

 Navigation

 	
 index

 	
 next |

 	Mantis 0.2.1 documentation

The MANTIS Cyber-Intelligence Management Framework

The MANTIS (Model-based Analysis of Threat Intelligence Sources) Framework consists
of several Django [https://www.djangoproject.com/] Apps that, in combination, support the management
of cyber threat intelligence expressed in standards such as STIX [http://stix.mitre.org/], CybOX [http://cybox.mitre.org/],
OpenIOC [http://www.openioc.org/], IODEF (RFC 5070) [http://www.ietf.org/rfc/rfc5070.txt], etc.

Important resources:

	Access to the Mantis source code for installation:

	Either via git clone from the Mantis Github Repository [https://github.com/siemens/django-mantis] (recommended):

git clone https://github.com/siemens/django-mantis.git

	Or via download as zip package from https://github.com/siemens/django-mantis/archive/master.zip

	There is a mailing list for dicussions, questions, etc.:

	Subscribe to the mailing list by sending a mail to Mantis-ti-discussion-join@lists.trusted-introducer.org.

	The archives of the mailing list are available via Nabble [http://mantis-threat-intelligence-management-framework-discussion-list.57317.x6.nabble.com/].

Many thanks to the TF-CSIRT Trusted Introducer [http://www.trusted-introducer.org/] for their support in hosting
the list!

	All issues regarding Mantis and its components are tracked
on the Mantis Issue Tracker [https://github.com/siemens/django-mantis/issues?state=open].

	Documentation:

	MANTIS Architecture

	Screenshots

	What MANTIS is and isn’t

	History

	Installation

	QUICKSTART

	MANTIS developers’ guide

	Contributing

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mantis 0.2.1 documentation

MANTIS Architecture

The MANTIS (Model-based Analysis of Threat Intelligence Sources) Framework consists
of several Django [https://www.djangoproject.com/] Apps that, in combination, support the management
of cyber threat intelligence expressed in standards such as STIX [http://stix.mitre.org/], CybOX [http://cybox.mitre.org/],
OpenIOC [http://www.openioc.org/], IODEF (RFC 5070) [http://www.ietf.org/rfc/rfc5070.txt], etc.

The heavy lifting is done in the following Django Apps:

	django-dingos [https://github.com/siemens/django-dingos/blob/master/docs/what_dingos_is_all_about.rst]

	django-dingos-authoring [https://github.com/siemens/django-dingos-authoring]

	django-mantis-core [https://github.com/siemens/django-mantis-core]

	django-mantis-stix-importer [https://github.com/siemens/django-mantis-stix-importer]

	django-mantis-openioc-importer [https://github.com/siemens/django-mantis-openioc-importer]

	django-mantis-iodef-importer [https://github.com/siemens/django-mantis-iodef-importer]

	django-mantis-authoring [https://github.com/siemens/django-mantis-authoring]

[image: _images/mantis_architecture.PNG]
MANTIS architecture

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mantis 0.2.1 documentation

Screenshots

To get an idea of what MANTIS currently provides, take a look at the following screenshots.

Contents

	Screenshots
	Login

	Menus

	Viewing imported information objects

	Filtering

	Viewing an info object

	Viewing another info object

	Viewing the JSON representation

	Dealing with embeddings of different standards

	Searching and viewing results

	Editing user-specific data
	Edit user configurations

	Edit user configurations

	A look at the admin interface

Login

Django’s standard login screen, rendered with the Grappelli skin
that is used by Mantis. You can customize Django to do
authentication differently (see the
Django documentation on customizing authentication [https://docs.djangoproject.com/en/dev/topics/auth/customizing/].)

[image: _images/mantis_login.PNG]
The login screen

Menus

In its default configuration, MANTIS currently presents three menus:

[image: _images/mantis_menus.png]
The menus presented to the user by MANTIS

	A menu over which the existing search/filter views are accessible

	A menu over which saved searches are accessible

	A menu for viewing/editing user-specific information

Viewing imported information objects

The screenshot below shows the overview of imported information objects right
after import of MITRE’s conversion of the
MITRE STIX conversion of APT-1 report [http://stix.mitre.org/downloads/APT1-STIX.zip]. We imported the top-level STIX package
and the Appendix G with full indicators of compromise (i.e., Mandiant OpenIOC
is embedded into the STIX XML). The count shows a quite large number of objects,
and we obviously need a way to find our way around. So in the next step,
we filter the list a bit.

