
Django Image Tools Documentation
Release 0.7.b1

Bonsai Studio

May 05, 2017

Contents

1 Quick Start 3
1.1 Configuration . 3
1.2 Example models . 4
1.3 Including thumbnails in your admin . 5

2 How to use it 7
2.1 Philosophy . 7
2.2 Include it in your models . 7
2.3 Syntax . 7
2.4 Size & Cropping . 8
2.5 Filters . 9

3 How it works 11

4 More features 13

5 Testing 15
5.1 Support . 16

6 Indices and tables 17

i

ii

Django Image Tools Documentation, Release 0.7.b1

Contents:

Contents 1

Django Image Tools Documentation, Release 0.7.b1

2 Contents

CHAPTER 1

Quick Start

All you have to do is

pip install django-image-tools-2

and of course, add the app in your INSTALLED_APPS as

INSTALLED_APPS = (
...
'django_image_tools',
...

)

Configuration

The minimum required settings you should add in your settings.py are:

Folder in which you want to store your images, in this example it's the sub folder
→˓'media'
MEDIA_ROOT = os.path.join(PROJECT_ROOT, 'media')
Temporary folder for upload, in this example is the subfolder 'upload'
UPLOAD_TO = os.path.join(PROJECT_ROOT, 'media/upload')

The folders will be created if they do not exist.

You should also add your filters and sizes in your settings file, like this:

DJANGO_IMAGE_TOOLS_SIZES = {
'thumbnail': {

'width': 30,
'height': 30,
'auto': None

},
'very_long': {

3

Django Image Tools Documentation, Release 0.7.b1

'width': 200,
'height': 30,
'auto': None

},
'very_tall': {

'width': 30,
'height': 200,
'auto': None

},
'huge': {

'width': 2000,
'height': 2000,
'auto': None

},
'auto_width': {

'width': 0,
'height': 20,
'auto': 'WIDTH'

},
'auto_height': {

'width': 20,
'height': 0,
'auto': 'HEIGHT'

},
}

DJANGO_IMAGE_TOOLS_FILTERS = {
'grey_scaled': {

'filter_type': 'GREYSCALE'
},
'blurred': {

'filter_type': 'GAUSSIAN_BLUR',
'value': 5

}
}

That’s it, you’re good to go now. Let’s create a couple of models containing images!

Example models

Let’s say you have a “Person” model and you want to include an Avatar, or a profile pic. Here’s how you do it

....
from django_image_tools.models import Image

class Person(models.Model):

first_name = models.CharField(max_length=255)
second_name = models.CharField(max_length=255)
...

picture = models.ForeignKey(Image)

You can also (obviously) use a ManyToMany field, for example:

4 Chapter 1. Quick Start

Django Image Tools Documentation, Release 0.7.b1

....
from django_image_tools.models import Image

class Slideshow(models.Model):
title = models.CharField(max_length=255)
description = models.TextField()
...

slides = models.ManyToManyField(Image)

That’s all you need to do when dealing with the models.

Then, in your templates, you can use them like this:

Displaying a thumbnail

Displaying a blurred thumbnail

Displaying the original image

Displaying the blurred (original) image

Including thumbnails in your admin

You can include thumbnail in your admin panel

Just look at this admin.py file

from __future__ import absolute_import
from django.contrib import admin
from .models import Person

class PersonAdmin(admin.ModelAdmin):
list_display = ('thumbnail', 'first_name', 'second_name')

admin.site.register(Person, PersonAdmin)

You will also need to tweak your model so that it uses the thumbnail method of the correct image. Here’s an
example:

from django.db import models
from django_image_tools.models import Image

class Person(models.Model):
first_name = models.CharField(max_length=255)
second_name = models.CharField(max_length=255)

picture = models.ForeignKey(Image)

Add the thumbnail method and grab the image thumbnail

1.3. Including thumbnails in your admin 5

Django Image Tools Documentation, Release 0.7.b1

def thumbnail(self):
return self.picture.thumbnail()

Now you only need to tell django that this thumbnail field is safe
thumbnail.allow_tags = True

Please note that in this case we used the picture.thumbnail() method, and not the picture.
get__thumbnail because this particular method is designed to output the whole ‘img’ tag for the django admin
panel.

If you have any problem, make sure you followed Django’s guide to serve static and user uploaded files !

