
django-issue Documentation
Release 3.1.2

Josh Marlow

Jan 03, 2019

Contents

1 Overview 1

2 Philosophy 3

3 Examples 5

4 Representing the fact that something is amiss 7

5 How do you know if something has gone wrong? 9

6 Addressing an ongoing problem 11

7 When do these checks happen? 13

i

ii

CHAPTER 1

Overview

Sometimes things go wrong in production; if it is a repeating or ongoing error, it makes sense to represent and track
this in some way. This is the purpose of the Issue class. When an error is detected, an Issue can be created to
store details about it.

Possible advantages of this:

• When something goes wrong, corrective actions that are taken often should not be repeated.

• It gives admins an ability to view at a glance a history of actions taken by the system to address the issue.

Once an Issue is created, it is often desirable to act on it. For this, django-issue provides a Responder
model. A Responder specifies a pattern to match against Issue`s; when a pattern matches for an
:class:`Issue to a ‘Responder’, the Responder executes some configured action.

How are Issues created? They can be easily created by any bit of code. Alternatively, you can use the Assertion.
The goal of an Assertion is to provide a means for detecting when certain properties of your system no longer hold
true.

Think of it as a cross between the classic assert statement available in many programming langauge and traditional
software monitoring systems like Nagios.

1

https://python.readthedocs.io/en/v2.7.2/reference/simple_stmts.html#assert

django-issue Documentation, Release 3.1.2

2 Chapter 1. Overview

CHAPTER 2

Philosophy

It’s often the case that you know how your system should behave (you built it). The problem is, your system doesn’t
know how it’s supposed to behave. So when it missbehaves (due to bugs, unexpected edge-cases, user error, malware,
a cat climbing on a keyboard), it doesn’t realize that something is amiss and continues on it’s way doing something
terribly wrong. If the system had a more explicit notion of it’s expected behavior, then it could try to correct deviations,
or at the very least, to escalate to a human and ask for help.

django-issue is an initial exploration into these ideas; how can we detect when things go wrong, represent the fact that
they have gone wrong, and then respond to them?

3

django-issue Documentation, Release 3.1.2

4 Chapter 2. Philosophy

CHAPTER 3

Examples

5

django-issue Documentation, Release 3.1.2

6 Chapter 3. Examples

CHAPTER 4

Representing the fact that something is amiss

Suppose an error occurs in the middle of the night that needs to be addressed in the morning (but is not pressing enough
to wake someone up). We could do something like this:

from isssue.models import Issue

try:
// a problem occurs

except ValueError as ve:
Issue.objects.create(name='That *impossible* edge case finally happened...',

→˓details=str(ve))

7

django-issue Documentation, Release 3.1.2

8 Chapter 4. Representing the fact that something is amiss

CHAPTER 5

How do you know if something has gone wrong?

Enter the Assertion class. Suppose you have a model that tracks a heartbeat from some external service/software
components. If, after some amount of time, the sytem does not receive a heartbeat, a human should be notified.
Suppose you have an app called ‘heartbeat’ and your models.py file looks like this:

Models.py
from datetime import datetime, timedelta

from django.db import models

class HeartbeatKeeper(model.Model):
last_heartbeat = models.DateTimeField(auto_now=True)

def check_for_recent_heartbeat(**kwargs):
"""
Returns (True, None) when all is well.
Returns (False, None) otherwise.
"""
delta = timedelta(minutes=30)
interval = (datetime.utcnow() - HeartbeatKeeper.objects.get().last_heartbeat)
return (interval < delta, None)

Now you create an Assertion to call your check_for_recent_heartbeat() function and create an Issue
when it returns a tuple beginning with False:

Assertion.objects.create(target_function='heartbeat.models.check_for_recent_heartbeat
→˓', name='Check for heartbeat')

When the check_for_recent_heartbeat function returns a False tuple, then an Issue is created with the name ‘Check for
heartbeat’).

There is a special type of a Assertion called a ModelAssertion. A ModelAssertion is designed to ensure
that certain properties hold true for the models in your database.

9

django-issue Documentation, Release 3.1.2

Suppose you have a Profile model for your Users. After 5 days of signing up, you want to be notified if the user hasn’t
created a profile pic yet. You have an app, ‘profile’, and your models.py file looks like this:

Models.py
from datetime import datetime, timedelta

from django.contrib.auth.models import Group, User
from django.db import models

class Profile(model.Model):
user = models.ForeignKey(User)
Note: selfies are preferred
pic_url = models.URLField(null=True, blank=True)

def should_have_pic_by_now(record, **kwargs):
"""
Check if the specified user has a pic or still has time for one.
"""
interval = timedelta(days=5)

has_pic = record.pic_url is not None
date_joined = record.user.date_joined

okay = has_pic or (datetime.utcnow() - date_joined) < interval

return (okay, None)

Now you create an ModelAssertion to call your check_for_recent_heartbeat() function and create an
Issue when it returns a tuple beginning with False:

from django.contrib.contenttypes.models import ContentType

from profile.models import Profile

ModelAssertion.objects.create(
target_function='profile.models.should_have_pic_by_now', name='Check for pic',

→˓model_type=ContentType.get_for_model(Profile))

Now whenever a Uer account (and associated Profile) is created, an Issue is created if the user does not set a
profile pic within 5 days.

10 Chapter 5. How do you know if something has gone wrong?

CHAPTER 6

Addressing an ongoing problem

Now when this exception occurs, we will have a record in the database along with details about what happened and
when. Now suppose we want an email notification when this happens. Well we could add the following:

from issue.models import Responder, ResponderAction

r = Responder.objects.create(watch_pattern='That *impossible* edge case finally
→˓happened')

ResponderAction.objects.create(responder=r, delay_sec=30, target_function='issue.
→˓actions.email',

function_kwargs={
'subject': 'Doh!',
'recipients': 'john.smith@example.com',

})

There is a helper function, build_responder() for constructing a Responder and one or more associated
ResponderAction from json:

from issue.builder import build_responder

build_responder({
'watch_pattern': 'That \'impossible\' edge case finally happened...',
'actions': [

{
'target_function': 'issue.actions.email',
'function_kwargs': {

'subject': 'Doh!',
'recipients': 'john.smith@example.com',

},
'delay_sec': 30,

},
{

(continues on next page)

11

django-issue Documentation, Release 3.1.2

(continued from previous page)

'target_function': 'issue.actions.email',
'function_kwargs': {

'subject': 'Doh-2!',
'recipients': 'john.smith-boss@example.com',

},
'delay_sec': 1800,

},
]})

The delay_sec may be ommitted; when this happens the ResponderAction will be executed as soon as the Respon-
der matches against an Issue.

12 Chapter 6. Addressing an ongoing problem

CHAPTER 7

When do these checks happen?

Two management commands are provided, check_assertions and respond_to_issues which should be
ran periodically.

13

	Overview
	Philosophy
	Examples
	Representing the fact that something is amiss
	How do you know if something has gone wrong?
	Addressing an ongoing problem
	When do these checks happen?

