
django-mailbox Documentation
Release 3.3

Adam Coddington

Jan 24, 2023

Contents

1 Installation 3

2 Supported Mailbox Types 5
2.1 POP3 and IMAP Mailboxes . 5

2.1.1 Additional IMAP Mailbox Features . 6
2.2 Gmail IMAP with Oauth2 authentication . 6
2.3 Office 365 API . 6
2.4 Local File-based Mailboxes . 7

3 Getting incoming mail 9
3.1 In your code . 9
3.2 Using the Django Admin . 9
3.3 Using a cron job . 9
3.4 Receiving mail directly from Exim4 or Postfix via a pipe . 9

3.4.1 Receiving Mail from Exim4 . 10
3.4.2 Receiving mail from Postfix . 10

4 Subscribing to the incoming mail signal 11

5 Development 13
5.1 How to file a ticket? . 13
5.2 How do I get involved? . 13
5.3 Why my issue/pull request was closed? . 13
5.4 How to do a new release? . 13
5.5 How to add support for a new Django version? . 14

6 Appendix 15
6.1 Class Documentation . 15

6.1.1 Mailbox . 15
6.1.2 Message . 17
6.1.3 Message Attachment . 20

6.2 Message Storage Details . 21
6.3 Settings . 22

7 Indices and tables 25

Bibliography 27

i

Index 29

ii

django-mailbox Documentation, Release 3.3

How many times have you had to consume some sort of POP3, IMAP, or local mailbox for incoming content, or had
to otherwise construct an application driven by e-mail? One too many times, I’m sure.

This small Django application will allow you to specify mailboxes that you would like consumed for incoming content;
the e-mail will be stored, and you can process it at will (or, if you’re in a hurry, by subscribing to a signal).

The Django-mailbox retrieves the e-mail messages by eg. IMAP, POP and then erases them to not download again the
next time. Django-mailbox is not a typical mail program, and is a development library that makes it easy to process
email messages in Django. A mailbox in that case plays the role of a message queue that needs to be processed.
Messages processed from the queue are removed from the queue.

Contents:

Contents 1

https://travis-ci.org/coddingtonbear/django-mailbox

django-mailbox Documentation, Release 3.3

2 Contents

CHAPTER 1

Installation

1. You can either install from pip:

pip install django-mailbox

or checkout and install the source from the github repository:

git clone https://github.com/coddingtonbear/django-mailbox.git
cd django-mailbox
python setup.py install

2. After you have installed the package, add django_mailbox to the INSTALLED_APPS setting in your
project’s settings.py file.

3. From your project folder, run python manage.py migrate django_mailbox to create the required
database tables.

4. Head to your project’s Django Admin and create a mailbox to consume.

Note: Once you have entered a mailbox to consume, you can easily verify that you have properly configured your
mailbox by either:

• From the Django Admin, using the ‘Get New Mail’ action from the action dropdown on the Mailbox changelist
(http://yourproject.com/admin/django_mailbox/mailbox/).

• Or from a shell opened to your project’s directory, using the getmail management command by running:

python manage.py getmail

3

https://github.com/coddingtonbear/django-mailbox/
http://yourproject.com/admin/django_mailbox/mailbox/

django-mailbox Documentation, Release 3.3

4 Chapter 1. Installation

CHAPTER 2

Supported Mailbox Types

Django Mailbox supports polling both common internet mailboxes like POP3 and IMAP as well as local file-based
mailboxes.

Warning: Unless you are using IMAP’s ‘Archive’ feature, this will delete any messages it can find in the inbox
you specify; do not use an e-mail inbox that you would like to share between applications.

2.1 POP3 and IMAP Mailboxes

Mailbox URIs are in the normal URI format:

protocol://username:password@domain

Basic IMAP Example: imap://username:password@server

Basic POP3 Example: pop3://username:password@server

Most mailboxes these days are SSL-enabled; if yours use plain SSL add +ssl to the protocol section of your URI,
but for STARTTLS add +tls. Also, if your username or password include any non-ascii characters, they should be
URL-encoded (for example, if your username includes an @, it should be changed to %40 in your URI).