[image: _images/mantis_view_infoobject_after_mandiant_import.PNG]
The list of information objects (standard URL: /mantis/View/InfoObject)

Filtering

The filter box on the page showing the information object list allows filtering with respect
to several commonly used criteria. Here, we filter by information object type, and chose
the STIX_Package.

[image: _images/mantis_filter_infoobject_types.PNG]
Filtering with respect to information object types

Filtering results for STIX_Packages yields two results: the package that represents
the top-level of the APT-1 report and the package that represents appendix G.

[image: _images/mantis_view_infoobject_restricted_to_stix_packages.PNG]
Result of filtering for STIX_Packages

Viewing an info object

Clicking on the STIX package for the top-level of the APT-1 report shows
MANTIS’s representation of the info object:

[image: _images/mantis_view_mandiant_report_toplevel.PNG]
View of STIX package presenting top-level of APT 1 report

	At the top, we have identifiying information.

	The bulk of the display in the center concerns
the facts contained in the object (the color coding shows the structuring of the
facts – it takes a bit of getting used to ... but this is just a view after
all: you can create a view that suits you better.)

The fact values that appear in blue are actually links to other
info objects that have been extracted from the STIX package. You see
two objects called PLACEHOLDER: as it turns out, the STIX package
references these two objects without actually defining them. Would
they be imported at a later point of time (identified by identifier
and namespace of the identifier), the placeholders would
be overwritten.

	The view also shows the marking that has been extracted and associated
with this info object and all other info objects extracted from the
STIX package.

	Curently, there is a single revision of the object in the system. If there
were more revisions, these would be shown (as well as whether the revision
you are looking at is the most recent revision).

	This information object is not embedded in another info object; if it were,
information about these objects would be displayed.

Viewing another info object

Clicking on the value of the third fact with fact term TTPs\TTP,
we see the facts contained in this info object ... and now there
is also information about info objects in which this info object is
embedded.

[image: _images/mantis_view_mandiant_report_ttp_htran.PNG]
Viewing a TTP object. Standard URL for viewing is mantis/View/InfoObject/<object-nr>

Clicking once more, this time into an address object (here, the pre-defined
naming schema did not work and produced the name AddressObject (4 facts) –
but you can configure additional naming schemas), we view another info object:

[image: _images/mantis_view_mandiant_report_ttp_htran_address.PNG]
Viewing an address object

Again, we have information about which objects this particular object is embedded in:
we get two results, and two times the same object, because it has been referenced
two times (once by mistake, it seems.)

Viewing the JSON representation

Mantis stores objects internally as lists of facts (refer to the
DINGOS model description [http://django-dingos.readthedocs.org/en/latest/dingos_model_overview.html] to learn more about the internal data model),
but can also produce a JSON representation of each object.

[image: _images/mantis_view_mandiant_report_ttp_htran_json.PNG]
JSON representation of a STIX TTP object. Standard url is mantis/View/InfoObject/<object-nr>/json

Unfortunately, the JSON representation has still a slight problem: in the last few
lines, the identifiers for @phase_id and @kill_chain_id would have to be
treated akin to the “normal” references using idref.

Dealing with embeddings of different standards

STIX is very flexible and allows the embedding of other standards, such as Mandiant’s OpenIOC.
For example, the MITRE STIX conversion of APT-1 report [http://stix.mitre.org/downloads/APT1-STIX.zip] contains one version of the “Appendix G”,
that contains embedded OpenIOC indicators. The Mantis STIX importer recognizes such occurrences
and hands off to the Mantis OpenIOC importer.

[image: _images/mantis_view_infoobject_godocupload.PNG]
STIX indicator with embedded OpenIOC indicator (fact with fact term Test_Mechanisms/Test_Mechanism/ioc).

