

A user-to-user messaging system for Django

Django-messages enables your users to send private messages to each other.
It provides a basic set of functionality that you would expect from such a system.
Every user has an Inbox, an Outbox and a Trash. Messages can be composed and
there is an easy, url-based approach to preloading the compose-form with the
recipient-user, which makes it extremly easy to put “send xyz a message” links
on a profile-page.

Currently django-messages comes with over 20 translations, see them here:
https://github.com/arneb/django-messages/tree/master/django_messages/locale

Versions

	master

	compatible with Django 1.11 - 2.2

	0.6.x

	compatible with Django 1.7 - 1.11 and with Python 3

	0.5.x

	compatible with Django 1.4, 1.5, 1.6 and 1.7; if you are
upgrading from 0.4.x to trunk please read the UPGRADING docs.

	0.4.x

	compatible with Django 1.1 (may work with Django 1.0/1.2), no
longer maintained

	0.3

	compatible with Django 1.0, no longer maintained

Install

Download the tar archive, unpack and run python setup.py install or checkout
the trunk and put the django_messages folder on your PYTHONPATH.
Released versions of django-messages are also available on pypi and can be
installed with easy_install or pip.

Usage

Add django_messages to your INSTALLED_APPS setting and add an
include('django_messages.urls') at any point in your url-conf.

The app includes some default templates, which are pretty simple. They
extend a template called base.html and only emit stuff in the block
content and block sidebar. You may want to use your own templates,
but the included ones are good enough for testing and getting started.

Contents

	Installing django-messages
	Quickstart

	Download

	Install

	Manual Install

	Dependencies

	Using django-messages
	Edit settings

	Add urls

	Templates

	Templatetags and Context-Processors

	Settings Options

	Customizing django-messages
	Templates

	URL-conf

Installing django-messages

Basically all you have to do is get the messages folder somewhere on the
Python path. There are multiple ways to achive this.

Quickstart

If you already downloaded the package change into the django-messages
directory and run:

python setup.py install

Otherwise you will find more information in the remainder of this document.

Django-messages is available via PyPi, so the following command will download
and install django-messages on your system in one step:

easy_install django-messages

If you prefer using pip, you may achieve the same result by running:

pip install django-messages

Download

You will always find and download the latest packaged version at:
http://code.google.com/p/django-messages/downloads/list

If you prefer to use the current developement version to get earlier access to
new features you can checkout the code from the GIT repository:

git clone https://github.com/arneb/django-messages.git

Install

If you downloaded the tar-ball extract it with (change the version number if
required):

tar -xcvf django-messages-0.4.tar.gz

After extracting the tar-ball or checking out the code from the repository,
change into the django-messages directory and install the code:

cd django-messages
python setup.py install

Manual Install

Instead of using setup.py install it is also possible to copy or symlink
the django_messages folder inside the toplevel django-messages folder
to your Python path. This will be enough to make djano-messages available to
your system.

Dependencies

Django-messages has no external dependencies except for django. However, if
pinax-notifications and/or django-mailer are found, it will make use of them.

Please note, that these apps have to be listed in INSTALLED_APPS to be
used by django-messages.

	If you use pinax-notifications [https://github.com/pinax/pinax-notifications] django-messages will use it for sending
notifications to users about new messages instead of using the built-in
mechanism.

	If django-mailer [http://code.google.com/p/django-mailer/] is used the built-in messages sending code will use it
instead of the django built-in send_mail function.

Using django-messages

To enable django-messages in your Django project make sure it is
installed. You can check if django-messages was
successfully installed by opening a python shell and running:

>>> import django_messages
>>>

If no error occured, you can assume that the app was installed correctly.

Edit settings

The next step is to add django_messages to the INSTALLED_APPS setting:

INSTALLED_APPS = (
 ...
 'django_messages',
 ...
)

Add urls

To make django-messages available to your users you should include the
bunlded url-conf in your root url-conf. One example would be to edit
your main urls.py and add a line like this:

urlpatterns = patterns(''
 ...
 (r'^messages/', include('django_messages.urls')),
 ...
)

Templates

Django-messages provides some simple default templates which will get you
started quickly. The templates make the assumption that a base template with
the name base.html exists which defines a block content and a block
sidebar. If this is not the case, or the template doesn’t fit due to other
concerns, it’s very easy to provide your own templates. Please see the
customization docs fore more details.

Templatetags and Context-Processors

Django-messages provides a Templatetag and a Template Context Processor to
make it easy to print the number of unread messages of a user in the templates.