For a verbose example, if you have an account named youremailaddress@gmail.com with a password of
1234 on GMail, which uses a IMAP server of imap.gmail.com (requiring SSL) and you would like to fetch new
emails from folder named Myfolder and archive them after processing into a folder named Archived, you would
enter the following as your URI:

imap+ssl://youremailaddress%40gmail.com:1234@imap.gmail.com?archive=Archived&
→˓folder=Myfolder

5

django-mailbox Documentation, Release 3.3

2.1.1 Additional IMAP Mailbox Features

If you are using an IMAP Mailbox, you have two additional configuration options that you can set by appending
parameters to the end of your mailbox URI.

Specifying the source folder

Although by default, Django Mailbox will consume messages from your ‘INBOX’ folder, you can specify the folder
from which you’d like messages consumed by specifying the folder URI query parameter; for example, to instead
consume from the folder named ‘MyFolder’, you could add ?folder=MyFolder to the end of your URI:

imap+ssl://youremailaddress%40gmail.com:1234@imap.gmail.com?folder=MyFolder

Specifying an archive folder

Django Mailbox will delete messages immediately after processing them, but you can specify an IMAP folder to which
the messages should be copied before the original message is deleted.

To archive email messages, add the archive folder name as a query parameter to the URI. For example, if your
mailbox has a folder named myarchivefolder that you would like to copy messages to after processing, add
?archive=myarchivefolder to the end of the URI:

imap+ssl://youremailaddress%40gmail.com:1234@imap.gmail.com?archive=myarchivefolder

If you want to specifying both folder use &:

imap+ssl://youremailaddress%40gmail.com:1234@imap.gmail.com?archive=myarchivefolder&
→˓folder=MyFolder

2.2 Gmail IMAP with Oauth2 authentication

For added security, Gmail supports using OAuth2 for authentication. To handle the handshake and storing the creden-
tials, use python-social-auth.

The Gmail Mailbox is also a regular IMAP mailbox, but the password you specify will be ignored if OAuth2 authen-
tication succeeds. It will fall back to use your specified password as needed.

Build your URI accordingly:

gmail+ssl://youremailaddress%40gmail.com:oauth2@imap.gmail.com?archive=Archived

2.3 Office 365 API

Office 365 allows through the API to read a mailbox with Oauth. The O365 library is used.

For the configuration you need to register an application and get a client_id, client_secret and tenant_id.

This implementation uses the client credentials grant flow and the password you specify will be ignored.

Build your URI accordingly:

6 Chapter 2. Supported Mailbox Types

https://developers.google.com/gmail/xoauth2_protocol
https://github.com/python-social-auth
https://github.com/O365/python-o365
https://github.com/O365/python-o365#authentication

django-mailbox Documentation, Release 3.3

office365://youremailaddress%40yourdomain.com:oauth2@outlook.office365.com?client_
→˓id=client_id&client_secret=client_secret&tenant_id=tenant_id&archive=Archived

2.4 Local File-based Mailboxes

If you happen to want to consume a file-based mailbox like an Maildir, Mbox, Babyl, MH, or MMDF mailbox, you
can use this too by entering the appropriate ‘protocol’ in the URI. If you had a maildir, for example, at /var/mail/,
you would enter a URI like:

maildir:///var/mail

Note that there is an additional / in the above URI after the protocol; this is important.

2.4. Local File-based Mailboxes 7

django-mailbox Documentation, Release 3.3

8 Chapter 2. Supported Mailbox Types

CHAPTER 3

Getting incoming mail

3.1 In your code

Mailbox instances have a method named get_new_mail; this method will gather new messages from the server.

3.2 Using the Django Admin

From the ‘Mailboxes’ page in the Django Admin, check the box next to each of the mailboxes you’d like to fetch
e-mail from, select ‘Get new mail’ from the action selector at the top of the list of mailboxes, then click ‘Go’.