Clicking on the embedded ioc object (here, the naming went wrong, it should display the value of the short_description element
in the IOC) in line Test_Mechanisms/Test_Mechanism/ioc yields a view of the imported OpenIOC info object.

[image: _images/mantis_view_infoobject_godocupload_openioc.PNG]
An OpenIOC indicator

Searching and viewing results

We also can search for facts:

[image: _images/mantis_search_several_results_ugly_gorilla.PNG]
Searching for values

The search page allows us to search for values, e.g. the word ugly.
This yields several results. The display shows the info objects in which
the value occurs, the info object type of these objects, and the
fact term under which the value occurs.

Clicking on one of the objects shows the object and marks in red
the occurrence of the searched term.

[image: _images/mantis_search_several_results_ugly_gorilla_view_one_result.PNG]
Viewing a search result

Editing user-specific data

Currently, each user can edit his user configurations and saved searches.

Edit user configurations

[image: _images/mantis_edit_user_config.PNG]
The view for editing the user configurations

Currently, there is only a minimum of user configurations available – these
will be extended in future releases of MANTIS. Also, the framework for
managing user configurations is very flexible and can be used for own development
(see the relevant documentation of DINGOS [http://django-dingos.readthedocs.org/en/latest/dingos_guide_to_userconfiguration.html].)

Edit user configurations

[image: _images/mantis_edit_saved_searches.PNG]
The view for editing saved searches

After pressing the ‘Save Search’ button on the filter view, users are presented with a view
that allows them to add the new search and edit the exiting ones; the view is also
available via the user-specific menu in the top right of the screen.

A look at the admin interface

Django features a very powerful admin interface. We us it to view and manage
enumerables such as info object types, fact data types, etc.

[image: _images/mantis_admin_overview.PNG]
The Django admin interface with overview of DINGOS’s models

For example, here the list of info object types in the system.

[image: _images/mantis_admin_iobject_types.PNG]
Admin overview of the info object types

Access to the info object types via the admin interface is especially
relevant, because naming schemas that govern how objects are named
are defined per info object type.

[image: _images/mantis_admin_iobject_type_file_example.PNG]
Configuration of naming schemas for file objects

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mantis 0.2.1 documentation

What MANTIS is and isn’t

MANTIS

	isn’t a finished tool or even project: we like to think that it provides
a solid basis on which cyber-threat intelligence management can be built up upon,
but if you expect something that out of the box covers all aspects
of cyber-threat intelligence management, MANTIS isn’t for you.

	(currently) isn’t a tool fit for importing huge datasets. It can
import fairly large XML documents such as the MITRE STIX conversion
of the APT-1 report [http://stix.mitre.org/downloads/APT1-STIX.zip], but this takes a while (expect 20-30 minutes
or so.) So do not expect to be able to throw, e.g., dozens and
dozens of MAEC files with sizes of several 100MBs into the system:
the generic importer is not fit for such sizes.

This situation may change at some point of time with more stream-lined
importers, but MANTIS is really not intended to deal with very big data
the way log management solutions such as Splunk et al. are.

What MANTIS is:

	MANTIS provides an example implementation of a framework for
managing cyber threat intelligence expressed in standards such as
STIX, CybOX, IODEF, etc. The aims of providing such an example
implementation are:
	To aide discussions about emerging standards such as STIX, CybOX et al.
with respect to questions regarding tooling: how would a certain
aspect be implemented, how do changes affect an implementation? Such
discussions become much easier and have a better basis if they can
be lead in the context of example tooling that is known to
the community.

	To lower the entrance barrier for organizations and teams (esp.
CERT teams) in using emerging standards for cyber-threat
intelligence management and exchange.

	To provide a platform on the basis of which research and
community-driven development in the area of cyber-threat
intelligence management can occur.

