
django-mail-factory Documentation
Release 0.21

Rémy HUBSCHER

Sep 20, 2018

Contents

1 Features 3

2 Other resources 5

3 Get started 7

4 Create your first mail 9

5 Send a mail 11

6 How does it work? 13

7 Contents 15
7.1 Django default mail integration . 15
7.2 Hacking MailFactory . 16
7.3 Mail templates . 18
7.4 The MailFactory Interface . 20

i

ii

django-mail-factory Documentation, Release 0.21

Django Mail Factory is a little Django app that let’s you manage emails for your project very easily.

Contents 1

django-mail-factory Documentation, Release 0.21

2 Contents

CHAPTER 1

Features

Django Mail Factory has support for:

• Multilingual

• Administration to preview or render emails

• Multi-alternatives emails: text and html

• Attachments

• HTML inline display of attached images

3

django-mail-factory Documentation, Release 0.21

4 Chapter 1. Features

CHAPTER 2

Other resources

Fork it on: http://github.com/peopledoc/django-mail-factory/

Documentation: http://django-mail-factory.rtfd.org/

5

http://github.com/peopledoc/django-mail-factory/
http://django-mail-factory.rtfd.org/

django-mail-factory Documentation, Release 0.21

6 Chapter 2. Other resources

CHAPTER 3

Get started

From PyPI:

pip install django-mail-factory

From the github tree:

pip install -e http://github.com/peopledoc/django-mail-factory/

Then add mail_factory to your INSTALLED_APPS:

INSTALLED_APPS = (
...
'mail_factory',
...

)

7

django-mail-factory Documentation, Release 0.21

8 Chapter 3. Get started

CHAPTER 4

Create your first mail

my_app/mails.py:

from mail_factory import factory
from mail_factory.mails import BaseMail

class WelcomeEmail(BaseMail):
template_name = 'activation_email'
params = ['user', 'site_name', 'site_url']

factory.register(WelcomeEmail)

Then you must also create the templates:

• templates/mails/activation_email/subject.txt

[{{site_name }}] Dear {{ user.first_name }}, your account is created

• templates/mails/activation_email/body.txt

Dear {{ user.first_name }},

Your account has been created for the site {{ site_name }}, and is
available at {{ site_url }}.

See you there soon!

The awesome {{ site_name }} team

• templates/mails/activation_email/body.html (optional)

9

django-mail-factory Documentation, Release 0.21

10 Chapter 4. Create your first mail

CHAPTER 5

Send a mail

Using the factory:

from mail_factory import factory

factory.mail('activation_email', [user.email],
{'user': user,
'site_name': settings.SITE_NAME,
'site_url': settings.SITE_URL})

Using the mail class:

from my_app.mails import WelcomeEmail

msg = WelcomeEmail({'user': user,
'site_name': settings.SITE_NAME,
'site_url': settings.SITE_URL})

msg.send([user.email])

11

django-mail-factory Documentation, Release 0.21

12 Chapter 5. Send a mail

CHAPTER 6

How does it work?

At startup, all mails.py files in your application folders are automatically discovered and the emails are registered
to the factory.

You can then directly call your emails from the factory with their template_name.

It also allows you to list your emails in the administration, preview and test them by sending them to a custom address
with a custom context.

Note: mail_factory automatically performs autodiscovery of mails modules in installed applications. To prevent it,
change your INSTALLED_APPS to contain ‘mail_factory.SimpleMailFactoryConfig’ instead of ‘mail_factory’.

This is only available in Django 1.7 and above.

13

django-mail-factory Documentation, Release 0.21

14 Chapter 6. How does it work?

CHAPTER 7

Contents

7.1 Django default mail integration

If you use Django Mail Factory, you will definitly want to manage all your application mails from Django Mail Factory.

Even if your are using some Django generic views that send mails.

7.1.1 Password Reset Mail

Here is an example of how you can use Mail Factory with the django.contrib.auth.views.
password_reset view.