3.3 Using a cron job

You can easily consume incoming mail by running the management command named getmail (optionally with an
argument of the name of the mailbox you’d like to get the mail for).:

python manage.py getmail

3.4 Receiving mail directly from Exim4 or Postfix via a pipe

Django Mailbox’s processincomingmessage management command accepts, via stdin, incoming messages.
You can configure Postfix or Exim4 to pipe incoming mail to this management command to import messages directly
without polling.

You need not configure mailbox settings when piping-in messages, mailbox entries will be automatically created
matching the e-mail address to which incoming messages are sent, but if you would like to specify the mailbox
name, you may provide a single argument to the processincmingmessage command specifying the name of the
mailbox you would like it to use (and, if necessary, create).

9

django-mailbox Documentation, Release 3.3

3.4.1 Receiving Mail from Exim4

To configure Exim4 to receive incoming mail, start by adding a new router configuration to your Exim4 configuration
like:

django_mailbox:
debug_print = 'R: django_mailbox for $localpart@$domain'
driver = accept
transport = send_to_django_mailbox
domains = mydomain.com
local_parts = emailusernameone : emailusernametwo

Make sure that the e-mail addresses you would like handled by Django Mailbox are not handled by another router;
you may need to disable some existing routers.

Change the contents of local_parts to match a colon-delimited list of usernames for which you would like to
receive mail. For example, if one of the e-mail addresses targeted at this machine is jane@example.com, the
contents of local_parts would be, simply jane.

Note: If you would like messages addressed to any account @mydomain.com to be delivered to django_mailbox,
simply omit the above local_parts setting. In the same vein, if you would like messages addressed to any domain
or any local domains, you can omit the domains setting or set it to +local_domains respectively.

Next, a new transport configuration to your Exim4 configuration:

send_to_django_mailbox:
driver = pipe
command = /path/to/your/environments/python /path/to/your/projects/manage.py

→˓processincomingmessage
user = www-data
group = www-data
return_path_add
delivery_date_add

Like your router configuration, transport configuration should be altered to match your environment. First, modify
the command setting such that it points at the proper python executable (if you’re using a virtual environment, you’ll
want to direct that at the python executable in your virtual environment) and project manage.py script. Additionally,
you’ll need to set user and group such that they match a reasonable user and group (on Ubuntu, www-data suffices
for both).

3.4.2 Receiving mail from Postfix

Although I have not personally tried using Postfix for this, Postfix is capable of delivering new mail to a script using
pipe. Please consult the Postfix documentation for pipe here. You may want to consult the above Exim4 configuration
for tips.

10 Chapter 3. Getting incoming mail

http://www.postfix.org/pipe.8.html

CHAPTER 4

Subscribing to the incoming mail signal

To subscribe to the incoming mail signal, following this lead:

from django_mailbox.signals import message_received
from django.dispatch import receiver

@receiver(message_received)
def dance_jig(sender, message, **args):

print "I just recieved a message titled %s from a mailbox named %s" % (message.
→˓subject, message.mailbox.name,)

Warning: As with all django signals, this should be loaded either in an app’s models.py or somewhere else
loaded early on. If you do not load it early enough, the signal may be fired before your signal handler’s registration
is processed!

11

https://docs.djangoproject.com/en/dev/topics/signals/

django-mailbox Documentation, Release 3.3

12 Chapter 4. Subscribing to the incoming mail signal

CHAPTER 5

Development

Here we describe the development process overview. It’s in F.A.Q. format to make it simple.

5.1 How to file a ticket?

Just go to https://github.com/coddingtonbear/django-mailbox and create new one.

5.2 How do I get involved?

It’s simple! If you want to fix a bug, extend documentation or whatever you think is appropriate for the project
and involves changes, just fork the project on github (https://github.com/coddingtonbear/django-mailbox), create a
separate branch, hack on it, publish changes at your fork and create a pull request.

5.3 Why my issue/pull request was closed?

We usually put an explonation while we close issue or PR. It might be for various reasons, i.e. there were no reply for
over a month after our last comment, there were no tests for the changes etc.

5.4 How to do a new release?

To enroll a new release you should perform the following task:

• Ensure the file CHANGELOG.rst reflects all important changes.

