Django Model Revisioning

Documentation
Release 0.0.1

Vidir Valberg Gudmundsson

Dec 04, 2019

Contents

Options
1.1 fields
1.2 soft_deletion . . .

Admin integration

Signals

3.1 pre_revision . . .
3.2 post_revision . . .
3.3 pre_change_head .

3.4 post_change_head

Management commands
4.1 graph_revision . .

What does django-model-revisioning provide?

Installation
Usage

Indices and tables

Index

W W

(e ol N e |

o

11

13

15

17

19

Django Model Revisioning Documentation, Release 0.0.1

django-model-revisioning adds history to your models - migration compatible!

Contents:

Contents 1

Django Model Revisioning Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Options

Doc Brown uses a class similar to the Met a class in django models. Listed below are all the options available.

1.1 fields

Which fields should be revisioned. Will take all fields if not defined or setto ' all_ '.

1.2 soft_deletion

Controls whether instances actually get deleted or not when delete () is called. If set to True a is_deleted
boolean field will be added to the model and this set instead of deleting the instance.

Django Model Revisioning Documentation, Release 0.0.1

4 Chapter 1. Options

CHAPTER 2

Admin integration

Getting a interface for viewing revision, and even changing the current head, is quite easy. Simply use
RevisionedModelAdmin as such:

from django.contrib import admin
from model revisioning.admin import RevisionedModelAdmin
from .models import Bar

admin.site.register (Bar, RevisionedModelAdmin)

Since RevisionedModelAdmin inherits from ModelAdmin, it is possible to extend the admin as usual:

from django.contrib import admin
from model_revisioning.admin import RevisionModelAdmin
from .models import Bar

class BarAdmin (RevisionModelAdmin) :
list_display = ('char', 'current_revision', 'revisions_count'")

admin.site.register (Bar, BarAdmin)

Django Model Revisioning Documentation, Release 0.0.1

6 Chapter 2. Admin integration

CHAPTER 3

Signals

django-model-revisioning emits the following signals when dealing with revisions:

3.1 pre_revision

model_revisioning.signals.pre_save
Sent before creating a revision.

Arguments:

sender The model class.

instance The instance for which a revision is about to be created.

3.2 post_revision

model_revisioning.signals.post_save

Sent a revision has been created.

Arguments:

sender The model class.

instance The instance for which a revision has been created.

revision The revision instance itself.

3.3 pre_change_head

model_revisioning.signals.pre_change_head

Django Model Revisioning Documentation, Release 0.0.1

Sent before head gets changed on an object.

Arguments:

sender The model class.

instance The instance for which the head is about to change
current_head The current head.

future_head The head which is about to become the current.

3.4 post_change head

model_revisioning.signals.post_change_head
Sent after head gets changed on an object.

Arguments:

sender The model class.

instance The instance for which the head is about to change
old _head The head which used to be current.

new_head The head which is now current.

Chapter 3. Signals

CHAPTER 4

Management commands

4.1 graph_revision

./manage.py graph_revision <model_path:label> <pk> <output>

Create a graphviz directed graph of revisions. Useful for getting visual overview of branches.

Two files will be produced. A . gv with the raw graphviz markup, and a . gv . png which is a rendered image.
Requirements:

Both graphviz itself, and the python package called graphviz are required.

Arguments:

model_path Dotted path to model, skipping models. Thus a model named Bar in the app foo would be foo.
Bar.

By default the pk of the revision is used as a label for the corresponding node. If another field should be used,
append it prefixed with a :. Thus to show the field name use: foo.Bar:name.

pk Which instance of the given model to graph.
output Name of the output file.
Example

./manage.py graph_revision foo.Bar:name 42 graph

http://www.graphviz.org/
https://pypi.python.org/pypi/graphviz/

Django Model Revisioning Documentation, Release 0.0.1

10 Chapter 4. Management commands

CHAPTER B

What does django-model-revisioning provide?

django-model-revisioning makes copies of your models so that the django migration framework actual tables in your
database.

Say you have a model called Movie, django-model-revisioning will create a model called MovieRevision. Every time
you save an instance of Movie a MovieRevision instance will be created as well.

If you then add new fields to Movie, django-model-revisioning will pick up on it and add the same fields to MovieRe-
vision.

11

Django Model Revisioning Documentation, Release 0.0.1

12 Chapter 5. What does django-model-revisioning provide?

CHAPTER O

Installation

You can install the pre-release version using the following command:

pip install django-model-revisioning

Note that this is an alpha version and is not recommended for production use!

13

Django Model Revisioning Documentation, Release 0.0.1

14 Chapter 6. Installation

CHAPTER /

Usage

To install a flux capacitor in your model inherit from RevisionModel and define a Revisions class in your

model, like this:

from django.db import models
from model revisioning.models import RevisionModel

class Movie (RevisionModel) :
name = models.CharField(max_length=200)
year = models.IntegerField()

class Revisions:
fields = ["name", "year"]

See Options for which options are available.

15

Django Model Revisioning Documentation, Release 0.0.1

16 Chapter 7. Usage

CHAPTER 8

Indices and tables

* genindex
* modindex

e search

17

Django Model Revisioning Documentation, Release 0.0.1

18 Chapter 8. Indices and tables

Index

M

model_revisioning.signals.post_change_head
(built-in variable), 8
model_revisioning.signals.post_save
(built-in variable), 7
model_revisioning.signals.pre_change_head
(built-in variable), 7
model_revisioning.signals.pre_save
(built-in variable), 7

19

	Options
	fields
	soft_deletion

	Admin integration
	Signals
	pre_revision
	post_revision
	pre_change_head
	post_change_head

	Management commands
	graph_revision

	What does django-model-revisioning provide?
	Installation
	Usage
	Indices and tables
	Index

