
Django Media Tree Documentation
Release 0.8.0

Samuel Luescher

June 30, 2016

Contents

1 Introduction 1

2 The Media Tree application 3
2.1 Installing Media Tree . 3
2.2 Admin interface overview . 6
2.3 Models and Managers . 6
2.4 Configuring Media Tree . 6
2.5 FileNode Utility functions . 8
2.6 Bundled extensions . 9
2.7 Management Commands . 10

3 Extending und using Media Tree with other applications 11
3.1 Fields and forms . 11
3.2 Using FileNodes in templates . 12
3.3 Class-based generic views . 12
3.4 Extending Django Media Tree . 12
3.5 Creating custom plugins for use with 3rd-party applications . 16
3.6 Django CMS Plugins . 18

4 Indices and tables 21

Python Module Index 23

i

ii

CHAPTER 1

Introduction

Django Media Tree is a Django app for managing your website’s media files in a folder tree, and using them in your
own applications.

Key features:

• Enables you to organize all of your site media in nested folders.

• Supports various media types (images, audio, video, archives etc).

• Extension system, enabling you to easily add special processing for different media types and extend the admin
interface.

• Speedy AJAX-enhanced admin interface with drag & drop and dynamic resizing.

• Upload queue with progress indicators (using Fine Uploader).

• Add metadata to all media to improve accessibility of your web sites.

1

Django Media Tree Documentation, Release 0.8.0

• Integration with Django CMS. Plugins include: image, slideshow, gallery, download list – create your own!

2 Chapter 1. Introduction

http://www.django-cms.org

CHAPTER 2

The Media Tree application

2.1 Installing Media Tree

This install guide assumes you are familiar with Python and Django.

2.1.1 Dependencies

Make sure to install the following packages if you want to use Media Tree:

• Django >= 1.5

• South >= 0.8

• django-mptt > 0.4.2 (see Note on django-mptt)

• Pillow >= 2.3

Note: All required Python packages can easily be installed using pip (or, alternatively, easy_install).

2.1.2 Getting the code

For the latest stable version (recommended), use pip:

pip install django-media-tree

or download it from http://github.com/samluescher/django-media-tree and run the installation script:

python setup.py install

2.1.3 Demo project

A demo project is included for you to quickly test and evaluate Django Media Tree. It is recommended to use virtualenv
for trying it out, as you’ll be able to install all dependencies in isolation. Afer installing virtualenv, run the following
commands to start the demo project:

mkdir django-media-tree-test && cd django-media-tree-test
virtualenv venv
source venv/bin/activate

3

http://www.djangoproject.com
http://south.aeracode.org/
https://github.com/django-mptt/django-mptt
http://pillow.readthedocs.org/
http://pypi.python.org/pypi/pip
http://github.com/samluescher/django-media-tree
http://www.virtualenv.org

Django Media Tree Documentation, Release 0.8.0

curl -L https://github.com/samluescher/django-media-tree/archive/master.zip \
-o django-media-tree-master.zip && unzip django-media-tree-master

cd django-media-tree-master/demo_project
pip install -r requirements.txt
python manage.py collectstatic
python manage.py syncdb # no need to create a superuser
python manage.py loaddata fixtures/initial_data.json
python manage.py runserver

Then open http://localhost:8000 in your web browser.

2.1.4 Basic setup

Please follow these steps to use Media Tree with your own application.

• In your project settings, add mptt and media_tree to the INSTALLED_APPS:

INSTALLED_APPS = (
... your other apps here
'mptt',
'media_tree',

)

• Make sure your STATIC_URL, STATIC_ROOT, MEDIA_URL and STATIC_ROOT are properly configured.

Note: Please refer to the Django documentation on how to configure your Django project to serve static files if
you have not done that yet.

• If you are using django.contrib.staticfiles (recommended), just run the usual command to collect
static files:

python manage.py collectstatic

If you are not going to use the staticfiles app, you will have to copy the contents of the static folder
to the location you are serving static files from.

• Create the database tables:

python manage.py syncdb

Alternatively, if you are using South in your project, you’ll have to use a slightly different command:

python manage.py syncdb --all
python migrate media_tree --fake

2.1.5 Configuring media backends (optional)

• If you want thumbnails to be generated – which will usually be the case – you need to install the appropriate me-
dia backend that takes care of this. Currently, easy-thumbnails is the only recommended and officially supported
3rd-party application.