• Ensure the file CHANGELOG.rst includes a new version identifier and current release date.

• Execute bumpversion patch (or accordingly - see Semantic Versioning 2.0) to reflect changes in codebase.

13

https://github.com/coddingtonbear/django-mailbox
https://github.com/coddingtonbear/django-mailbox
http://semver.org/

django-mailbox Documentation, Release 3.3

• Commit changes to the codebase, e.g. git commit -m "Release 1.4.8" -a.

• Tag a new release, e.g. git tag "1.4.8".

• Push new tag to repo - git push origin --tags.

• Push a new release to PyPI - python setup.py sdist bdist_wheel upload.

5.5 How to add support for a new Django version?

Changes are only necessary for new minor or major Django versions.

To add support for a new version perform the following task:

• Ensure that tox.ini file reflects support for new Django release.

• Verify in tox that the code is executed correctly on all versions of the Python interpreter.

• Ensure that .travis.yml file reflects support for new Django release. Note the excluded versions of the
Python interpreter.

• Verify by pushing changes on a separate branch to see if the changes in TravisCI are correct.

• Proceed to the standard procedure for a new package release (see How to do a new release?).

A spreadsheet with generator is available that can assist this process.

14 Chapter 5. Development

https://docs.google.com/spreadsheets/d/1YsVPDeOAgf_c_7XOXh6SZUO2ebMNoFXysxfj4r1tFiM/edit?usp=sharing

CHAPTER 6

Appendix

6.1 Class Documentation

6.1.1 Mailbox

class django_mailbox.models.Mailbox(id, name, uri, from_email, active, last_polling)

Parameters

• id (AutoField) – Id

• name (CharField) – Name

• uri (CharField) – Example: imap+ssl://myusername:mypassword@someserver Inter-
net transports include ‘imap’ and ‘pop3’; common local file transports include ‘maildir’,
‘mbox’, and less commonly ‘babyl’, ‘mh’, and ‘mmdf’. Be sure to urlencode your user-
name and password should they contain illegal characters (like @, :, etc).

• from_email (CharField) – Example: MailBot
<mailbot@yourdomain.com>’From’ header to set for outgoing email.If you do
not use this e-mail inbox for outgoing mail, this setting is unnecessary.If you send
e-mail without setting this, your ‘From’ header will’be set to match the setting DE-
FAULT_FROM_EMAIL.

• active (BooleanField) – Check this e-mail inbox for new e-mail messages during
polling cycles. This checkbox does not have an effect upon whether mail is collected here
when this mailbox receives mail from a pipe, and does not affect whether e-mail messages
can be dispatched from this mailbox.

• last_polling (DateTimeField) – The time of last successful polling for messages.It
is blank for new mailboxes and is not set for mailboxes that only receive messages via a pipe.

exception DoesNotExist

exception MultipleObjectsReturned

15

django-mailbox Documentation, Release 3.3

active
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

active_mailboxes = <django_mailbox.models.ActiveMailboxManager object>

archive
Returns (if specified) the folder to archive messages to.

client_id
Returns (if specified) the client id for Office365.

client_secret
Returns (if specified) the client secret for Office365.

folder
Returns (if specified) the folder to fetch mail from.

from_email
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_connection()
Returns the transport instance for this mailbox.

These will always be instances of django_mailbox.transports.base.EmailTransport.

get_new_mail(condition=None)
Connect to this transport and fetch new messages.

static get_new_mail_all_mailboxes(args=None)

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

last_polling
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

location
Returns the location (domain and path) of messages.

messages
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager() defined below.

name
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django_mailbox.models.MailboxManager object>

password
Returns the password to use for fetching messages.

16 Chapter 6. Appendix

django-mailbox Documentation, Release 3.3

port
Returns the port to use for fetching messages.

process_incoming_message(message)
Process a message incoming to this mailbox.

record_outgoing_message(message)
Record an outgoing message associated with this mailbox.

tenant_id
Returns (if specified) the tenant id for Office365.

type
Returns the ‘transport’ name for this mailbox.

uri
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

use_ssl
Returns whether or not this mailbox’s connection uses SSL.

use_tls
Returns whether or not this mailbox’s connection uses STARTTLS.

username
Returns the username to use for fetching messages.