	Even though MANTIS is in no way a complete system, it already does
cover a first use case: MANTIS provides an information repository
into which cyber threat intelligence received in STIX/CybOX, OpenIOC
and IODEF can be imported in a meaningful way that allows browsing,
filtering and searching for information. Thus, MANTIS can be used as
information base for keeping all the information you receive and
information you generate yourself that is expressed in one of the
currently supported standards. Because the importer is highly
configurable, importers for other structured data should not be too
difficult to write (and will hopefully be shared with the
community ...).

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mantis 0.2.1 documentation

History

0.2.1 (2014-03-06)

	Changed dependencies for Mantis components

	Mantis now requires DINGOS in version 0.2.1. The differences to 0.2.0 are as follows:

	Bugfixes

	CRITICAL Remediation of painfully slow import for systems with lot’s of imported data

An illformed query led to extremely slow import of new data in systems
that already have lot’s of data inside. This bug has been fixed.

	Problem in link to InfoObjects in which a certain fact can be found on Unique Search Page fixed

The link was faulty in that it carried a ‘&page=...’ parameter that needed to be removed.

	Long repetition of ‘_’ in a string lead to HTML display spilling over, because ‘_’ was
not regarded as place to insert a possible line break. This has been changed.

	New/Modified views

	View for listing all InfoObjects, also those used internally by DINGOS
for bookkeeping (e.g., user preferences). The view is restricted to
Django-superusers.

	New/Modified command-line commands

	In ‘dingos_manage_user_settings’, added the ability to overwrite settings for ‘ALL’
users.

0.2.0 (2014-02-26)

	Changed dependencies for Mantis components

	Mantis now requires DINGOS in version 0.2.0. The differences to 0.1.0 are as follows:

	New base functionality

	Added framework for managing user-specific data (user configurations,
saved searches, etc.) and querying user-specific data in templates and views.

	Added tracking of namespace information per component of a fact term

	New/Modified views

	Modifications to all views
	Added possibility to switch between horizontal and vertical layout ...
or have automatic adjustment of the layout depending on screen width.

	Modifications to filter views
	Modified date-picker in filters to enable addition of timespans without
changing saved searches or messing up order of timespans

	Added several further filter criteria in InfoObject filter

	Added view with basic and still rather restricted editing capabilities for
InfoObjects – currently only used for editing user preferences or
edits by the superuser

	Added view to edit user configuration

	Added view to edit saved searches

	Added per-column ordering to list views

	Added new filter/search that shows unique Facts rather than all
InfoObjects containing a certain fact.

	New/added capabilities for writing views

	Added framework for ordering list views

	Added per-user configuration for:
	layout (horizontal vs. vertical)

	number of rows to show in list views

	number of rows to show in widget displaying objects in which a
displayed object is embedded

	Bug fixes / Improvements

	Generation of filter views became unbearably slow when many
(> 40,000) InfoObjects are in the system. This was, because
of a badly built query within the dynamically built filter
form. This has been fixed.

	Further development of JSON export (still needs work to make
the to_dict function of InfoObjects generic and configurable such as
the from_dict function)

	Fixed bug in generation of InfoObjects: when a placeholder for a given
ID already existed, it was not reliably found.

	New/Modified command-line commands

	Import command now fails gracefully if import of a file
throws an exception: it continues with import of the next file.

	Added command line arguments to basic import command:

	ability to add IDs of marking objects to be added to imported objects

	ability to automatically move imported XML files to other folder after
import

	Added command to reset user-settings and saved searches for a given user.

	Added command to re-calculate object names.

This is useful to run right after an import, recalculating the
names of ‘Observable’ InfoObjects created in the past few minutes. Thus, the
problem that those Observables that are to be named after the (single)
object they contain do not carry a proper name (because at creation time
of the Observable, the Object usually does not exist, yet) can be fixed.

	Mantis now requires the Mantis-Core in version 0.2.0.
The differences to 0.1.0 are as follows:

	Added corresponding abstract model classes for
models introduced in DINGOS 0.2.0.

	Mantis now requires the STIX/CybOX Importer in version 0.2.0.
The differences to 0.1.0 are as follows:

	Added ability to generate identifier for top-level element
(usually a STIX_Package) if an identifier for that element is
missing: if a default namespace has been defined, then
an identifier is generated by taking the MD5-hash of the
xml file.