After you’ve installed the easy_thumbnails module, configure Media Tree to use it by defining
MEDIA_TREE_MEDIA_BACKENDS in your project settings:

4 Chapter 2. The Media Tree application

http://localhost:8000
https://docs.djangoproject.com/en/dev/howto/static-files/
http://south.aeracode.org/
https://github.com/SmileyChris/easy-thumbnails

Django Media Tree Documentation, Release 0.8.0

MEDIA_TREE_MEDIA_BACKENDS = (
'media_tree.contrib.media_backends.easy_thumbnails.EasyThumbnailsBackend',

)

Note: In principle, Media Tree can work together with any other thumbnail generating app, provided that
you write the appropriate media backend class to support it. Please have a look at one of the backends under
media_tree.contrib.media_backends if you are interested in using your own specific 3rd-party app.

• Optional: Also add any Media Tree extensions that you are planning to use to your INSTALLED_APPS:

INSTALLED_APPS = (
... your other apps here
'media_tree.contrib.media_extensions.images.focal_point',
'media_tree.contrib.media_extensions.zipfiles',

)

Note: See Bundled extensions for a list of default extensions included in the project.

2.1.6 Note on django-mptt

A version of django-mptt newer than 0.4.2 is required because there is an issue with older versions not indenting
the folder list correctly. Either install a recent version:

pip install django-mptt==0.5.1

or, if for some reason you can’t install a recent version, you can resolve the situation by putting
legacy_mptt_support in your INSTALLED_APPS before mptt. This will be deprecated in the future:

INSTALLED_APPS = (
... your other apps here
'media_tree.contrib.legacy_mptt_support', 'mptt', 'media_tree',

)

2.1.7 Installing icon sets (optional)

By default, Media Tree only comes with plain file and folder icons. If you would like to use custom icon sets that are
more appropriate for your specific media types, you can install them like a Django application.

The following ready-to-use modules contain some nice icons:

• Teambox Icons

You will need to configure Media Tree to use an icon set as follows.

• In order to install an icon set, simply add the respective module to your INSTALLED_APPS setting:

INSTALLED_APPS = (
... your other apps here
'my_custom_icon_set',

)

• If you are using django.contrib.staticfiles (recommended), just run the usual command to collect
static files:

2.1. Installing Media Tree 5

https://github.com/samluescher/django-teambox-icons

Django Media Tree Documentation, Release 0.8.0

./manage.py collectstatic

If you are not using the staticfiles app, copy the contents of the static folder to the static root of your
project.

• Define MEDIA_TREE_ICON_DIRS in your project settings, and add the static path containing the new icon
files, e.g.:

MEDIA_TREE_ICON_DIRS = (
'my_custom_icons/64x64px', # the new folder under your static root
'media_tree/img/icons/mimetypes', # default icon folder

)

Note: You can add several icon sets to this tuple, and for each media file the first appropriate icon that is
encountered will be used. Please notice that on the last line we are specifying the default icon location, which
will be used as a fallback in case no appropriate icon is found in one of the custom sets.

2.2 Admin interface overview

2.3 Models and Managers

2.4 Configuring Media Tree

The following settings can be specified in your Django project’s settings module.

MEDIA_TREE_STORAGE File storage class to be used for any file-related operations when dealing with media files.

This is not set by default, meaning that Django’s DEFAULT_FILE_STORAGE will be used. If you need to
implement your custom storage, please refer to the relevant Django documentation on that setting and on file
storage in general.

MEDIA_TREE_DELETE_FROM_STORAGE_ON_OVERWRITE

Determines whether existing files should be deleted from storage when the corresponding object is over-
written with a new file. This prevents the creation of orphaned files. As an added benefit in the case of
Django’s FileSystemStorage, if this setting is True and a file is supposed to be overwritten with a new
file that has the same name, that name remains permanent because the old file will be deleted before the
object is saved. If False, a random hash would be added to the new file’s name due to the existing file
already occupying the desired name on disk. “”“

Default: True

MEDIA_TREE_MEDIA_BACKENDS A tuple of media backends for thumbnail generation and other media-related
tasks, i.e. a list of wrappers for the 3rd-party applications that take care of them.

Note: Please refer to the installation instructions for information on how to configure supported media back-
ends.

For general information on media backends, see Using FileNodes in templates for more information.

MEDIA_TREE_MEDIA_BACKEND_DEBUG Specifies whether exceptions caused by media backends, such as
ThumbnailError, should be raised or silently ignored.