6.1.2 Message

class django_mailbox.models.Message(id, mailbox, subject, message_id, in_reply_to,
from_header, to_header, outgoing, body, encoded,
processed, read, eml)

Parameters

• id (AutoField) – Id

• mailbox_id (ForeignKey to Mailbox) – Mailbox

• subject (CharField) – Subject

• message_id (CharField) – Message id

• in_reply_to_id (ForeignKey to Message) – In reply to

• from_header (CharField) – From header

• to_header (TextField) – To header

• outgoing (BooleanField) – Outgoing

• body (TextField) – Body

• encoded (BooleanField) – True if the e-mail body is Base64 encoded

• processed (DateTimeField) – Processed

• read (DateTimeField) – Read

• eml (FileField) – Original full content of message

exception DoesNotExist

exception MultipleObjectsReturned

6.1. Class Documentation 17

django-mailbox Documentation, Release 3.3

address
Property allowing one to get the relevant address(es).

In earlier versions of this library, the model had an address field storing the e-mail address from which a
message was received. During later refactorings, it became clear that perhaps storing sent messages would
also be useful, so the address field was replaced with two separate fields.

attachments
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager() defined below.

body
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

delete(*args, **kwargs)
Delete this message and all stored attachments.

eml
The descriptor for the file attribute on the model instance. Return a FieldFile when accessed so you can
write code like:

>>> from myapp.models import MyModel
>>> instance = MyModel.objects.get(pk=1)
>>> instance.file.size

Assign a file object on assignment so you can do:

>>> with open('/path/to/hello.world') as f:
... instance.file = File(f)

encoded
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

from_address
Returns the address (as a list) from which this message was received

Note: This was once (and probably should be) a string rather than a list, but in a pull request received
long, long ago it was changed; presumably to make the interface identical to that of to_addresses.

from_header
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_body()
Returns the body field of this record.

This will automatically base64-decode the message contents if they are encoded as such.

18 Chapter 6. Appendix

django-mailbox Documentation, Release 3.3

get_email_object()
Returns an email.message.EmailMessage instance representing the contents of this message and all attach-
ments.

See [email.message.EmailMessage] for more information as to what methods and properties are available
on email.message.EmailMessage instances.

Note: Depending upon the storage methods in use (specifically – whether
DJANGO_MAILBOX_STORE_ORIGINAL_MESSAGE is set to True, this may either create a “re-
hydrated” message using stored attachments, or read the message contents stored on-disk.

get_next_by_processed(*, field=<django.db.models.fields.DateTimeField: processed>,
is_next=True, **kwargs)

get_previous_by_processed(*, field=<django.db.models.fields.DateTimeField: processed>,
is_next=False, **kwargs)

html
Returns the message body matching content type ‘text/html’.

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

in_reply_to
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

in_reply_to_id

incoming_messages = <django_mailbox.models.IncomingMessageManager object>

mailbox
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

mailbox_id

message_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

outgoing
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

6.1. Class Documentation 19

django-mailbox Documentation, Release 3.3

outgoing_messages = <django_mailbox.models.OutgoingMessageManager object>

processed
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

read
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

replies
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager() defined below.

reply(message)
Sends a message as a reply to this message instance.

Although Django’s e-mail processing will set both Message-ID and Date upon generating the e-mail mes-
sage, we will not be able to retrieve that information through normal channels, so we must pre-set it.

set_body(body)
Set the body field of this record.

