
Introduction to web development with
Python and Django Documentation

Release 0.1

Greg Loyse

Apr 23, 2017

Contents

1 Introduction 3
1.1 The Internet . 3
1.2 Http and the Request / Response cycle . 3
1.3 The Client Server Architecture . 5
1.4 HTML . 5
1.5 Databases . 5
1.6 Exercise . 5
1.7 Take Away . 7

2 Setup 9
2.1 Project folder . 9
2.2 Installing Django . 9
2.3 Creating Django project . 9
2.4 settings.py . 10
2.5 Creating the Database . 10
2.6 Inspecting the Database . 11
2.7 Running the server . 11
2.8 Creating & installing the Blog App . 12

3 Creating Web Services 15
3.1 website/urls.py . 15
3.2 Saying hello . 15
3.3 GET parameters . 16
3.4 Exercises . 16

4 Resources 19

i

ii

Introduction to web development with Python and Django Documentation, Release 0.1

Contents:

Contents 1

Introduction to web development with Python and Django Documentation, Release 0.1

2 Contents

CHAPTER 1

Introduction

There are a few things we need to explain before getting stuck in.

We focus on the overall picture. To do this we use a few analogies not to be taken too literally.

The Internet

The internet is a network of computers. Its goal is to enable communication between them.

A network is composed of nodes and edges. Visually it is a set of dots and connections. The London tube map is an
example.

Your family, friends, colleagues, and acquaintances can be thought of as a network of people. (This is how social
networks model our relationships.)

To communicate we must have a means by which our messages reach the intended destination.

On the one hand we need something physical to connect the computers. These are the wires.

On the other hand we need some conventions (software) to ensure messages reach their destinations.

One way this is done over the internet is called TCP/IP.

TCP ensures the messages arrive safely with nothing missing. Every computer has an IP which is a unique address.

You can think of TCP as an envelope and IP as the address on it.

Http and the Request / Response cycle

To communicate effectively the elements of a network need to agree on some protocol. That protocol for humans can
be english but there are other ‘protocols’, chinese for example.

Many computers on the internet use Http to communicate.

3

Introduction to web development with Python and Django Documentation, Release 0.1

Every time you click on a link, or type a url and enter into a browser, you are making what is called an http GET
request.

Here is an example that uses curl from the command line as a client:

$ curl -sv www.example.com -o /dev/null

* About to connect() to www.example.com port 80 (#0)

* Trying 93.184.216.119...

* Connected to www.example.com (93.184.216.119) port 80 (#0)
> GET / HTTP/1.1
> User-Agent: curl/7.30.0
> Host: www.example.com
> Accept: */*
>
< HTTP/1.1 200 OK
< Accept-Ranges: bytes
< Cache-Control: max-age=604800
< Content-Type: text/html
< Date: Thu, 21 Aug 2014 12:09:46 GMT
< Etag: "359670651"
< Expires: Thu, 28 Aug 2014 12:09:46 GMT
< Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT
< Server: ECS (iad/182A)
< Content-Length: 1270
<
< <!doctype html>
< <html>
< <head>
< <title>Example Domain</title>
< </head>
< <body>
< <div>
< <h1>Example Domain</h1>
< <p>This domain is established to be used for illustrative examples in documents.
→˓</p>
< </div>
< </body>
< </html>

Note this has been abridged.

The lines starting with:

• ‘*’ is information from the curl program.

• ‘>’ is the http request text that curl is sending.

• ‘<’ is the http response text that curl received.

Note that the response includes the html page that will be rendered in a browser.

Tip:

Http is just text. We send text requests, we recieve text responses. All complex pretty pages in the browser
are created from these text responses.

4 Chapter 1. Introduction

Introduction to web development with Python and Django Documentation, Release 0.1

The Client Server Architecture

In software development an architecture is a way of organising code you see time and time again. Its also called a
pattern. Similar perhaps to how journalists follow a pattern when structuring their articles.

Think about the meaning of the words.

A browser is a great example of a client. It sends http requests to a server. A server returns an http response, which
the browser then renders as a web page.

We will see other examples of a client - server architecture when we introduce using databases.

HTML

Browsers understand how to render HTML.

HTML is a way to structure text.

<!doctype html>
<html>
<head>

<title>Example Domain</title>
</head>
<body>
<div>

<h1>A Header</h1>
<p>Here is some text between p elements</p>

</div>
</body>
</html>

Note it consists of elements like this: <el>content<el>

We won’t delve any deeper than this as we don’t need to.

Databases

Data, or information, needs to be stored somewhere.

Typically we save data in files.

Databases are another way of saving data which has some advantages over plain files.

Web applications often save data in databases rather than files.

You can think of a database much as you would spreadsheet software. It stores information in a collection of tables.

Exercise

Using Chrome, open developer tools: view/Developer/DeveloperTools

1.3. The Client Server Architecture 5

Introduction to web development with Python and Django Documentation, Release 0.1

A tab will pop up. Click on the Network tab.