6 Chapter 2. The Media Tree application

https://docs.djangoproject.com/en/dev/ref/settings/#default-file-storage
https://docs.djangoproject.com/en/dev/ref/files/storage/#module-django.core.files.storage
https://docs.djangoproject.com/en/dev/ref/files/storage/#module-django.core.files.storage

Django Media Tree Documentation, Release 0.8.0

Default: settings.DEBUG

MEDIA_TREE_LIST_DISPLAY A tuple containing the columns that should be displayed in the FileNodeAdmin.
Note that the browse_controls column is necessary for the admin to function properly.

MEDIA_TREE_LIST_FILTER A tuple containing the fields that nodes can be filtered by in the FileNodeAdmin.

MEDIA_TREE_SEARCH_FIELDS A tuple containing the fields that nodes can be searched by in the
FileNodeAdmin.

MEDIA_TREE_UPLOAD_SUBDIR Default: ’upload’

The name of the folder under your MEDIA_ROOT where media files are stored.

MEDIA_TREE_PREVIEW_SUBDIR Default: ’upload/_preview’

The name of the folder under your MEDIA_ROOT where cached versions of media files, e.g. thumbnails, are
stored.

MEDIA_TREE_ICON_DIRS Default:

(
'media_tree/img/icons/mimetypes',

)

A tuple containing all icon directories. See Installing icon sets (optional) for more information.

MEDIA_TREE_THUMBNAIL_SIZES A dictionary of default thumbnail sizes. You can pass the dictionary key to
the thumbnail templatetag instead of a numeric size.

Default:

{
'small': (80, 80),
'default': (100, 100),
'medium': (250, 250),
'large': (400, 400),
'full': None, # None means: use original size

}

MEDIA_TREE_ALLOWED_FILE_TYPES A whitelist of file extensions that can be uploaded. By default, this is a
comprehensive list of many common media file extensions that generally shouldn’t pose a security risk.

Warning: Just because a file extension may be considered “safe”, there is absolutely no guarantee that
a skilled attacker couldn’t find an exploit. You should only allow people you trust to upload files to your
webserver. Be careful when adding potentially unsafe file extensions to this setting, such as executables or
scripts, as this possibly opens a door to attackers.

MEDIA_TREE_THUMBNAIL_EXTENSIONS Default: (’jpg’, ’png’)

A tuple of image extensions used for thumbnail files. Note that png is in there since you typically might want
to preserve the file type of PNG images instead of converting them to JPG.

MEDIA_TREE_FILE_SIZE_LIMIT Default: 1000000000 # 1 GB

Maximum file size for uploaded files.

MEDIA_TREE_GLOBAL_THUMBNAIL_OPTIONS A dictionary of options that should be applied by default when
generating thumbnails. You might use this, for instance, to sharpen all thumbnails:

MEDIA_TREE_GLOBAL_THUMBNAIL_OPTIONS = {
'sharpen': True

}

2.4. Configuring Media Tree 7

Django Media Tree Documentation, Release 0.8.0

2.5 FileNode Utility functions

media_tree.utils.filenode.get_file_link(node, use_metadata=False, include_size=False,
include_extension=False, include_icon=False,
href=None, extra_class=’‘, extra=’‘)

Returns a formatted HTML link tag to the FileNode’s file, optionally including some meta information about
the file.

media_tree.utils.filenode.get_merged_filenode_list(nodes, filter_media_types=None,
exclude_media_types=None,
filter=None, ordering=None, pro-
cessors=None, max_depth=None,
max_nodes=None)

Almost the same as get_nested_filenode_list(), but returns a flat (one-dimensional) list. Using the
same QuerySet as in the example for get_nested_filenode_list, this method would return:

[
<FileNode: Empty folder>,
<FileNode: Photo folder>,
<FileNode: photo1.jpg>,
<FileNode: photo2.jpg>,
<FileNode: photo3.jpg>,
<FileNode: file.txt>

]

media_tree.utils.filenode.get_nested_filenode_list(nodes, filter_media_types=None,
exclude_media_types=None,
filter=None, ordering=None, pro-
cessors=None, max_depth=None,
max_nodes=None)

Returns a nested list of nodes, applying optional filters and processors to each node. Nested means that the
resulting list will be multi-dimensional, i.e. each item in the list that is a folder containing child nodes will be
followed by a sub-list containing those child nodes.