This will automatically base64-encode the message contents to circumvent a limitation in earlier versions
of Django in which no fields existed for storing arbitrary bytes.

subject
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

text
Returns the message body matching content type ‘text/plain’.

to_addresses
Returns a list of addresses to which this message was sent.

to_header
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

unread_messages = <django_mailbox.models.UnreadMessageManager object>

6.1.3 Message Attachment

class django_mailbox.models.MessageAttachment(id, message, headers, document)

Parameters

• id (AutoField) – Id

• message_id (ForeignKey to Message) – Message

• headers (TextField) – Headers

20 Chapter 6. Appendix

django-mailbox Documentation, Release 3.3

• document (FileField) – Document

exception DoesNotExist

exception MultipleObjectsReturned

delete(*args, **kwargs)
Deletes the attachment.

document
The descriptor for the file attribute on the model instance. Return a FieldFile when accessed so you can
write code like:

>>> from myapp.models import MyModel
>>> instance = MyModel.objects.get(pk=1)
>>> instance.file.size

Assign a file object on assignment so you can do:

>>> with open('/path/to/hello.world') as f:
... instance.file = File(f)

get_filename()
Returns the original filename of this attachment.

headers
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

items()

message
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

message_id

objects = <django.db.models.manager.Manager object>

6.2 Message Storage Details

First, it may be helpful to know a little bit about how e-mail messages are actually sent across the wire:

Messages are grouped into multiple message payload parts, and should binary attachments exist, they are encoded into
text using, generally, base64 or quoted-printable encodings.

Earlier versions of this library would preserve the above text verbatim in the database, but neither of the above en-
codings are very efficient methods of storing binary data, and databases aren’t really ideal for storing large chunks of
binary data anyway.

6.2. Message Storage Details 21

django-mailbox Documentation, Release 3.3

Modern versions of this library (>=2.1) will walk through the original message, write models.
MessageAttachment records for each non-text attachment, and alter the message body removing the original
payload component, but writing a custom header providing the library enough information to re-build the message in
the event that one needs a python email.message.Message object.

The above payload is what would continue to be stored in the database. Although in this constructed example, this
reduces the message’s size only marginally, in most instances, attached files are much larger than the attachment shown
here.

Note: Email message bodies are base-64 encoded when stored in the database.

Although the attachment is no longer preserved in the message body above, and only the
X-Django-Mailbox-Interpolate-Attachment: 1308 header remains in the place of the original
attachment, the attachment was stored in a django_mailbox.MesageAttachment record:

Field Value Description
Pri-
mary
Key

1308 Uniquely generated for
each attachment.

Head-
ers

Content-Type: image/png; name="heart.png"
Content-Disposition: attachment; filename="heart.
png" Content-Transfer-Encoding: base64
X-Attachment-Id: f_hc6mair60

Raw headers from the
actual message’s pay-
load part.

File (binary file object) References a stored-on-
disk binary file corre-
sponding with this at-
tachment.

And were one to run the django_mailbox.Message instance’s get_email_object method, the following
message will be returned:

Note: Note that although the above is functionally identical to the originally received message, there were changes
in the order of headers in rehydrated message components, and whitespace changes are also possible (but not shown
above).

6.3 Settings

• DJANGO_MAILBOX_ADMIN_ENABLED

– Default: True

– Type: boolean

– Controls whether mailboxes appear in the Django Admin.

• DJANGO_MAILBOX_STRIP_UNALLOWED_MIMETYPES

– Default: False

– Type: boolean

– Controls whether or not we remove mimetypes not specified in
DJANGO_MAILBOX_PRESERVED_MIMETYPES from the message prior to storage.

22 Chapter 6. Appendix

django-mailbox Documentation, Release 3.3

• DJANGO_MAILBOX_ALLOWED_MIMETYPES

– Default ['text/html', 'text/plain']

– Type: list

– Should DJANGO_MAILBOX_STRIP_UNALLOWED_MIMETYPES be True, this is a list of mimetypes
that will not be stripped from the message prior to processing attachments. Has no effect unless
DJANGO_MAILBOX_STRIP_UNALLOWED_MIMETYPES is set to True.

• DJANGO_MAILBOX_TEXT_STORED_MIMETYPES

– Default: ['text/html', 'text/plain']

– Type: list

– A list of mimetypes that will remain stored in the text body of the message in the database. See Message
Storage Details.