	Markings present in STIX_Package are read out and attached
to all InfoObjects generated from the STIX_Package.

Note: Mantis does currently not interpret the XPATH expression
that specifies the scope of the marking (which is not much
of an issue, since it seems that the feature to restrict
the scope of a marking is not much used at the moment).

	Timestamp present in STIX_Header/Information_Source/Time/Produced_Time
is read.

	Added a command-line argument to add a default-timestamp to the STIX import
command.

	Bug fixes:

	Attributes other than id and idref that contained a namespace were not
handled correctly. The handler function attr_with_namespace_handler
fixes this.

	In 0.1.0, the xsi:type attribute was not recorded, because in most cases,
its information is used for determining the data type of elements and
InfoObjects. But there are cases, e.g., in Markings, where this is not the
case. For these cases, the xsi:type attribute is kept in the InfoObject.

	Family revision info was not recorded; this has been fixed.

	Mantis now requires the OpenIOC Importer in version 0.2.0.
The differences to 0.1.0 are as follows:

	Fixed bug in import of timestamp.

0.1.0 (2013-12-19)

	Initial release

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mantis 0.2.1 documentation

Installation

Contents

	Installation
	Manual installation

Manual installation

Note: What is described below is a quickstart installation, setting
default passwords both for the database and the Django system, etc.

The installation instructions below have been tested on an out-of-the-box
installation of Ubuntu Desktop 14.04 [http://releases.ubuntu.com/14.04/]
(the Desktop rather than the Server version has been used, since the majority
of installs are likely to be for testing and developing, where having a full
working environment and X-server installed comes in handy.) If you are using
a different *nix flavor, you have to find the corresponding installation
packages used with apt-get below – the installation steps
carried out with pip, however, will be exactly the same.

Attention: When Django’s debugging is switched on (DEBUG=TRUE),
there is a memory leak. so, if you are setting up a virtual machine, and want
to carry out imports of large files with Django’s debug
setting switched on, make sure to give
it at least 3GB of memory.

	If you are behind a proxy, use the graphical user interface
for setting the proxy (System Settings > Network):
set the proxy and apply it system-wide.

Be sure to open a new terminal for the following steps
in order to propagate the proxy information also into
the terminal’s environment.

	Make sure that you have git installed:

sudo apt-get install git

If you are behind a proxy, configure to use the proxy:

git config --global http.proxy $HTTP_PROXY
git config --global https.proxy $HTTP_PROXY

	If you have not already done so during installation of the
operating system, create a user mantis:

sudo useradd mantis

and log in as this user.

	In /home/mantis, create a folder ti:

mkdir /home/mantis/ti
cd /home/mantis/ti

	Clone the django-mantis repository from github and change to
the development branch:

git clone https://github.com/siemens/django-mantis.git
cd django-mantis
git checkout development
cd ..

	Copy the installation files to top-level of the ti directory:

cp django-mantis/quickstart_files/install_scripts/* /home/mantis/ti

	Install the required packages:

cd /home/mantis/ti
sudo bash 10_install_packages_ubuntu_14_04.sh

	Configure postgresql:

cd /home/mantis/ti
sudo bash /home/mantis/ti/20_configure_psql_ubuntu_14_04.sh

	Create development environment:

cd /home/mantis/ti
bash 30_create_dev_env_ubuntu_14_04.sh

	Start the services (Celery and Django):

cd /home/mantis/ti
bash 70_start_services_ubuntu_13_10.sh

Now you can log into the system at 127.0.0.1:8000/mantis
using the user admin with password admin.

	(Optional): Pull some sample data into the system:

cd /home/mantis/ti
bash 80_import_sample_data_ubuntu_13_10.sh

(Use a different shell or interrupt the server while importing;
the celery service will still run in the background and make
sure that basic indicators found in the imported data are
transfered into the Mantis Actionables application.)