Example of returned list:

[
<FileNode: Empty folder>,
<FileNode: Photo folder>,

[<FileNode: photo1.jpg>, <FileNode: photo2.jpg>,
<FileNode: another subfolder>],

[<FileNode: photo3.jpg>]
<FileNode: file.txt>

]

You can use this list in conjunction with Django’s built-in list template filters to output nested lists in templates:

{{ some_nested_list|unordered_list }}

Using the FileNode structure from the example, the above line would result in the following output:

Empty folder
Photo folder

photo1.jpg
photo2.jpg
another subfolder

8 Chapter 2. The Media Tree application

Django Media Tree Documentation, Release 0.8.0

photo3.jpg

file.txt

Parameters

• nodes – A QuerySet or list of FileNode objects

• filter_media_types – A list of media types to include in the resulting list, e.g.
media_types.DOCUMENT

• exclude_media_types – A list of media types to exclude from the resulting list

• filter – A dictionary of kwargs to be applied with QuerySet.filter() if nodes is
a QuerySet

• processors – A list of callables to be applied to each node, e.g. force_unicode if
you want the list to contain strings instead of FileNode objects

• max_depth – Can be used to limit the recursion depth (unlimited by default)

• max_nodes – Can be used to limit the number of items in the resulting list (unlimited by
default)

2.6 Bundled extensions

Media Tree contains a few useful extensions in its contrib module. Since some of these extensions modify the
FileNode model, you should install them before you run syncdb for the first time.

2.6.1 focal_point

The focal_point extension allows you to drag a marker on image thumbnails while editing, thus specifying the most
relevant portion of the image. You can then use these coordinates in templates for image cropping.

• To install it, add the extension module to your INSTALLED_APPS setting:

INSTALLED_APPS = (
... your apps here ...
'media_tree.contrib.media_extensions.images.focal_point'

)

• If you are not using django.contrib.staticfiles, copy the contents of the static folder to the static
root of your project. If you are using the staticfiles app, just run the usual command to collect static files:

$./manage.py collectstatic

Note: This extension adds the fields focal_x and focal_y to the FileNode model. You are going to have
to add these fields to the database table yourself by modifying the media_tree_filenode table with a database
client, unless you installed it before running syncdb).

2.6. Bundled extensions 9

Django Media Tree Documentation, Release 0.8.0

2.6.2 zipfiles

The zipfiles extension adds support for ZIP archives to the FileNodeAdmin. If it is installed, you can select files
and folders in the admin and download them as a ZIP archive.

To install it, add the extension module to your INSTALLED_APPS setting:

INSTALLED_APPS = (
... your apps here ...
'media_tree.contrib.media_extensions.zipfiles'

)

2.7 Management Commands

You can use the following management commands to assist you with media file management.

2.7.1 Orphaned files

Use the following command to list all orphaned files, i.e. media files existing in storage that are not in the database:

manage.py mediaorphaned

Use the following command to delete all orphaned files:

manage.py mediaorphaned --delete

2.7.2 Media cache

Use the following command to list all media cache files, such as thumbnails:

manage.py mediacache

Use the following command to delete all media cache files:

manage.py mediacache --delete

10 Chapter 2. The Media Tree application

CHAPTER 3

Extending und using Media Tree with other applications

Your choices range from implementing file listing and detail views based on the bundled generic view classes, extend-
ing Media Tree itself and its admin interface, or writing custom plugins for use with your own applications.

3.1 Fields and forms

There are a number of field classes for conveniently using FileNode objects in your own Django applications.

The following example model contains a ForeignKey field linking to a FileNode object that is associated to a
document file. Notice the parameters specifying which media types will be validated, and which should be visible in
the widget:

from media_tree.fields import FileNodeForeignKey
from media_tree import media_types
from media_tree.models import FileNode
from django.db import models

class MyModel(models.Model):
document = FileNodeForeignKey(allowed_media_types=(media_types.DOCUMENT,),

null=True, limit_choices_to={'media_type__in':
(FileNode.FOLDER, media_types.DOCUMENT)})

The following example model will allow the user to select a FileNode object associated to an image file:

from media_tree.fields import ImageFileNodeForeignKey
from django.db import models

class MyModel(models.Model):
image_node = ImageFileNodeForeignKey(null=True)

The following example form will allow the user to select files that are under a specific parent folder named “Projects”:

from media_tree.models import FileNode
from media_tree.forms import FileNodeChoiceField
from django import forms

class MyForm(forms.Form):
file_node = FileNodeChoiceField(queryset=FileNode.objects.get(

name="Projects", node_type=FileNode.FOLDER).get_descendants())

For your own applications, the following field classes are available:

11

Django Media Tree Documentation, Release 0.8.0

3.2 Using FileNodes in templates

Although Media Tree is designed to be agnostic of the module you use to generate image versions and thumbnails, it
includes some tags to assist you with generating thumbnails from FileNode objects, since this is one of the most
common tasks when working with image files in web applications.