• DJANGO_MAILBOX_ALTERED_MESSAGE_HEADER

– Default: X-Django-Mailbox-Altered-Message

– Type: string

– Header to add to a message payload part in the event that the message cannot be reproduced accurately.
Possible values include:

* Missing: The message could not be reconstructed because the message payload component (stored
outside this database record) could not be found. This will be followed by a semicolon (;) and a short,
more detailed description of which record was not found.

* Stripped The message could not be reconstructed because the message payload component was
intentionally stripped from the message body prior to storage. This will be followed by a semicolon
(;) and a short, more detailed description of why this payload component was stripped.

• DJANGO_MAILBOX_ATTACHMENT_INTERPOLATION_HEADER

– Default: X-Django-Mailbox-Interpolate-Attachment

– Type: string

– Header to add to the temporary ‘dehydrated’ message body in lieu of a non-text message payload com-
ponent. The value of this header will be used to ‘rehydrate’ the message into a proper e-mail object in
the event of a message instance’s get_email_object method being called. Value of this field is the
primary key of the django_mailbox.MessageAttachment instance currently storing this payload
component’s contents.

• DJANGO_MAILBOX_ATTACHMENT_UPLOAD_TO

– Default: mailbox_attachments/%Y/%m/%d/

– Type: string

– Attachments will be saved to this location. Specifies the upload_to setting for the attachment FileField.
For more on FileFields and upload_to, see the Django docs

• DJANGO_MAILBOX_MAX_MESSAGE_SIZE

– Default: False

– Type: integer

– If this is set, it will be read as a number of bytes. Any messages above that size will not be downloaded.
2000000 is 2 Megabytes.

• DJANGO_MAILBOX_STORE_ORIGINAL_MESSAGE

6.3. Settings 23

https://docs.djangoproject.com/en/dev/topics/http/file-uploads/#handling-uploaded-files-with-a-model

django-mailbox Documentation, Release 3.3

– Default: False

– Type: boolean

– Controls whether or not we store original messages in eml field

24 Chapter 6. Appendix

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

25

django-mailbox Documentation, Release 3.3

26 Chapter 7. Indices and tables

Bibliography

[email.message.EmailMessage] Python’s email.message.EmailMessage docs (https://docs.python.org/3/library/
email.message.html)

27

https://docs.python.org/3/library/email.message.html
https://docs.python.org/3/library/email.message.html

django-mailbox Documentation, Release 3.3

28 Bibliography

Index

A
active (django_mailbox.models.Mailbox attribute), 15
active_mailboxes (django_mailbox.models.Mailbox

attribute), 16
address (django_mailbox.models.Message attribute),

17
archive (django_mailbox.models.Mailbox attribute),

16
attachments (django_mailbox.models.Message at-

tribute), 18

B
body (django_mailbox.models.Message attribute), 18

C
client_id (django_mailbox.models.Mailbox at-

tribute), 16
client_secret (django_mailbox.models.Mailbox at-

tribute), 16

D
delete() (django_mailbox.models.Message method),

18
delete() (django_mailbox.models.MessageAttachment

method), 21
document (django_mailbox.models.MessageAttachment

attribute), 21

E
eml (django_mailbox.models.Message attribute), 18
encoded (django_mailbox.models.Message attribute),

18

F
folder (django_mailbox.models.Mailbox attribute), 16
from_address (django_mailbox.models.Message at-

tribute), 18
from_email (django_mailbox.models.Mailbox at-

tribute), 16

from_header (django_mailbox.models.Message at-
tribute), 18

G
get_body() (django_mailbox.models.Message

method), 18
get_connection() (django_mailbox.models.Mailbox

method), 16
get_email_object()

(django_mailbox.models.Message method), 18
get_filename() (django_mailbox.models.MessageAttachment

method), 21
get_new_mail() (django_mailbox.models.Mailbox

method), 16
get_new_mail_all_mailboxes()