You can first add this pattern in your urls.py:

url(_(r'^password_reset/$'),
'mail_factory.contrib.auth.views.password_reset'),

url(_(r'^password_reset/(?P<uidb36>[0-9A-Za-z]{1,13})-(?P<token>[0-9A-Za-z]{1,13}-'
r'[0-9A-Za-z]{1,20})/$'),

'django.contrib.auth.views.password_reset_confirm')
url(_(r'^password_reset/done/$'),

'django.contrib.auth.views.password_reset_done')

Then you can overload the default templates mails/password_reset/subject.txt and mails/
password_reset/body.txt.

But you can also register your own PasswordResetMail:

from django.conf import settings
from mail_factory import factory
from mail_factory.contrib.auth.mails import PasswordResetMail
from myapp.mails import AppBaseMail, AppBaseMailForm

class PasswordResetMail(AppBaseMail, PasswordResetMail):
"""Add the App header + i18n for PasswordResetMail."""

(continues on next page)

15

django-mail-factory Documentation, Release 0.21

(continued from previous page)

class PasswordResetForm(AppBaseMailForm):
class Meta:

mail_class = PasswordResetMail
initial = {'email': settings.ADMINS[0][1],

'domain': settings.SITE_URL.split('/')[2],
'site_name': settings.SITE_NAME,
'uid': u'4',
'user': 4,
'token': '3gg-37af4e5097565a629f2e',
'protocol': settings.SITE_URL.split('/')[0].rstrip(':')}

factory.register(PasswordResetMail, PasswordResetForm)

You can then update your urls.py to use this new form:

url(_(r'^password_reset/$'),
'mail_factory.contrib.auth.views.password_reset',
{'email_template_name': 'password_reset'}),

The default PasswordResetMail is not registered in the factory so that people that don’t use it are not disturb.

If you want to use it as is, you can just register it in your app mails.py file like that:

from mail_factory import factory
from mail_factory.contrib.auth.mails import PasswordResetMail

factory.register(PasswordResetMail)

7.2 Hacking MailFactory

MailFactory is a tool to help you manage your emails in the real world.

That means that for the same email, regarding the context, you may want a different branding, different language, etc.

7.2.1 Specify the language for your emails

If you need to specify the language for your email, other than the currently used language, you can do so by overriding
the get_language method on your custom class.

Let’s say that our user has a language_code as a profile attribute:

class ActivationEmail(BaseMail):
template_name = 'activation'
params = ['user', 'activation_key']

def get_language(self):
return self.context['user'].get_profile().language_code

16 Chapter 7. Contents

django-mail-factory Documentation, Release 0.21

7.2.2 Force a param for all emails

You can also overriding the get_params method of a custom ancestor class to add some mandatory parameters for
all your emails:

class MyProjectBaseMail(BaseMail):

def get_params(self):
params = super(MyProjectBaseMail, self).get_params()
return params.append('user')

class ActivationEmail(MyProjectBaseMail):
template_name = 'activation'
params = ['activation_key']

This way, all your emails will have the user in the context by default.

7.2.3 Add context data

If you have some information that must be added to every email context, you can put them here:

class MyProjectBaseMail(BaseMail):

def get_context_data(self, **kwargs):
data = super(MyProjectBaseMail, self).get_context_data(**kwargs)
data['site_name'] = settings.SITE_NAME
data['site_url'] = settings.SITE_URL
return data

7.2.4 Add attachments

Same thing here, if your branding needs a logo or a header in every emails, you can define it here:

from django.contrib.staticfiles import finders

class MyProjectBaseMail(BaseMail):

def get_attachments(self, files=None):
attach = super(MyProjectBaseMail, self).get_attachments(files)
attach.append((finders.find('mails/header.png'),

'header.png', 'image/png'))
return attach

Now, if you want to use this attached image in your html template, you need to use the cid URI scheme with the name
of the attachment, which is the second item of the tuple (header.png in our example above):

7.2.5 Template loading

By default, the template parts will be searched in:

• templates/mails/TEMPLATE_NAME/LANGUAGE_CODE/

7.2. Hacking MailFactory 17

https://en.wikipedia.org/wiki/URI_scheme

django-mail-factory Documentation, Release 0.21

• templates/mails/TEMPLATE_NAME/

But you may want to search in different locations, ie:

• templates/SITE_DOMAIN/mails/TEMPLATE_NAME/

To do that, you can override the get_template_part method:

class ActivationEmail(BaseMail):
template_name = 'activation'
params = ['activation_key', 'site']

def get_template_part(self, part):
"""Return a mail part (body, html body or subject) template