6 Chapter 1. Quick Start

https://docs.djangoproject.com/en/1.6/howto/static-files/

CHAPTER 2

How to use it

Philosophy

There are many tools suitable for cutting, cropping, resizing and applying filters at runtime. but we noticed that many
of these lacked a sense of ‘DRY-ness’ as almost all of them forced you to input the size and the filter options in the
template itself.

Now, try to see this from a designer point of view. As a designer, I want all of the images in this template to have a
specific effect, and maybe I want a different effect for the hover version. So what do I do? Do I write down the effect’s
parameters for each image in the template?

And what if I wanted to change the effect after the template is ready?

The same thing applies for image sizes, what if you suddenly needed your images to be bigger or smaller?

Django Image Tools allows you to create specific filters and sizes for your images, and bind those filters to your
images through their name, so you can change the filter parameters and the image size from your settings file, and
those changes will automatically be applied to all of the bound images in your templates. Now your templates will
remain untouched even if you decide to change a filter, or even the size of your images.

We believe this will save some time looking at the docs of an app trying to figure out which custom filter file you
should include, how to input your parameters, etc...

Include it in your models

Nothing more simple. Just import the ‘Image’ model in your models.py file and create a Foreign Key to it. Done!

Syntax

We tried to make the syntax as readable and intuitive as possible. Filter names should be applied before size names.
Size names are mandatory.

7

Django Image Tools Documentation, Release 0.7.b1

To activate django_image_tools, you need to call a get__ attribute on the image.

For example, if you want the path for a size named ‘thumbnail’, you should define a new Size called ‘thumbnail’ on
your settings file. Then, in your templates you should use:

To improve readability of your templates, we advice you to name the filters as adjectives. For example, a Gaussian
Blur could be called ‘blurred’.

If you want to have a thumbnail with your Gaussian blur, now the template reads:

How intuitive is that? Note that filters and sizes are separated by a double ‘_’, as django-esque as possible.

Obviously, you cannot add filters / sizes whose name contains a double ‘_’.

Size & Cropping

Sizes and filters are defined in your settings file. Previous versions of this app had them defined into the admin panel,
but we soon discovered how this was a real pain, especially when trying to work on multiple environments.

Here is a simple settings definition:

‘‘‘

DJANGO_IMAGE_TOOLS_SIZES = {

‘thumbnail’: { ‘width’: 30, ‘height’: 30, ‘auto’: None

}, ‘very_long’: {

‘width’: 200, ‘height’: 30, ‘auto’: None

}, ‘very_tall’: {

‘width’: 30, ‘height’: 200, ‘auto’: None

}, ‘huge’: {

‘width’: 2000, ‘height’: 2000, ‘auto’: None

}, ‘auto_width’: {

‘width’: 0, ‘height’: 20, ‘auto’: ‘WIDTH’

}, ‘auto_height’: {

‘width’: 20, ‘height’: 0, ‘auto’: ‘HEIGHT’

},

}

‘‘‘

All of the sizes you create will be available for the images the user will upload through their name. For example, you
can have a ‘thumbnail’ 250x250 size, and every image you upload will have the get__thumbnail method that will
output the path for the image with the requested size.

Having ‘auto’ height, for exmaple, means that the image will be resized to match the given width, and keep the original
aspect ratio (This is useful for example, if you want to create a pinterest board). The ‘auto’ attribute can be either None
(or just not defined), ‘WIDTH’, or ‘HEIGHT’.

8 Chapter 2. How to use it

Django Image Tools Documentation, Release 0.7.b1

In the template, to display an image field, all you have to do is:

Here’s a list of all the fields for each image:

• checksum A md5 checksum of the image. Useful for checking the integrity of the files with the database.

• filename The current file name. Changing this will result in renaming the actual file (useful for SEO purposes).

Attempting to rename with the name of an existing file will throw an exception

• subject_horizontal_position The horizontal position of the subject. This is currently one of the list (left, 1/3,
center, 2/3, right).

• subject_vertical_position The vertical position of the subject. This is currently one of the list (top, 1/3, center,
2/3, bottom).

If the aspect ratio of the resized image doesn’t match the original ratio, the image will be cropped
around this point

• was_upscaled Flag that notices if the image was used somewhere with a size bigger than its own (resulting in
an upscaling). Useful for letting the user know that it should replace this image with a higher-resolution
version.