3.2.1 A word about Media Backends

Media Tree’s template tags do not use an imaging toolkit directly, but an abstraction class designed to wrap the actual
image manipulation handled by a third-party module (such as easy_thumbnails or sorl.thumbnail, to name
two popular choices).

The advantage of wrapping thumbnail generation like this is that Media Tree does not need to depend on a specific
image generation library, with the additional benefit that you can just use the abstract template tags in your templates
and switch to another MediaBackend at any time.

3.2.2 Thumbnail Template Tags

3.3 Class-based generic views

The module media_tree.contrib.views contains class-based generic views that enable you to access
FileNode objects through public URLs. Please see below for specific examples. Of course you can also extend
the generic view classes to create views that suit your specific requirements.

Note: As with any public views, you may want to restrict the objects that should be publicly visible by passing
an appropriately filtered queryset when implementing a view. For instance, you may not want users to see the
internal folder structure of your FileNode objects, hence using a FileNodeListingView with a QuerySet such
as FileNode.objects.all() would be a bad idea.

3.3.1 List Views

3.3.2 Detail Views

3.4 Extending Django Media Tree

There are several ways in which you may want to add functionality to Media Tree. Suppose you need to add support
for a specific image format, or you need custom maintenance actions in the admin, or you might need to add some
Javascript or CSS code to the FileNode form. For each of these cases, there is a so-called extender class.

3.4.1 Overview

The extender base classes provided by Media Tree are ModelExtender, AdminExtender and FormExtender,
and by subclassing them you create your custom extenders. The structure of extender classes is similar to that of a
regular Django Model, ModelAdmin, or Form class, respectively, meaning that you can define several attributes
such as model Fields or form Media, and they will be added to Media Tree during runtime.

12 Chapter 3. Extending und using Media Tree with other applications

Django Media Tree Documentation, Release 0.8.0

Note: You can package and install your extender classes as a regular Django application module, and have Media
Tree auto-discover installed extensions by providing a media_extension.py module. An application containing
one or more extenders and a media_extension.py that registers them is what is called a Media Tree extension.

Media Tree already comes with some exemplary extensions in its contrib.media_extensions module. You
should inspect these examples in order to get an idea of how to build an extension. There is also a tutorial below that
should help you with creating your own extension.

3.4.2 Extender bases

An extender is created by subclassing one of the following base classes:

Extending the FileNode model

Extending the FileNode admin

Extending forms

3.4.3 Registering and installing Media Tree extensions

Each extension module is a regular Django application that is installed by putting the application in the
INSTALLED_APPS setting.

An extension needs to contain a media_extension.py module that registers all extenders that the extension
module contains:

Example of an extension.py file:

from media_tree import extension

class SomeModelExtender(extension.ModelExtender):
"""Example extender"""
pass

extension.register(SomeModelExtender)

Notice that on the last line the extender is registered by calling the function
media_tree.extension.register().

3.4.4 Tutorial extension: Geotagging Photos

Assume you are using landscape photographs on your website, and in the FileNode admin you would like to be able
to enter the latitude and longitude of the place where they were taken. This is called geotagging.

Getting started

The first step is to create a Django application that serves as the container for our new extender classes. You can do
this as usual on the command line from your project folder:

django-admin startapp media_tree_geotagging
cd media_tree_geotagging
touch media_extension.py

3.4. Extending Django Media Tree 13

Django Media Tree Documentation, Release 0.8.0

Notice that on the last line we created a file called media_extension.py. Media Tree will scan all
INSTALLED_APPS for such a file, so that all installed extensions will be auto-disovered.

We can delete most of the other files that the startapp command created, such as models.py, as we are probably
not going to need them.

Extending the Model

Now you can create the model extender in the file media_extension.py, subclassing the parent class provided
by Media Tree:

from media_tree import extension
from django.db import models

class GeotaggingModelExtender(extension.ModelExtender):
lat = models.FloatField('latitude', null=True, blank=True)
lng = models.FloatField('longitude', null=True, blank=True)

extension.register(GeotaggingModelExtender)

This class looks similar to a regular Model, but it does not have its own database table – instead, its fields are added to
the FileNode class when you restart the development server.

