

Welcome to django-knocker’s documentation!

Contents:

	django-knocker
	Documentation

	Usage

	Features

	Running Tests

	Credits

	Installation
	Upgrade

	Usage

	Knocker API
	Attributes

	Methods

	Contributing
	Types of Contributions

	Credits
	Development Lead

	Contributors

	History
	0.5.1 (2023-04-18)

	0.5.0 (2023-02-19)

	0.4.0 (2020-05-20)

	0.3.3 (2018-01-01)

	0.3.2 (2016-12-02)

	0.3.1 (2016-09-10)

	0.3.0 (2016-08-03)

	0.2.0 (2016-06-11)

	0.1.1 (2016-04-08)

	0.1.0 (2016-04-07)

django-knocker

[image: Join the Gitter chat] [https://gitter.im/nephila/applications] [image: Latest PyPI version] [https://pypi.python.org/pypi/django-meta] [image: Python versions] [https://pypi.python.org/pypi/django-meta] [image: Latest Travis CI build status] [https://travis-ci.org/nephila/django-meta] [image: Test coverage] [https://coveralls.io/r/nephila/django-meta?branch=master] [image: Code Climate] [https://codeclimate.com/github/nephila/django-meta] [image: License] [https://pypi.python.org/pypi/django-meta/:alt:License]

Channels-based desktop notification system

Documentation

The full documentation is at https://django-knocker.readthedocs.io.

Usage

See https://django-knocker.readthedocs.io/en/latest/usage.html

Features

	Sends desktop notifications to connected browsers

	Multilianguage support (with django-parler [https://github.com/edoburu/django-parler] and django-hvad [https://github.com/KristianOellegaard/django-hvad])

	Uses django-meta [https://github.com/nephila/django-meta] API for a consistent metadata handling

Running Tests

Does the code actually work?

source <YOURVIRTUALENV>/bin/activate
(myenv) $ pip install -r requirements-test.txt
(myenv) $ python cms_helper.py

Credits

Tools used in rendering this package:

	Cookiecutter [https://github.com/audreyr/cookiecutter]

	cookiecutter-djangopackage-helper [https://github.com/nephila/cookiecutter-djangopackage-helper]

Installation

	Install it:

pip install django-knocker

	Add it to INSTALLED_APPS with channels:

INSTALLED_APPS = [
 ...
 'channels,
 'knocker',
 ...
]

	Load the knocker routing into channels configuration:

CHANNEL_LAYERS={
 'default': {
 'BACKEND': 'channels_redis.core.RedisChannelLayer',
 'CONFIG': {
 'hosts': [os.environ.get('REDIS_URL', 'redis://localhost:6379')],
 }
 },
}

ASGI_APPLICATION='myproject.routing.channel_routing',

Check channels documentation [https://channels.readthedocs.io/en/latest/deploying.html] for more detailed information on CHANNEL_LAYERS setup.

	Add to myproject.routing.channel_routing.py the knocker routes:

-*- coding: utf-8 -*-

from channels.auth import AuthMiddlewareStack
from channels.routing import ProtocolTypeRouter, URLRouter
from django.urls import path
from knocker.routing import channel_routing as knocker_routing

application = ProtocolTypeRouter({
 'websocket': AuthMiddlewareStack(
 URLRouter([
 path('knocker/', knocker_routing),
])
),
})

Upgrade

Upgrade from channels 1 version of django-knocker require updating the configuration and minor changes

Configuration

	Discard existing configuration

	Rewrite the main router according to channels 2 specifications and include knocker router. Example:

application = ProtocolTypeRouter({
 'websocket': AuthMiddlewareStack(
 URLRouter([
 path('knocker/', knocker_routing),
])
),
})

API Changes

If you added a custom should_knock or as_knock methods, you must add the signal_type argument to match the current signature:

def should_knock(self, signal_type, created=False):
 ...

def def as_knock(self, signal_type, created=False):
 ...

Usage

After installing and configuring it, you need to adapt your models to use knocker interface.

	Extend your model to use KnockerModel and ModelMeta

	Override the api if needed

	Load {% static "js/knocker.js" %} and {% static "js/reconnecting-websocket.min.js" %} into
the templates

	Add the following code:

<script type="text/javascript">
 var knocker_language = '{{ LANGUAGE_CODE }}';
 var knocker_url = '/notifications'; // Set this to the actual URL
</script>

The value of knocker_url must match the path configured in myproject.routing.channel_routing.py.