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mantis 0.2.1 documentation

QUICKSTART

After installing mantis as described in the installation description,
have a try at the following:

	Browse to:

127.0.0.1:8000/mantis

and log in with user admin and password admin

	Use the menu bar at the top and select the first saved search
that filters for STIX packages. This will show you all STIX_Package
objects that are in the system

	Click on one of the displayed packages and start exploring (have a look
at the screenshots in the documentation for a quick guide through
the application.)

	You can also have a look at the Django admin interface at:

127.0.0.1:8000/admin

	If you want to create a STIX report, you first have to
add your user to an “authoring group”:

	Go to the admin interface (either via the top-right menu
or by browsing to 127.0.0.1:8000/admin)

	Create a Django group (http://127.0.0.1:8000/admin/auth/group/),
that will be used as authoring group. For example, name it my_organization
and save the group.

	Edit your user (http://127.0.0.1:8000/admin/auth/user/)
and add it to the created group.

	Create an identifier namespace (http://127.0.0.1:8000/admin/dingos/identifiernamespace/), e.g.,
my_organization.com; you can upload an image
for that namespace that will later be used when
displaying the namespace to the user (e.g., in an
object overview).

	Associate the created namespace with the authoring group by
creating a mapping between the two
(http://127.0.0.1:8000/admin/dingos_authoring/groupnamespacemap/):
by chosing the created namespace as default namespace, STIX
reports authored via the GUI will be placed in that particular
namespace. Adding further namespaces in the mapping as
“allowed namespaces” will enable the user to import STIX XML files
in one ore more of the allowed namespaces via the GUI.

Now return from the admin interface to the Mantis pages and chose
“New Report” in the Menu “Authoring” and wait for the authoring
GUI to load. Once it is loaded, you can do the following:

	create indicators on the indicator tab

	create observables on the observables tab

	add relationships between observables on the relationship tab

	associate observables with indicators by pulling observables
from the bottom right into one of the indicators on the
central pane on the STIX package tab.

Once you have authored a report, you can import it via
the “Import to MANTIS” button. Returning to the overview
of reports via the “authoring” menu should show you
an entry for the created report and a little magnifying
glass next to the word ‘Imported’ – pressing on the
magnifying glass will take you to the top-level object
(the STIX package) resulting from the import.

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mantis 0.2.1 documentation

MANTIS developers’ guide

Contents:

	Before starting to develop
	Read up on techniques and styles used in MANTIS

	Understand how django-dingos works

	Find the right place to modify/add to

	Setting up a development environment

	MANTIS Application Layout
	Overview of the directory layout

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mantis 0.2.1 documentation

 	MANTIS developers’ guide

Before starting to develop

Read up on techniques and styles used in MANTIS

MANTIS profitted a lot from the advice provided in Two Scoops of Django [https://django.2scoops.org/].

Unless you are an absolute Django expert (and maybe even then), please
read Daniel Greenfield’s and Audrey Roy’s excellent Two Scoops of Django [https://django.2scoops.org/].
Even though it provides best practices for Django 1.5, most of its
advice is also valid for Django 1.6, and likely to be very relevant
for quite a few minor revisions to come.

Understand how django-dingos works

The heart of MANTIS is the django-dingos [https://github.com/siemens/django-dingos] Django application.
Most aspects of modifying/adding to MANTIS will require
a sound understanding of how django-dingos works.
Please refer to the Django DINGOS developers’ guide [http://django-dingos.readthedocs.org/en/latest/developers_guide.html]

Find the right place to modify/add to

Writing your own Django application

If you are adding completely new functionality to Mantis,
the best way may very well be to create a new Django
application.

Keep django-dingos generic

Although DINGOS is likely to be used mainly in the context of the
Django MANTIS Cyber Threat Intelligence Management application,
DINGOS shold stay a /generic/ application for managing
structured information. So whenever you find yourself
adding/modifying stuff in DINGOS that is specific to
cyber threat intelligence management, the STIX, CybOX standards,
etc., DINGOS is the wrong place to modify/add to. The same goes
for customizations that are particular to your instance
of running MANTIS.

