
Django Model Revisioning
Documentation

Release 0.0.1

Vidir Valberg Gudmundsson

Dec 04, 2019

Contents

1 Options 3
1.1 fields . 3
1.2 soft_deletion . 3

2 Admin integration 5

3 Signals 7
3.1 pre_revision . 7
3.2 post_revision . 7
3.3 pre_change_head . 7
3.4 post_change_head . 8

4 Management commands 9
4.1 graph_revision . 9

5 What does django-model-revisioning provide? 11

6 Installation 13

7 Usage 15

8 Indices and tables 17

Index 19

i

ii

Django Model Revisioning Documentation, Release 0.0.1

django-model-revisioning adds history to your models - migration compatible!

Contents:

Contents 1

Django Model Revisioning Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Options

Doc Brown uses a class similar to the Meta class in django models. Listed below are all the options available.

1.1 fields

Which fields should be revisioned. Will take all fields if not defined or set to '__all__'.

1.2 soft_deletion

Controls whether instances actually get deleted or not when delete() is called. If set to True a is_deleted
boolean field will be added to the model and this set instead of deleting the instance.

3

Django Model Revisioning Documentation, Release 0.0.1

4 Chapter 1. Options

CHAPTER 2

Admin integration

Getting a interface for viewing revision, and even changing the current head, is quite easy. Simply use
RevisionedModelAdmin as such:

from django.contrib import admin
from model_revisioning.admin import RevisionedModelAdmin
from .models import Bar

admin.site.register(Bar, RevisionedModelAdmin)

Since RevisionedModelAdmin inherits from ModelAdmin, it is possible to extend the admin as usual:

from django.contrib import admin
from model_revisioning.admin import RevisionModelAdmin
from .models import Bar

class BarAdmin(RevisionModelAdmin):
list_display = ('char', 'current_revision', 'revisions_count')

admin.site.register(Bar, BarAdmin)

5

Django Model Revisioning Documentation, Release 0.0.1

6 Chapter 2. Admin integration

CHAPTER 3

Signals

django-model-revisioning emits the following signals when dealing with revisions:

3.1 pre_revision

model_revisioning.signals.pre_save

Sent before creating a revision.

Arguments:

sender The model class.

instance The instance for which a revision is about to be created.

3.2 post_revision

model_revisioning.signals.post_save

Sent a revision has been created.

Arguments:

sender The model class.

instance The instance for which a revision has been created.

revision The revision instance itself.

3.3 pre_change_head

model_revisioning.signals.pre_change_head

7

Django Model Revisioning Documentation, Release 0.0.1

Sent before head gets changed on an object.

Arguments:

sender The model class.

instance The instance for which the head is about to change

current_head The current head.

future_head The head which is about to become the current.

3.4 post_change_head

model_revisioning.signals.post_change_head

Sent after head gets changed on an object.

Arguments:

sender The model class.

instance The instance for which the head is about to change

old_head The head which used to be current.

new_head The head which is now current.

8 Chapter 3. Signals

CHAPTER 4

Management commands

4.1 graph_revision

./manage.py graph_revision <model_path:label> <pk> <output>

Create a graphviz directed graph of revisions. Useful for getting visual overview of branches.

Two files will be produced. A .gv with the raw graphviz markup, and a .gv.png which is a rendered image.

Requirements:

Both graphviz itself, and the python package called graphviz are required.

Arguments:

model_path Dotted path to model, skipping models. Thus a model named Bar in the app foo would be foo.
Bar.

By default the pk of the revision is used as a label for the corresponding node. If another field should be used,
append it prefixed with a :. Thus to show the field name use: foo.Bar:name.

pk Which instance of the given model to graph.

output Name of the output file.

Example

./manage.py graph_revision foo.Bar:name 42 graph

9

http://www.graphviz.org/
https://pypi.python.org/pypi/graphviz/

Django Model Revisioning Documentation, Release 0.0.1

10 Chapter 4. Management commands

CHAPTER 5

What does django-model-revisioning provide?

django-model-revisioning makes copies of your models so that the django migration framework actual tables in your
database.

Say you have a model called Movie, django-model-revisioning will create a model called MovieRevision. Every time
you save an instance of Movie a MovieRevision instance will be created as well.

If you then add new fields to Movie, django-model-revisioning will pick up on it and add the same fields to MovieRe-
vision.

11

Django Model Revisioning Documentation, Release 0.0.1

12 Chapter 5. What does django-model-revisioning provide?

CHAPTER 6

Installation

You can install the pre-release version using the following command:

pip install django-model-revisioning

Note that this is an alpha version and is not recommended for production use!

13

Django Model Revisioning Documentation, Release 0.0.1

14 Chapter 6. Installation

CHAPTER 7

Usage

To install a flux capacitor in your model inherit from RevisionModel and define a Revisions class in your
model, like this:

from django.db import models
from model_revisioning.models import RevisionModel

class Movie(RevisionModel):
name = models.CharField(max_length=200)
year = models.IntegerField()

class Revisions:
fields = ["name", "year"]

See Options for which options are available.

15

Django Model Revisioning Documentation, Release 0.0.1

16 Chapter 7. Usage

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

17

Django Model Revisioning Documentation, Release 0.0.1

18 Chapter 8. Indices and tables

Index

M
model_revisioning.signals.post_change_head

(built-in variable), 8
model_revisioning.signals.post_save

(built-in variable), 7
model_revisioning.signals.pre_change_head

(built-in variable), 7
model_revisioning.signals.pre_save

(built-in variable), 7

19

	Options
	fields
	soft_deletion

	Admin integration
	Signals
	pre_revision
	post_revision
	pre_change_head
	post_change_head

	Management commands
	graph_revision

	What does django-model-revisioning provide?
	Installation
	Usage
	Indices and tables
	Index