	Deploy you project according to the channels documentation [https://channels.readthedocs.io/en/latest/deploying.html]

Now, for every user which has of the knocker-enabled pages opened, whenever an instance of your
knocker-enabled models is saved, a desktop notification is emitted.

Knocker provides a default signal which is fired whenever a model instance is saved and is registered automatically.

If you have any issue with signal firing, please open an issue [https://github.com/nephila/django-knocker/issues].

For a complete implementation of a knocker-enabled application refer to the sample app [https://github.com/nephila/django-knocker/tree/master/tests/example_app] included in knocker tests.

Knocker API

The Knocker API is a very thin layer of syntactic sugar on top of django-meta [https://github.com/nephila/django-meta] and channels [https://github.com/django/channels].

Attributes

KnockerModel mixin defines the attribute to build the notification information:

_knocker_data = {
 'title': 'get_knocker_title',
 'message': 'get_knocker_message',
 'icon': 'get_knocker_icon',
 'url': 'get_absolute_url',
 'language': 'get_knocker_language',
}

Each key in the _knocker_data attribute is an attribute of the notification package
delivered to the client. Each key can be overridden in the __init__ method or the attribute
entirely redefined in the model class:

class Post(KnockerModel, ModelMeta, models.Model):
 title = models.CharField(_('Title'), max_length=255)
 ...

 _knocker_data = {
 'title': 'get_my_title',
 'message': 'get_message',
 'icon': 'get_knocker_icon',
 'url': 'get_absolute_url',
 'language': 'get_knocker_language',
 }

 def get_message(self):
 return self.title

 def get_my_title(self):
 return 'hello'

Attributes

	title: the title that appears in the desktop notification; defaults to
New Model {{ verbose name }};

	message: the content of the desktop notification; default to the result of self.get_title
on the model instance;

	icon: an icon displayed on the notification; defaults to the value of KNOCKER_ICON_URL;

	url: the url the notification is linked to; default to the model get_absolute_url;

	language: the language group the notification is sent; if the model uses django-parler [https://github.com/edoburu/django-parler] or
django-hvad [https://github.com/KristianOellegaard/django-hvad] the language of the instance is determined by calling
self.get_current_language(), otherwise the current django language is used.

Methods

django-knocker defines a few methods that are intended to be overridden in the models

	
class knocker.mixins.KnockerModel(*args, **kwargs)

	
	
get_knocker_icon()

	Generic function to return the knock icon

Defaults to the value of settings.KNOCKER_ICON_URL

	
get_knocker_language()

	Returns the current language.

This will call selg.get_current_language if available or the Django
django.utils.translation.get_language() otherwise

	
get_knocker_message()

	Generic function to return the knock message.

Defaults to calling self.get_title

	
get_knocker_title()

	Generic function to return the knock title.

Defaults to ‘new model_verbose_name’

	
should_knock(signal_type, created=False)

	Generic function to tell whether a knock should be emitted.

Override this to avoid emitting knocks under specific circumstances (e.g.: if the object
has just been created or update)

	Parameters:

	
	signal_type – type of signal between pre_save, post_save, pre_delete, post_delete

	created – True if the object has been created

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/nephila/django-knocker/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

django-knocker could always use more documentation, whether as part of the
official django-knocker docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/nephila/django-knocker/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up django-knocker for local development.

	Fork the django-knocker repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/django-knocker.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper
installed, this is how you set up your fork for local development:

$ mkvirtualenv django-knocker
$ cd django-knocker/
$ pip install -r requirements-test.txt
$ pip install -e .

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ tox

To get tox, pip install it into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Development tips

This project allows you to use pre-commit [https://pre-commit.com/] to ensure an easy compliance
to the project code styles.

If you want to use it, install it globally (for example with pip3 install --user precommit,
but check installation instruction <https://pre-commit.com/#install>.
When first cloning the project ensure you install the git hooks by running pre-commit install.

From now on every commit will be checked against our code style.

Check also the available tox environments with tox -l: the ones not marked with a python version number are tools
to help you work on the project buy checking / formatting code style, running docs etc.

Testing tips

You can test your project using any specific combination of python, django and django cms.

For example tox -epy37-django30-cms37 runs the tests on python 3.7, Django 3.0 and django CMS 3.7.