Note: This extension adds the fields lat and lng to the FileNode model. You are going to have to add these
fields to the database table yourself by modifying the media_tree_filenode table with a database client, unless
you installed it before running syncdb).

Extending the form

Of course we want to be able to edit our two new fields in the admin, so we need to create a form extender and add a
new fieldset. We do this by adding a new class to media_extension.py:

class GeotaggingFormExtender(extension.FormExtender):

class Meta:
fieldsets = [

('Geotagging', {
'fields': ['lat', 'lng'],
'classes': ['collapse']

})
]

extension.register(GeotaggingFormExtender)

Installing the extension

After you have created the database fields, you can install the extension by adding it to the INSTALLED_APPS in
your project’s settings file:

INSTALLED_APPS = (
... your apps here ...
'media_tree',
'media_tree_geotagging'

)

14 Chapter 3. Extending und using Media Tree with other applications

Django Media Tree Documentation, Release 0.8.0

Adding an Admin Action

Let’s assume you have a content editor on staff, and this person’s job is to check if photographs were geotagged, and
to notify the photographer of the ones that aren’t. We can simplify this task by adding an admin action to the FileNode
admin.

With this extender, the editor will be able to check the checkboxes next to image files, have them checked automatically
to see if they are not yet geotagged, and email the photographer the admin links to those FileNode objects.

As you may be assuming by now, we create an admin extender in media_extension.py:

from django.core.mail import send_mail

class GeotaggingAdminExtender(extension.AdminExtender):

def notify_of_non_geotagged(modeladmin, request, queryset):
non_geotagged_links = []
for node in queryset:

Check if node is JPG and not geotagged:
if node.extension == 'jpg':

if not node.lat or not node.lng:
non_geotagged_links.append(node.get_admin_url())

Send email with admin links for these nodes, and message
current user about status of the action.
if len(non_geotagged_links):

message = '\n'.join(non_geotagged_links) + '\n\nThanks!'
send_mail('Please geotag these files', message,

'from@example.com', ['to@example.com'])
modeladmin.message_user(request, 'Notification sent for' \

+ ' %i non-geotagged JPGs.' % len(non_geotagged_links))
else:

modeladmin.message_user(request, 'All selected images appear' \
+' to be OK.')

notify_of_non_geotagged.short_description = \
'Notify photographer if selected JPGs are not geotagged'

actions = [notify_of_non_geotagged]

This last example is a bit more verbose, but you will notice that it just contains one method with the exact same
signature like a regular Django admin action, and on the last line we are specifying the list of actions that this extender
will contribute to the FileNode admin. Also, we are giving the method a short_description that will appear in
the drop-down menu above the list displaying all of our FileNodes.

And that’s it! We are now able to geotag images in the Django admin.

Adding Form Media

Of course it would be great if we had a map widget in the form where we can just drop a pin on the location of the
photograph. Creating such a widget is beyond the scope of this tutorial, but if we had created a Javascript containing
the code that implements such a widget, we could easily add this file by adding a Media class to our form extender:

class GeotaggingFormExtender(extension.AdminExtender):

class Media:
js = (

'map_widget.js',
)

3.4. Extending Django Media Tree 15

Django Media Tree Documentation, Release 0.8.0

...

This Media definition is merged with the default media loaded for the FileNode form, and we can use it to load any
code or CSS files required by our hypothetical map widget.

Conclusion

Using this extension system, you can change many aspects of how Media Tree behaves. There are more attributes and
also signals that you can define in your extenders than the ones described in this tutorial. Code away and, please, share
your extensions with the Interested Public!

3.4.5 Tutorial extension: Creating an icon set

Icon sets are also packaged as Django applications, and creating a custom set is rather easy. Basically, an icon set is
a Python module containing nothing but an empty __init__.py and a static folder with the respective image
files. Here’s an example of how that could look like:

my_custom_audio_icon_set
__init__.py
static

audio_icons
audio.png
ogg.png
mp3.png

Note that this package contains three icons: One for generic audio files and one for either OGG or MP3 files.

Note: When displaying a file icon, Media Tree will scan all installed icon sets for an icon that
is named like the media file’s extension (e.g. mp3.png), then for one named like its mimetype (e.g.
audio/x-mpeg.png), then for the mime supertype (e.g. audio.png). Icon discovery is handled by a class
called MimetypeStaticIconFileFinder, which by default only finds PNG files.