Now type a URL (web address) that is familiar to you.

Inspect the http GET request.

Here we try with www.example.com:

6 Chapter 1. Introduction

Introduction to web development with Python and Django Documentation, Release 0.1

Note we have same information we found with curl above. It is presented in a more user friendly way however.

Explore one of your favourite websites using the developer tools to inspect what is going on at the http network level.

Take Away

All internet experiences, online shopping, news, videos, sending texts... boil down to computers sending messages
much like what we have described above.

Http is not the only protocol in town, but the concept of computers acting as clients and servers communicating by
sending requests and responses is almost universal.

1.7. Take Away 7

Introduction to web development with Python and Django Documentation, Release 0.1

8 Chapter 1. Introduction

CHAPTER 2

Setup

Project folder

Lets create a project directory:

mkdir website
cd website

Installing Django

Pip is a way to install python code. Python code is installed as a package.

To list all currently installed python packages:

$ pip freeze

To install a Django:

$ pip install django

Creating Django project

We use a script supplied by django to set up a new project:

$ django-admin.py startproject website

You should see this folder structure and files generated:

9

Introduction to web development with Python and Django Documentation, Release 0.1

website
- manage.py
- website

- __init__.py
- settings.py
- urls.py
- wsgi.py

The important files are manage.py, settings.py, and urls.py.

settings.py

A lot of configuration is needed to setup a web application.

website/settings.py contains a lot of names that define all the configuration for our website. All the defaults are good
for now.

Note the INSTALLED_APPS name is defined as a tuple of strings. We will be adding to that tuple shortly.

Note also the DATABASES name is defined as a dictionary.

Creating the Database

Notice that the current directory doesn’t include a db.sqlite3 file.

Django like all web frameworks stores its data in a database. Lets create that database now:

python manage.py syncdb

You will see some output such as: Creating table auth_user

(django) website $./manage.py syncdb
Creating tables ...
Creating table django_admin_log
Creating table auth_permission
Creating table auth_group_permissions
Creating table auth_group
Creating table auth_user_groups
Creating table auth_user_user_permissions
Creating table auth_user
Creating table django_content_type
Creating table django_session

You just installed Django's auth system, which means you don't have any superusers
→˓defined.
Would you like to create one now? (yes/no): yes
Username (leave blank to use 'greg'):
Email address:
Password:
Password (again):
Superuser created successfully.
Installing custom SQL ...
Installing indexes ...
Installed 0 object(s) from 0 fixture(s)

10 Chapter 2. Setup

Introduction to web development with Python and Django Documentation, Release 0.1

Now the top level folder website contains a file called db.sqlite3. This is your database.

Inspecting the Database

Download sqlite3 from www.sqlite.org/download.html. Choose the sqlite-shell-win32-x86-....zip file. Unzip it by
double clicking it. Then drag and drop into C:BOOTCAMPPython34The last step is to add it to a directory on the
PATH.

A database application is like a server.

We send requests using clients. The clients in this case aren’t the browser but typically programs such as our python
website.

We will use another server to independently inspect our database.

You launch the client by typing:

sqlite3 db.sqlite3

The sqlite3 program provides a new type of shell which is meant for inspecting our database.

Here is an example interaction:

(django) website sqlite3 db.sqlite3
SQLite version 3.7.13 2012-07-17 17:46:21
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> .tables
auth_group auth_user_user_permissions
auth_group_permissions django_admin_log
auth_permission django_content_type
auth_user django_session
auth_user_groups
sqlite> select * from auth_user;
1|pbkdf2_sha256$12000$YqWBCAkWemZC$+hazwa/dPJNczpPitJ2J0KR8UuAX11txLlSkrtAXk5k=|2014-
→˓08-21 14:59:05.171913|1|greg||||1|1|2014-08-21 14:59:05.171913
sqlite>

The .tables command lists all the tables that exist in the database. We recognise these as being the same that were
created earlier by running the .manage.py syncdb command.

The select * from auth_user; is SQL. SQL is a language dedicated to programming databases. This command means
give me everything in the auth_user table.

Type:

sqlite3> .quit

To exit.

Running the server

You run the server with:

./manage.py runserver

2.6. Inspecting the Database 11

Introduction to web development with Python and Django Documentation, Release 0.1

Now you can send http requests using your browser as client. Enter:

http://127.0.0.:8000/

You should see:

You can quit the server at any point by pressing together cntrl + c

Creating & installing the Blog App

Tip:

Django like any framwork, provides a way of organising your code. It provides in effect a proven archi-
tecture which you learn to work within.

A good webframework makes a lot of decisions for you. You build on the combined experience of the
developpers who created it.

Django introduces the concept of an app as a way to organise code.