Try in order:

1/ domain specific localized:
example.com/mails/activation/fr/

2/ domain specific:
example.com/mails/activation/

3/ default localized:
mails/activation/fr/

4/ fallback:
mails/activation/

"""
templates = []

site = self.context['site']
1/ {{ domain_name }}/mails/{{ template_name }}/{{ language_code}}/
templates.append(path.join(site.domain,

'mails',
self.template_name,
self.lang,
part))

2/ {{ domain_name }}/mails/{{ template_name }}/
templates.append(path.join(site.domain,

'mails',
self.template_name,
part))

3/ and 4/ provided by the base class
base_temps = super(MyProjectBaseMail, self).get_template_part(part)
return templates + base_temps

get_template_part returns a list of template and will take the first one available.

7.3 Mail templates

When you want a multi-alternatives email, you need to provide a subject, the text/plain body and the text/
html body.

All these parts are loaded from your email template directory.

templates/mails/invitation/subject.txt:

{% load i18n %}{% blocktrans %}[{{ site_name }}] Invitation to the beta{%
→˓endblocktrans %}

18 Chapter 7. Contents

django-mail-factory Documentation, Release 0.21

A little warning: the subject needs to be on a single line

You can also create a different subject file for each language:

templates/mails/invitation/en/subject.txt:

[{{ site_name }}] Invitation to the beta

templates/mails/invitation/body.txt:

{% load i18n %}{% blocktrans with full_name=user.get_full_name expiration_
→˓date=expiration_date|date:"l d F Y" %}
Dear {{ full_name }},

You just received an invitation to connect to our beta program.

Please click on the link below to activate your account:

{{ activation_url }}

This link will expire on: {{ expiration_date }}

{{ site_name }}

If you need help for any purpose, please contact us at {{ support_email }}
{% endblocktrans %}

If you don’t provide a body.html the mail will be sent in text/plain only, if it is present, it will be added as an
alternative and displayed if the user’s mail client handles html emails.

templates/mails/invitation/body.html:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/
→˓html4/loose.dtd">
<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>{{ site_name }}</title>

</head>
<body>

<p></p>
<h1>{% trans 'Invitation to the beta' %}</h1>
<p>{% blocktrans with full_name=user.get_full_name %}Dear {{ full_name }},{%

→˓endblocktrans %}</p>
<p>{% trans "You just received an invitation to connect to our beta program:" %}</

→˓p>
<p>{% trans 'Please click on the link below to activate your account:' %}</p>
<p>{{ activation_url }}</p>
<p>{{ site_name }}</p>
<p>{% blocktrans %}If you need help for any purpose, please contact us at

{{ support_email }}{% endblocktrans
→˓%}</p>
</body>
</html>

7.3. Mail templates 19

django-mail-factory Documentation, Release 0.21

7.4 The MailFactory Interface

In daily work email branding is important because it will call your customer to action.

MailFactory comes with a little tool that helps you to test your emails.

To do that, we generate a Django Form so that you may provide a context for your email.

Here’s how you can customize your administration form.

7.4.1 Enabling MailFactory administration

You just need to enable the urls:

project/urls.py:

urlpatterns = (
...
url(r'^admin/mails/', include('mail_factory.urls')),
url(r'^admin/', include(admin.site.urls)),
...

)

Then you can connect to /admin/mails/ to try out your emails.

7.4.2 Registering a specific form

These two calls are equivalent:

from mail_factory import factory, BaseMail

class InvitationMail(BaseMail):
template_name = "invitation"
params = ['user']

factory.register(InvitationMail)

from mail_factory import factory, MailForm, BaseMail

class InvitationMail(BaseMail):
template_name = "invitation"
params = ['user']

factory.register(InvitationMail, MailForm)

7.4.3 Creating a custom MailForm

We may also want to build a very specific form for our email.