To use the Templatetag simply add this to your template:

{% load inbox %}

Now you can either print the number of unread messages in the users inbox by
using:

{% inbox_count %}

Or you can assign the count to a variable to further process it in the template:

{% inbox_count as my_var %}
{{ my_var }}

If you want to show the inbox count on every page of your site you could also
use the bundled Context Processor to add the value to every Template Context
instead of loading the Templatetag. Simply add the Context Processor to the
TEMPLATE_CONTEXT_PROCESSORS settings in your settings.py:

TEMPLATE_CONTEXT_PROCESSORS = (
 ...
 'django_messages.context_processors.inbox',
)

And now every Template Context will contain a variable named
messages_inbox_count, if the user is logged in:

{{ messages_inbox_count }}

Settings Options

If you do want to disable django-messages from sending either a
‘pinax-notifications’ notice or an email (fallback if ‘pinax-notifications
not installed’ then set the following in your django settings:

DJANGO_MESSAGES_NOTIFY = False

Customizing django-messages

There are multiple levels at which you can customize django-messages without
altering the code directly.

Templates

Django-messages comes with a set of built-in templates which you can use.
If these templates don’t fit your project you can override any or all of them
by putting files with the same filenames in one the directories listes in
TEMPLATES_DIRS in your settings.py.

Django-messages uses the following templates:

	django_messages/base.html - A base template from which all the
following templates inherit. Maybe it’s enough to customize this template
for your project.

	django_messages/compose.html - This template is rendered, when a
user composes a new messages.

	django_messages/inbox.html - This template lists the users inbox.

	django_messages/new_messages.html - This template is used to
construct the notification mail sent to a user, whenever a new message is
received.

	django_messages/outbox.html - This template lists the users outbox
aka sent messages.

	django_messages/trash.html - This template lists the users trash.

	django_messages/view.html - This template renders a single message
with all details.

Additionally django-message provides a set of template for pinax-notifications.
These template can be found in django_messages/templates/notification/
and can also be overwritten in one of your project’s TEMPLATE_DIRS.

URL-conf

If you want to further customize how django-messages works it is possible to
write your own url-conf instead of including django_messages.urls in your
root url-conf. This not only allows changing the url structure but also allows
modifying the kwargs passed to the views and therefore modifying some behaviour.

Please note: If you provide your own url-conf, or urlpatterns directly embedded
in your root url-conf, you shouldn’t include django_messages.urls.

Three common customizations are described in more detail below.

Modifying template names

If overwriting templates in your project’s TEMPLATE_DIRS does not provide
enough freedom, you can change the names of the used templates by providing
a template_name keyword argument to the views. Every view which renders a
template accepts this keyword-argument.

If you want to change the template the inbox view uses to my_inbox.html
instead of the default django_messages/inbox.html you can use this line
in your own url-conf:

url(r'^inbox/$',
 inbox,
 {'template_name': 'my_inbox.html',},
 name='messages_inbox'),

Modifying form classes

If you want to use your own form for composing messages, for example to add
new features, you can simply pass the form-class to the views via kwargs.
Every view which renders a form accepts a form_class keyword argument to
specify the form-class.

If you want to use Your own MyComposeForm you can pass it to the view by
using a line like the following in your own url-conf:

from somewhere import MyComposeForm
...
url(r'^compose/$',
 compose,
 {'form_class': MyComposeForm,},
 name='messages_compose'),

Modifying success urls

All views, which will redirect the user after a successfull action accept a
success_url keyword argument to specify the destination url. The delete
and undelete views will additionally check if a next parameter is
provided in the querystring appended to the url.

If you don’t want to append the next target to the url, or want to change
the redirecting behaviour of other views, you can pass a success_url
parameter in your own url-conf, for example like this:

url(r'^delete/(?P<message_id>[\d]+)/$',
 delete,
 {'success_url': '/profile/',},
 name='messages_delete'),

Adding recipient filter

To restrict allowed recipients a recipient_filter function can be added
to the compose view.

The following filter function makes sure messages can only be sent to active
users:

lambda u: u.is_active

To use this filter, integrate it into your url-conf:

url(r'^compose/$',
 compose,
 {'recipient_filter': lambda u: u.is_active},
 name='messages_compose'),

 run

sphinx-build . build/

to build the documentation into the a directory named ./build/

 nav.xhtml

 Table of Contents

 		
 A user-to-user messaging system for Django

 		
 Installing django-messages

 		
 Quickstart

 		
 Download

 		
 Install

 		
 Manual Install

 		
 Dependencies

 		
 Using django-messages

 		
 Edit settings

 		
 Add urls

 		
 Templates

 		
 Templatetags and Context-Processors

 		
 Settings Options

 		
 Customizing django-messages

 		
 Templates

 		
 URL-conf

 		
 Modifying template names

 		
 Modifying form classes

 		
 Modifying success urls

 		
 Adding recipient filter

_static/down.png

_static/django-messages.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

