilter (class in

music_publisher.admin), 93
WorkForm (class in music_publisher.forms), 88
WorkManager (class in music_publisher.models), 78
works (music_publisher.models.CWRExport attribute), 83
Writer (class in music_publisher.models), 77
writer (music_publisher.models.WriterInWork attribute), 80
Writer.DoesNotExist, 78
Writer.MultipleObjectsReturned, 78
writer_id (music_publisher.models.Writer attribute), 77
writer_last_names() (music_publisher.admin.WorkAdmin

method), 93
WriterAdmin (class in music_publisher.admin), 92
WriterBase (class in music_publisher.base), 73
WriterInWork (class in music_publisher.models), 80
WriterInWork.DoesNotExist, 81
WriterInWork.MultipleObjectsReturned, 81
WriterInWorkFormSet (class in music_publisher.forms), 88
WriterInWorkInline (class in music_publisher.admin), 93
writers (music_publisher.models.Work attribute), 79

Y
year (music_publisher.models.CWRExport attribute), 83
yield_iswc_request_lines()

(music_publisher.models.CWRExport method), 84
yield_lines() (music_publisher.models.CWRExport method),

84
yield_publisher_lines()

(music_publisher.models.CWRExport method), 84
yield_registration_lines()

(music_publisher.models.CWRExport method), 84
yield_sections() (in module

music_publisher.templatetags.dmp_dashboard), 87

Index 113

	Introduction
	Features and Limitations
	Support
	Quality Assurance
	Release History
	Related Videos
	Installation
	MIT License
	User Manual
	Integration (Rest API)
	For Developers
	Python Module Index
	Index