Please consider the following places for development instead:

	If you want to add Python code that is particular to cyber threat
management, consider adding this in django-mantis-core [https://github.com/siemens/django-mantis-core]

	If you want to add Python code that is particular to a certain
standard, consider adding it to the respective importer module,
e.g., django-mantis-stix-importer [https://github.com/siemens/django-mantis-stix-importer] or similar

	If you want to make modifications to a DINGOS template that
is required for your local instance of MANTIS (or whatever
framework is using DINGOS), the right way is probably
to override one of the DINGOS base templates. Have a look
at how django-mantis [https://github.com/siemens/django-mantis] overrides the
templates/dingos/grappelli/base.html template;
see also the Django documentation on overriding templates [https://docs.djangoproject.com/en/1.6/intro/tutorial02/#ref-customizing-your-projects-templates].

	If you want to change the url paths of DINGOS views,
do this in the url.py of your instance rather
than dingos/url.py.

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mantis 0.2.1 documentation

 	MANTIS developers’ guide

Setting up a development environment

	Refer to Contributing (section “Getting Started”) for information of how to (1) either fork a repository, clone it,
and install it for development purposes, or (2) set up the directory structure for your own Django app that will
contribute to the Mantis framework.

	Chose a development environment of your liking. Here is how you can setup
PyCharm [http://www.jetbrains.com/pycharm/] Professional Edition in support of development for Django:
* Start up PyCharm and enter your license information.
* Before opening a project/folder, go to Configure -> Settings and adjust the following:

	Use the search box in the settings dialog to find the place where you can configure the proxy settings:

	Configure the python environment under “Project Interpreter” -> “Python Interpreters”
Click on the “+”, then on “Local...”
Select <path_to_your_environment>/bin/python, and click “Ok”

	Click on “Ok” to close the settings window.

	Open the project folder: select “Open Directory” and choose your source directories

	Before being able to run the django-mantis project, you have to adjust the “Run/Debug Confgurations” (wait for the indexer to finish...)
	In the menubar, click on “Run” -> “Edit Configurations”

	Select the “django-mantis” in the displayed tree on the left

	In the right pane, add the following to the “Additional options:” --settings=mantis.settings.local_psql or --settings=mantis.settings.local

	You should now be able to run the django server by clicking the play button.

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mantis 0.2.1 documentation

 	MANTIS developers’ guide

MANTIS Application Layout

Contents

	MANTIS Application Layout
	Overview of the directory layout

Overview of the directory layout

The layout of the DINGOS Django application is as follows:

.
├── mantis
│ ├── apps
│ ├── assets
│ ├── blobs
│ ├── menus.py
│ ├── models.py
│ ├── settings
│ │ ├── base.py
│ │ ├── local_psql.py
│ │ ├── local.py
│ │ ├── production.py
│ │ └── testing.py
│ ├── static
│ ├── templates
│ │ ├── 404.html
│ │ ├── 500.html
│ │ ├── base.html
│ │ ├── dingos
│ │ │ └── grappelli
│ │ │ └── base.html
│ │ └── mantis
│ │ └── grappelli
│ ├── urls.py
│ └── wsgi.py

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Mantis 0.2.1 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

MANTIS encompasses a number of components. For the following base components, please
report issues at the central issue tracker for the whole Django MANTIS framework
at https://github.com/siemens/django-mantis/issues :

	https://github.com/siemens/django-mantis

	https://github.com/siemens/django-dingos

	https://github.com/siemens/django-mantis-core

	https://github.com/siemens/django-mantis-openioc-importer

	https://github.com/siemens/django-mantis-stix-importer

	https://github.com/siemens/django-mantis-iodef-importer

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Djangos could always use more documentation, whether as part of the
official Djangos docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/siemens/django-mantis/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

In your contribution, you may want to either modify/add to existing code
or create a new Django application that interacts with the existing
applications that are part of the Mantis framework.

MANTIS profitted a lot from the advice provided in Two Scoops of Django [https://django.2scoops.org/].
Unless you are an absolute Django expert (and maybe even then), please
read Daniel Greenfield’s and Audrey Roy’s excellent Two Scoops of Django [https://django.2scoops.org/].
Even though it provides best practices for Django 1.5, most of its
advice is also valid for Django 1.6, and likely to be very relevant
for quite a few minor revisions to come.