As the project uses pytest [https://pytest.org/] as test runner, you can pass any pytest option by setting the
PYTEST_ARGS environment variable, usually by prepending to the tox command. Example:

PYTEST_ARGS=" -s tests/test_plugins.py::PluginTest -p no:warnings" tox -epy37-django30-cms37

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	Pull request must be named with the following naming scheme:

<type>/(<optional-task-type>-)<number>-description

See below for available types.

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated.
Documentation must be added in docs directory, and must include usage
information for the end user.
In case of public API method, add extended docstrings with full parameters
description and usage example.

	Add a changes file in changes directory describing the contribution in
one line. It will be added automatically to the history file upon release.
File must be named as <issue-number>.<type> with type being:

	.feature: For new features.

	.bugfix: For bug fixes.

	.doc: For documentation improvement.

	.removal: For deprecation or removal of public API.

	.misc: For general issues.

Check towncrier [https://pypi.org/project/towncrier/#news-fragments] documentation for more details.

	The pull request should work for all python / django / django CMS versions
declared in tox.ini.
Check the CI and make sure that the tests pass for all supported versions.

Release a version

	Update authors file

	Merge develop on master branch

	Bump release via task: inv tag-release (major|minor|patch)

	Update changelog via towncrier: towncrier --yes

	Commit changelog with git commit --amend to merge with bumpversion commit

	Create tag git tag <version>

	Push tag to github

	Publish the release from the tags page

	If pipeline succeeds, push master

	Merge master back on develop

	Bump developement version via task: inv tag-dev -l (major|minor|patch)

	Push develop

Credits

Development Lead

	Iacopo Spalletti <i.spalletti@nephila.it>

Contributors

	Adam Chainz

	Daniel Rios

	Daniel Santos

History

0.5.1 (2023-04-18)

Features

	Add support for django 4.2 (#22)

0.5.0 (2023-02-19)

Features

	Upgrade to Channels 4.0 (#19)

	Add support for Django 3.2 - 4.1

0.4.0 (2020-05-20)

	Migrate to Channels 2

	Add support for Django 2.2 / 3.0

	Drop support for Python 2

	Drop support for Django < 2.2

0.3.3 (2018-01-01)

	Fix support for newer channel versions

	Fix error in signal handling

	Add support for Django 1.11

	Improv test coverage

0.3.2 (2016-12-02)

	Add support for Django 1.10

0.3.1 (2016-09-10)

	Fix error in js message’

0.3.0 (2016-08-03)

	Make easier to customize the knocker url

0.2.0 (2016-06-11)

	Fix documentation

	Improv routing setting in tests

0.1.1 (2016-04-08)

	Add Add pause_knocks / active_knocks functions.

0.1.0 (2016-04-07)

	First release on PyPI.

Index

 G
 | K
 | S

G

 	
 	get_knocker_icon() (knocker.mixins.KnockerModel method)

 	get_knocker_language() (knocker.mixins.KnockerModel method)

 	
 	get_knocker_message() (knocker.mixins.KnockerModel method)

 	get_knocker_title() (knocker.mixins.KnockerModel method)

K

 	
 	KnockerModel (class in knocker.mixins)

S

 	
 	should_knock() (knocker.mixins.KnockerModel method)

 nav.xhtml

 Table of Contents

 		
 Welcome to django-knocker’s documentation!

 		
 django-knocker

 		
 Documentation

 		
 Usage

 		
 Features

 		
 Running Tests

 		
 Credits

 		
 Installation

 		
 Upgrade

 		
 Configuration

 		
 API Changes

 		
 Usage

 		
 Knocker API

 		
 Attributes

 		
 Attributes

 		
 Methods

 		
 KnockerModel

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Pull Request Guidelines

 		
 Release a version

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.5.1 (2023-04-18)

 		
 Features

 		
 0.5.0 (2023-02-19)

 		
 Features

 		
 0.4.0 (2020-05-20)

 		
 0.3.3 (2018-01-01)

 		
 0.3.2 (2016-12-02)

 		
 0.3.1 (2016-09-10)

 		
 0.3.0 (2016-08-03)

 		
 0.2.0 (2016-06-11)

 		
 0.1.1 (2016-04-08)

 		
 0.1.0 (2016-04-07)

_static/file.png

_static/minus.png

_static/plus.png