• title A title field for the image

• caption Caption of the image

• alt_text For blind people and SEO

• credit Credit field

Filters

Django Image tools also works great for applying filters to your images. To define a filter, just add it in your settings
file. Here’s an example.

‘‘‘ DJANGO_IMAGE_TOOLS_FILTERS = {

‘grey_scaled’: { ‘filter_type’: ‘GREYSCALE’

}, ‘blurred’: {

‘filter_type’: ‘GAUSSIAN_BLUR’, ‘value’: 5

}

}

For example, let’s say you defined a filter named ‘blurred’ with a Gaussian Blur and you want a blurred thumbnail of
your image. This should be the image tag.

Currently these are the only two filters available, we will add them if the projects becomes more popular and / or we’ll
need them.

Note that when using a filter, the image size is mandatory. If you want to apply a filter to an image with its original
size, use ‘original’ as size

2.5. Filters 9

Django Image Tools Documentation, Release 0.7.b1

10 Chapter 2. How to use it

CHAPTER 3

How it works

The app only creates the image the first time it is requested. So don’t worry about the system clogging because you
have 10.0000 images and you create a new size on the fly, or having your server filled up with cached images that are
never used. The images are also cached, so you should never experience a notable lag, unless you request a bunch of
images of a size that was never processed. The app uses an md5 checksum to check if the image was changed. This
way, it can detect even if the image was replaced by some other app, (or the user) and reprocess the various sizes of
that image on request.

11

Django Image Tools Documentation, Release 0.7.b1

12 Chapter 3. How it works

CHAPTER 4

More features

The images will all be available in the admin panel. You can browse and search through all of them. Sometimes,
the users will upload a ‘small’ image (You know users right?) and then they’ll complain that the image doesn’t scale
well, or it’s too jpegged. The app will automatically flag all images for which an upscaled version was requested,
by flagging them with the ‘was_upscaled’ flag (if you’re using django_suit, the background of the row will also be
displayed red). You can use

the filter in the app to see which one were upscaled, and delete them, or replace them with a higher-res
version.

The original images will never be touched, unless the user wants to rename them. The cached image folder can be
changed in the system settings, through the settings variable ‘DJANGO_IMAGE_TOOLS_CACHE_DIR’. This will
always be a sub dir of the ‘MEDIA’ dir, though I might change this in the future. I strongly advice you to use the
‘raw_id_fields’ for the image fields, as it will allow the user to search for a previously submitted image or input a new
one with a nice popup menu. This will decrease the number of duplicates. If there is a ‘thumbnail’ size, the app will
display images of that size for the admin panel, otherwise it will fall back on the original. You can fetch the original
image path by requesting ‘image.get__original’.

13

Django Image Tools Documentation, Release 0.7.b1

14 Chapter 4. More features

CHAPTER 5

Testing

Often times you will find yourself having images required in your models, and testing these models can be a real pain
in the donkey as you will have to create images just for that.

We want to make things simple for you, so you can import our method ‘create_dummy_image’ to easily create a
dummy image for your tests!

create_dummy_image(filename=u'Test_image', title=u'Title', caption=u'Caption', alt_
→˓text=u'Alt Text',

credit=u'Credit'):

This will create a new dummy entry in the database, so all you have to do is to assign it to your model’s Foreign Key.

Remember to call

image.delete()

In your tearDown.

Also, django_image_tools will never delete your images, so you will have to delete them yourself. Just kidding, we
made a script for that too.

delete_image(image)

So, here’s a complete script.

def setUp(self):
partnerImage = create_dummy_image()
model_with_image = Model(name=u'Coca cola', image=partnerImage)
partner.save()

def testInsert(self):
self.assertEqual(Model.objects.all()[0].name, 'Coca cola')

def tearDown(self):
model_with_image = Model.objects.all()[0]

15

Django Image Tools Documentation, Release 0.7.b1

delete_image(model_with_image.image)
model_with_image.delete()

Support

Django Image Tools uses Travis CI to test the integration with several versions of Python and Django. You can see the
list of currently supported combinations on our Travis CI page.

16 Chapter 5. Testing

https://travis-ci.org/bonsaistudio/django-image-tools/

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

17

	Quick Start
	Configuration
	Example models
	Including thumbnails in your admin

	How to use it
	Philosophy
	Include it in your models
	Syntax
	Size & Cropping
	Filters

	How it works
	More features
	Testing
	Support

	Indices and tables