Modifying/adding to existing code

Here’s how to set up a repository for local development.

	Fork the relevant repository repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/<repository>.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv <your_mantis_environment>
$ cd <repository_folder>
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Writing your own Django application

Do yourself a favor and set up the directory structure of your
Django application in the right way from the very start.
The easiest way to do so is to use Daniel Greenfield’s cookiecutter-djangopackage [https://github.com/pydanny/cookiecutter-djangopackage] template
(which uses Audrey Roy’s excellent Cookiecutter [https://github.com/audreyr/cookiecutter] for creating the directories): this
layout has a very sensible directory structure with out-of-the-box configuration of setup.py for
easy build, submission to PyPi, etc., as well as the start of a Sphinx documentation tree.
Once you have the directory structure created, initialize a fresh git repository with it
and get to work...

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7.

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Mantis 0.2.1 documentation

Index

 Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

 _images/mantis_menus.png
MANTIS Cyber Threat Info Management List, Filter & Search Saved FiltersiSearches. test
Info Object List (generic filter) Filter for STIX Packages. Edit user config

Info Object List flte by ID) Filter for 10Cs Edit saved searches
List of Info Objects (generic filter)
Fact Search (simple) Log out

Object List brameters

Fact Search (unique)

10598 resuits | | 1 BOhject Type:

_static/comment.png

_static/plus.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

readme.html

 Navigation

 		
 index

 		Mantis 0.2.1 documentation »

The MANTIS Cyber Threat Intelligence Management Framework

The MANTIS (Model-based Analysis of Threat Intelligence Sources) Framework consists
of several Django [https://www.djangoproject.com/] Apps that, in combination, support the management
of cyber threat intelligence expressed in standards such as STIX [http://stix.mitre.org/], CybOX [http://cybox.mitre.org/],
OpenIOC [http://www.openioc.org/], IODEF (RFC 5070) [http://www.ietf.org/rfc/rfc5070.txt], etc.

The heavy lifting is done in the following Django Apps:

		django-dingos [https://github.com/siemens/django-dingos/blob/master/docs/what_dingos_is_all_about.rst]

		django-mantis-core [https://github.com/siemens/django-mantis-core]

		django-mantis-stix-importer [https://github.com/siemens/django-mantis-stix-importer]

		django-mantis-openioc-importer [https://github.com/siemens/django-mantis-openioc-importer]

		django-mantis-iodef-importer [https://github.com/siemens/django-mantis-iodef-importer]

		django-mantis-taxii (under development)

This project django-mantis provides a template Django Project that shows how these Django Apps can
be used as basis for your own MANTIS-based Cyber-Threat Intelligence Management system.

Important resources:

		Access to the Mantis source code for installation:

		Either via git clone from the Mantis Github Repository [https://github.com/siemens/django-mantis] (recommended):

git clone https://github.com/siemens/django-mantis.git

		Or via download as zip package from https://github.com/siemens/django-mantis/archive/master.zip

		There is a mailing list for dicussions, questions, etc.:

		Subscribe to the mailing list by sending a mail to Mantis-ti-discussion-join@lists.trusted-introducer.org.

		The archives of the mailing list are available via Nabble [http://mantis-threat-intelligence-management-framework-discussion-list.57317.x6.nabble.com/].

Many thanks to the TF-CSIRT Trusted Introducer [http://www.trusted-introducer.org/] for their support in hosting
the list!

		All issues regarding Mantis and its components are tracked
on the Mantis Issue Tracker [https://github.com/siemens/django-mantis/issues?state=open].

		Documentation: the full documentation is at http://django-mantis.readthedocs.org.

Acknowledgments

The basic layout for this Django project with extremly useful base settings and very sensible directory layout
was generated with Audrey Roy’s excellent Cookiecutter [https://github.com/audreyr/cookiecutter] and Marco Fucci’s cookiecutter-simple-django [https://github.com/marcofucci/cookiecutter-simple-django] template.

 © Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		Mantis 0.2.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Siemens.
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/down.png