(django_mailbox.models.Mailbox static
method), 16

get_next_by_processed()
(django_mailbox.models.Message method), 19

get_previous_by_processed()
(django_mailbox.models.Message method), 19

H
headers (django_mailbox.models.MessageAttachment

attribute), 21
html (django_mailbox.models.Message attribute), 19

I
id (django_mailbox.models.Mailbox attribute), 16
id (django_mailbox.models.Message attribute), 19
id (django_mailbox.models.MessageAttachment at-

tribute), 21
in_reply_to (django_mailbox.models.Message at-

tribute), 19
in_reply_to_id (django_mailbox.models.Message

attribute), 19
incoming_messages

(django_mailbox.models.Message attribute),
19

29

django-mailbox Documentation, Release 3.3

items() (django_mailbox.models.MessageAttachment
method), 21

L
last_polling (django_mailbox.models.Mailbox at-

tribute), 16
location (django_mailbox.models.Mailbox attribute),

16

M
Mailbox (class in django_mailbox.models), 15
mailbox (django_mailbox.models.Message attribute),

19
Mailbox.DoesNotExist, 15
Mailbox.MultipleObjectsReturned, 15
mailbox_id (django_mailbox.models.Message at-

tribute), 19
Message (class in django_mailbox.models), 17
message (django_mailbox.models.MessageAttachment

attribute), 21
Message.DoesNotExist, 17
Message.MultipleObjectsReturned, 17
message_id (django_mailbox.models.Message at-

tribute), 19
message_id (django_mailbox.models.MessageAttachment

attribute), 21
MessageAttachment (class in

django_mailbox.models), 20
MessageAttachment.DoesNotExist, 21
MessageAttachment.MultipleObjectsReturned,

21
messages (django_mailbox.models.Mailbox attribute),

16

N
name (django_mailbox.models.Mailbox attribute), 16

O
objects (django_mailbox.models.Mailbox attribute),

16
objects (django_mailbox.models.Message attribute),

19
objects (django_mailbox.models.MessageAttachment

attribute), 21
outgoing (django_mailbox.models.Message attribute),

19
outgoing_messages

(django_mailbox.models.Message attribute),
19

P
password (django_mailbox.models.Mailbox attribute),

16
port (django_mailbox.models.Mailbox attribute), 16

process_incoming_message()
(django_mailbox.models.Mailbox method),
17

processed (django_mailbox.models.Message at-
tribute), 20

R
read (django_mailbox.models.Message attribute), 20
record_outgoing_message()

(django_mailbox.models.Mailbox method),
17

replies (django_mailbox.models.Message attribute),
20

reply() (django_mailbox.models.Message method), 20

S
set_body() (django_mailbox.models.Message

method), 20
subject (django_mailbox.models.Message attribute),

20

T
tenant_id (django_mailbox.models.Mailbox at-

tribute), 17
text (django_mailbox.models.Message attribute), 20
to_addresses (django_mailbox.models.Message at-

tribute), 20
to_header (django_mailbox.models.Message at-

tribute), 20
type (django_mailbox.models.Mailbox attribute), 17

U
unread_messages (django_mailbox.models.Message

attribute), 20
uri (django_mailbox.models.Mailbox attribute), 17
use_ssl (django_mailbox.models.Mailbox attribute),

17
use_tls (django_mailbox.models.Mailbox attribute),

17
username (django_mailbox.models.Mailbox attribute),

17

30 Index

	Installation
	Supported Mailbox Types
	POP3 and IMAP Mailboxes
	Additional IMAP Mailbox Features

	Gmail IMAP with Oauth2 authentication
	Office 365 API
	Local File-based Mailboxes

	Getting incoming mail
	In your code
	Using the Django Admin
	Using a cron job
	Receiving mail directly from Exim4 or Postfix via a pipe
	Receiving Mail from Exim4
	Receiving mail from Postfix

	Subscribing to the incoming mail signal
	Development
	How to file a ticket?
	How do I get involved?
	Why my issue/pull request was closed?
	How to do a new release?
	How to add support for a new Django version?

	Appendix
	Class Documentation
	Mailbox
	Message
	Message Attachment

	Message Storage Details
	Settings

	Indices and tables
	Bibliography
	Index