To install this icon set, simply add my_custom_audio_icon_set to your INSTALLED_APPS, collect its static
files, and configure the new icon folder using the MEDIA_TREE_ICON_DIRS setting. See Installing icon sets (op-
tional) for more detailed instructions.

3.5 Creating custom plugins for use with 3rd-party applications

3.5.1 How to create custom plugins

Django Media Tree comes with some generic View classes and Mixins that make it relatively easy to use FileNode
objects with your own applications.

The following pseudo code should give you an idea of how to implement your own custom plugin that will render a
file listing and work together with the 3rd-party application of your choice. It loosely looks like a Django CMS plugin.
Please notice that the render() method is passed an options_instance, which can be a dictionary or an object
with attributes to initialize the generic View class we are using, which is FileNodeListingView in this case. See
Class-based generic views for more information on the View classes themselves:

16 Chapter 3. Extending und using Media Tree with other applications

Django Media Tree Documentation, Release 0.8.0

from media_tree.contrib.views.listing import FileNodeListingMixin
from third_party_app import YourPluginSuperclass
from django.shortcuts import render_to_response

Notice we are subclassing our third-party plugin class,
as well as the FileNodeListingMixin
class CustomFileNodeListingPlugin(YourPluginSuperclass, FileNodeListingMixin):

Assuming render() is a standard method of YourPluginSuperclass
def render(self, request, options_instance):

Get the generic view class using the method inherited from
the Mixin class.
Notice that get_detail_view() is inherited from the
FileNodeListingMixin. We are also passing our options model
instance for configuring the view instance.
view = self.get_detail_view(request,

queryset=options_instance.selected_folders,
opts=options_instance)

Get the template context as generated by the View class
context_data = view.get_context_data()

Render with custom template
return render_to_response('listing.html', context_data)

This is what our model classes (namely the class of the options_instance above) might look like:

from django.db import Models
from media_tree.fields import FileNodeForeignKey

class PluginOptions(models.Model):
These field names are derived from
media_tree.contrib.views.list.FileNodeListingView.
list_max_depth = models.IntegerField()
include_descendants = models.BooleanField()

class SelectedFolder(models.Model):
plugin = models.ForeignKey(PluginOptions)
folder = FileNodeForeignKey()

The first class contains our plugin option fields. Notice that when calling the get_detail_view() or
get_view() methods provided by the FileNodeListingMixin and passing it an instance of this model, any
fields that match attributes of the view object returned will be used to initialized the view object.

The second class creates a relationship between the options model and the FileNode model, i.e. you will be able to
link FileNode objects to plugins.

3.5.2 View Mixins

View Mixins are classes that add methods useful for interfacing with Media Tree’s generic view classes to your custom
plugin classes, as demonstrated in the above example. You can use Mixins as superclasses for your custom plugins
when interfacing with third-party applications, such as Django CMS. Please take a look at How to create custom
plugins for more information.

Basically, a Mixin classes adds methods to your own class (which is subclassing a Mixin) for instantiating View
classes. All attributes of your own class that also exist in the View class will be used to initialize View instances.

3.5. Creating custom plugins for use with 3rd-party applications 17

Django Media Tree Documentation, Release 0.8.0

For instance, if your custom class has an attribute template_name, and an attribute with the same name also exists
in the View class, then the View instance’s template_name attribute will be set accordingly.

Please refer to Class-based generic views for an overview of attributes you can define.

3.6 Django CMS Plugins

The module media_tree.contrib.cms_plugins contains a number of plugins for using FileNode objects
on pages created with Django CMS.

3.6.1 Installation

For optimum admin functionality when using these plugins, you should put
media_tree.contrib.cms_plugins in your installed apps, and run manage.py collectstatic.

If you are not using the staticfiles app, you have to manually copy the contents of the static folder to your
static root.

Note: Of course you can also create your own models and plugins using FileNode objects. Please take a look at
Fields and forms and How to create custom plugins for more information on how to integrate Media Tree with your
own applications.

3.6.2 Plugin: File listing

This plugin allows you to put a file listing on a page, displaying download links for the selected FileNode objects
in a folder tree.

The folder tree that is rendered does not have to be identical to the actual tree in your media library. Instead, you can
group arbitrary nodes, or output a merged (flat) list.

Installation

To use this plugin, put media_tree.contrib.cms_plugins.media_tree_listing in your installed
apps, and run manage.py syncdb.