Our Blog will be an app. We create it thusly:

./manage.py startapp blog

We now have a foler directory generated looking like:

- blog
| - __init__.py
| - admin.py
| - models.py
| - tests.py
| - views.py
- db.sqlite3
- manage.py
- website

- __init__.py
- settings.py
- urls.py
- wsgi.py

We now need to tell our website about the blog apps’ existence. We do this by adding it to the INSTALLED_APPS
tuple.

INSTALLED_APPS = (
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',

12 Chapter 2. Setup

Introduction to web development with Python and Django Documentation, Release 0.1

'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'website',
'blog',

)

2.8. Creating & installing the Blog App 13

Introduction to web development with Python and Django Documentation, Release 0.1

14 Chapter 2. Setup

CHAPTER 3

Creating Web Services

We will start by programming the server to return a responses to an http GET request.

We will always need to do two things:

• map a url to a view function

• define the view function

website/urls.py

This file matches urls to view functions.

When the django server receives a url. It searches in this file for one that matches. If it matches it executes the mapped
function. If it doesn’t find anything you get a 404 - page not found error.

Saying hello

Django provides us with what it calls view functions.

These are orgindary pythong functions, but they take a request object and they response with a string or what is called
an HTTPResponse object.

In your blog app, open the views.py file.

Add this to it:

from django.http import HttpResponse

def hello(request):
return HttpResponse('hello')

Now we need to configure our website with which request will trigger this view function. We do this by adding a line
to website/urls.py:

15

Introduction to web development with Python and Django Documentation, Release 0.1

urlpatterns = patterns('',
url(r'^hello$', 'blog.views.hello'),
url(r'^admin/', include(admin.site.urls)),

)

In our browser, http://localhost:8000 responds with ‘hello’.

We have responded to a GET request.

We will often follow this pattern of creating a view function and hooking it up to a url.

GET parameters

http GET requests can pass parameters in the URL.

Here is an example:

http://localhost:8000/whoami/?name=greg&sex=male

The parameter section is defined by ? followed by & separated keys and values.

Here we have the parameters: - name, equal to greg - sex, equal to male

As usual we need to do two things create a view function and hook it up in website/urls.py

First the view function:

def whoami(request):

sex = request.GET['sex']
name = request.GET['name']

response = 'You are ' + name + ' and of sex ' + sex

return HttpResponse(response)

Note that we can extract anything passed in the url after the ? character using the request.GET dictionary.

Now website/urls.py:

urlpatterns = patterns('',
url(r'^$', 'blog.views.hello'),
url(r'^time$', 'blog.views.time'),
url(r'^whoami/$', 'blog.views.whoami'),
url(r'^admin/', include(admin.site.urls)),

)

You should now get as a response: You are greg and of sex male

Exercises

A clock service

You can get an exact time by doing the following:

16 Chapter 3. Creating Web Services

Introduction to web development with Python and Django Documentation, Release 0.1

>>> import datetime
>>> datetime.datetime.now()

Program your server to response the time when it recieves an http GET request to this url:

http://localhost:8000/time

You will need to create a view function in blog/views.py, and hook it up to a url in website/urls.py.

Body Mass Index Service

You have just been contracted by the NHS to provide a service that calculates the BMI. Both other websites and mobile
apps will be using your service.

The endpoint (url) will respond successfully to the following type of url:

bmi/?mass=75&height=182

Look up the BMI equation on wikipedia, and write a bmi view function and hook it up to the website urls.

You may have to revisit the notion of type in Python. Remember there is a difference between ‘5’ and 5.

To transform a number as a string into a number you can cast it using either int() or float():

>>> float('5')
5.0
>>> int('5')
5

Your Serivce

By now you have discovered that you can trigger any type of programming sending ba GET request to your server.
You simply hook up a url to a view function.

Come up with something that is useful to you!

Anything that involves simple maths is easily explored.

Solutions:

You can find some suggestions by adding _solutions to the above url.

3.4. Exercises 17

Introduction to web development with Python and Django Documentation, Release 0.1

18 Chapter 3. Creating Web Services

CHAPTER 4

Resources

For more use the following:

• The Django Girls tutorial For begginers. Publish a blog in a day!

• The Official Django tutorial is essential.

• Test Driven Development with Python teaches the tools and best practices followed by web professionals.

19

http://tutorial.djangogirls.org/
https://docs.djangoproject.com/en/dev/intro/tutorial01/
http://chimera.labs.oreilly.com/books/1234000000754/index.html

	Introduction
	The Internet
	Http and the Request / Response cycle
	The Client Server Architecture
	HTML
	Databases
	Exercise
	Take Away

	Setup
	Project folder
	Installing Django
	Creating Django project
	settings.py
	Creating the Database
	Inspecting the Database
	Running the server
	Creating & installing the Blog App

	Creating Web Services
	website/urls.py
	Saying hello
	GET parameters
	Exercises

	Resources