Let’s say we have a share this page email, with a custom message:

20 Chapter 7. Contents

http://127.0.0.1:8000/admin/mails/

django-mail-factory Documentation, Release 0.21

from mail_factory import factory, BaseMail, MailForm

class SharePageMail(BaseMail):
template_name = "share_page"
params = ['user', 'message', 'date']

class SharePageMailForm(MailForm):
user = forms.ModelChoiceField(queryset=User.objects.all())
message = forms.CharField(widget=forms.Textarea)
date = forms.DateTimeField()

factory.register(SharePageMail, SharePageMailForm)

7.4.4 Define form initial data

You can define Meta.initial to automatically provide a context for your mail.

import datetime
import uuid

from django.conf import settings
from django.core.urlresolvers import reverse_lazy as reverse
from django import forms
from mail_factory import factory, MailForm, BaseMail

class ShareBucketMail(BaseMail):
template_name = 'share_bucket'
params = ['first_name', 'last_name', 'comment', 'expiration_date',

'activation_url']

def activation_url():
return '%s%s' % (

settings.SITE_URL, reverse('share:index',
args=[str(uuid.uuid4()).replace('-', '')]))

class ShareBucketForm(MailForm):
expiration_date = forms.DateField()

class Meta:
initial = {'first_name': 'Thibaut',

'last_name': 'Dupont',
'comment': 'I shared with you documents we talked about.',
'expiration_date': datetime.date.today,
'activation_url': activation_url}

factory.register(ShareBucketMail, ShareBucketForm)

Then the mail form will be autopopulated with this data.

7.4. The MailFactory Interface 21

django-mail-factory Documentation, Release 0.21

7.4.5 Creating your application custom MailForm

By default, all email params are represented as a forms.CharField(), which uses a basic text input.

Let’s create a project wide BaseMailForm that uses a ModelChoiceField on auth.models.User each time
a user param is needed in the email.

from django.contrib.auth.models import User
from django import forms
from mail_factory.forms import MailForm

class BaseMailForm(MailForm):
def get_field_for_param(self, param):

if param == 'user':
return forms.ModelChoiceField(

queryset=User.objects.order_by('last_name', 'first_name'))

return super(BaseMailForm, self).get_field_for_param(param)

Now you need to inherit from this BaseMailForm to make use of it for your custom mail forms:

class MyCustomMailForm(BaseMailForm):
your own customizations here

If you want this BaseMailForm to be used automatically when registering a mail with no custom form, here’s how
to do it:

from mail_factory import MailFactory

class BaseMailFactory(MailFactory):
mail_form = BaseMailForm

factory = BaseMailFactory

And use this new factory everywhere in your code instead of mail_factory.factory.

7.4.6 Previewing your email

Sometimes however, you don’t need or want to render the email, having to provide some real data (eg a user, a site,
some complex model. . .).

The emails may be written by your sales or marketing team, set up by your designer, and all of those don’t want to
cope with the setting up of real data.

All they want is to be able to preview the email, in the different languages available.

This is where email previewing is useful.

Previewing is available straight away thanks to sane defaults. It uses the data returned by get_preview_data to
add (possibly) non valid data to the context used to preview the mail.

This data will override any data that was returned by get_context_data, which in turn uses the form’s
Meta.initial, and in last resort, returns “###”.

The preview can thus use fake data: let’s take the second example from this page, the SharePageMail:

22 Chapter 7. Contents

django-mail-factory Documentation, Release 0.21

import datetime

from django.contrib.auth.models import User
from django.conf import settings

from mail_factory import factory, MailForm

class SharePageMailForm(MailForm):
user = forms.ModelChoiceField(queryset=User.objects.all())
message = forms.CharField(widget=forms.Textarea)
date = forms.DateTimeField()

class Meta:
initial = {'message': 'Some message'}

def get_preview_data(self, **kwargs):
data = super(SharePageMailForm, self).get_preview_data(**kwargs)
data['date'] = datetime.date.today()
create on-the-fly fake User, not saved in database: not valid data
but still added to context for previewing
data['user'] = User(first_name='John', last_name='Doe')
return data

factory.register(SharePageMail, SharePageMailForm)

With this feature, when displaying the mail form in the admin (to render the email with real data), the email will also
be previewed in the different available languages with the fake data provided by the form’s get_preview_data,
which overrides the data returned by get_context_data.

7.4. The MailFactory Interface 23

	Features
	Other resources
	Get started
	Create your first mail
	Send a mail
	How does it work?
	Contents
	Django default mail integration
	Hacking MailFactory
	Mail templates
	The MailFactory Interface