Template

Override the template cms/plugins/media_tree_listing.html if you want to customize the output. Please
take a look at the default template for more information.

3.6.3 Plugin: Image

This plugin allows you to put a single picture on a page, as a figure complete with caption and other metadata.

Installation

To use this plugin, put media_tree.contrib.cms_plugins.media_tree_image in your installed apps,
and run manage.py syncdb.

18 Chapter 3. Extending und using Media Tree with other applications

https://www.django-cms.org

Django Media Tree Documentation, Release 0.8.0

Template

Override the template cms/plugins/media_tree_image.html if you want to customize the output. Please
take a look at the default template for more information.

By default, images are rendered to the output using the template media_tree/filenode/includes/figure.html,
which includes captions.

3.6.4 Plugin: Slideshow

This plugin allows you to put a slideshow on a page, automatically displaying the selected image files with customiz-
able transitions and intervals.

Installation

To use this plugin, put media_tree.contrib.cms_plugins.media_tree_slideshow in your installed
apps, and run manage.py syncdb.

Template

Override the template cms/plugins/media_tree_slideshow.html if you want to customize the output.
Please take a look at the default template for more information.

By default, images are rendered to the output using the template media_tree/filenode/includes/figure.html,
which includes captions.

Note: The default template requires you to include jQuery in your pages, since it uses the jQuery Cycle Plugin
(bundled) for image transitions.

3.6.5 Plugin: Gallery

This plugin allows you to put an image gallery on a page. Galleries can include nested folder structures or display
merged (flat) compositions of all images in a range of subfolders. Pictures can be browsed or auto-played.

Installation

To use this plugin, put media_tree.contrib.cms_plugins.media_tree_gallery in your installed
apps, and run manage.py syncdb.

Template

Override the template cms/plugins/media_tree_gallery.html if you want to customize the output. Please
take a look at the default template for more information.

By default, images are rendered to the output using the template media_tree/filenode/includes/figure.html,
which includes captions.

3.6. Django CMS Plugins 19

http://jquery.com/
http://jquery.malsup.com/cycle/

Django Media Tree Documentation, Release 0.8.0

Note: The default template requires you to include jQuery in your pages, since it uses the jQuery Cycle Plugin
(bundled) for image transitions.

20 Chapter 3. Extending und using Media Tree with other applications

http://jquery.com/
http://jquery.malsup.com/cycle/

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

21

Django Media Tree Documentation, Release 0.8.0

22 Chapter 4. Indices and tables

Python Module Index

m
media_tree.contrib.cms_plugins, 18
media_tree.contrib.cms_plugins.media_tree_gallery,

19
media_tree.contrib.cms_plugins.media_tree_image,

18
media_tree.contrib.cms_plugins.media_tree_listing,

18
media_tree.contrib.cms_plugins.media_tree_slideshow,

19
media_tree.contrib.media_extensions.images.focal_point,

9
media_tree.contrib.media_extensions.zipfiles,

9
media_tree.contrib.views, 12
media_tree.contrib.views.mixin_base, 17
media_tree.utils.filenode, 8

23

Django Media Tree Documentation, Release 0.8.0

24 Python Module Index

Index

G
get_file_link() (in module media_tree.utils.filenode), 8
get_merged_filenode_list() (in module me-

dia_tree.utils.filenode), 8
get_nested_filenode_list() (in module me-

dia_tree.utils.filenode), 8

M
media_tree.contrib.cms_plugins (module), 18
media_tree.contrib.cms_plugins.media_tree_gallery

(module), 19
media_tree.contrib.cms_plugins.media_tree_image

(module), 18
media_tree.contrib.cms_plugins.media_tree_listing

(module), 18
media_tree.contrib.cms_plugins.media_tree_slideshow

(module), 19
media_tree.contrib.media_extensions.images.focal_point

(module), 9
media_tree.contrib.media_extensions.zipfiles (module), 9
media_tree.contrib.views (module), 12
media_tree.contrib.views.mixin_base (module), 17
media_tree.utils.filenode (module), 8

25

	Introduction
	The Media Tree application
	Installing Media Tree
	Admin interface overview
	Models and Managers
	Configuring Media Tree
	FileNode Utility functions
	Bundled extensions
	Management Commands

	Extending und using Media Tree with other applications
	Fields and forms
	Using FileNodes in templates
	Class-based generic views
	Extending Django Media Tree
	Creating custom plugins for use with 3rd-party applications
	Django CMS Plugins

	Indices and tables
	Python Module Index

