
Django Hordak Documentation
Release 1.0

Adam Charnock

December 10, 2016

Contents:

1 Requirements 3
1.1 Installation . 3
1.2 Double Entry Accounting for Developers . 3
1.3 API Documentation . 5
1.4 Notes . 15

2 Indices and tables 17

Python Module Index 19

i

ii

Django Hordak Documentation, Release 1.0

Django Hordak is the core functionality of a double entry accounting system. It provides thoroughly tested core
models with relational integrity constrains to ensure consistency.

Interfaces which build on Hordak include:

• battlecat – General purpose accounting interface (work in progress)

• swiftwind – Accounting for communal households (work in progress)

Contents: 1

https://github.com/adamcharnock/battlecat
https://github.com/adamcharnock/swiftwind

Django Hordak Documentation, Release 1.0

2 Contents:

CHAPTER 1

Requirements

Hordak is tested against:

• Django >= 1.8, <= 1.10

• Python 2.7, 3.4, 3.5, nightly

• Postgres 9

Postgres is required, MySQL is unsupported. This is due to the database constraints we apply to ensure data integrity.
MySQL could be certainly supported in future, volunteers welcome.

1.1 Installation

Installation using pip:

pip install django-hordak

Add to installed apps:

INSTALLED_APPS = [
...
'hordak',

]

Run the migrations:

./manage.py migrate

You should now be able to import from Hordak:

from hordak.models import Account, Transaction, ...

1.2 Double Entry Accounting for Developers

Hordak is inherently aimed at software developers as it provides core functionality only. Friendly interfaces can
certainly be built on top of it, but if you are here there is a good change you are a developer.

If you are learning about accounting as developer you may feel – as I did – that most of the material available doesn’t
quite relate to the developer/STEM mindset. I therefore provide some resources here that may be of use.

3

https://travis-ci.org/adamcharnock/django-hordak

Django Hordak Documentation, Release 1.0

1.2.1 Accounting in six bullet points (& three footnotes)

I found the core explanation of double entry accounting to be confusing. After some time I distilled it down to the
following:

1. Each account has a ‘type’ (asset, liability, income, expense, equity).

2. Debits decrease the value of an account. Always. 1

3. Credits increase the value of an account. Always. 1

4. The sign of any asset or expense account balance is always flipped upon display (i.e. multiply by -1) 2 3.

5. A transaction is comprised of 1 or more credits and 1 or more debits (i.e. money most come from somewhere
and then go somewhere).

6. The value of a transaction’s debits and credits must be equal (money into transaction = money out of transaction).

1.2.2 In a little more detail

I found Peter Selinger’s tutorial to be very enlightening and is less terse than the functional description above. The first
section is short and covers single entry accounting, and then shows how one can expand that to create double entry
accounting. I found this background useful.

1.2.3 Examples

You live in a shared house. Everyone pays their share into a communal bank account every month.

Example 1: Saving money to pay a bill (no sign flipping)

You pay the electricity bill every three months. Therefore every month you take £100 from everyone’s contributions
and put it into Electricity Payable account (a liability account) in the knowledge that you will pay the bill from this
account when it eventually arrives:

These accounts are income & liability accounts, so neither balance needs to be flipped (flipping only applies to asset
& expense accounts). Therefore:

• Balances before:

– Housemate Contribution (income): £500

– Electricity Payable (liability): £0

• Transaction:

– £100 from Housemate Contribution to Electricity Payable

• Balances after:

– Housemate Contribution (income): £400
1 This is absolutely not what accountancy teaches. You’ll quickly see that there is a lot of wrangling over what account types get in-

creased/decreased with a debit/credit. I’ve simplified this on the backend as I strongly feel this is a presentational issue, and not a business
logic issue.

2 Peter Selinger’s tutorial will give an indication of why this is (hint: see the signs in the accounting equation). However, a simple explanation
is, ‘accountants don’t like negative numbers.’ A more nuanced interpretation is that a positive number indicates not a positive amount of money, but
a positive amount of whatever the account is. So an expense of $1,000 is a positive amount of expense, even though it probably means your $1,000
less well off.

3 An upshot of this sign flipping in 4 is that points 2 & 3 appear not be be obeyed from an external perspective. If you debit (decrease) an
account, then flip its sign, it will look like you have actually increased the account balance. This is because we are treating the sign of asset &
expense accounts as a presentational issue, rather than something to be dealt with in the core business logic.

4 Chapter 1. Requirements

http://www.mathstat.dal.ca/~selinger/accounting/tutorial.html
http://www.mathstat.dal.ca/~selinger/accounting/tutorial.html

Django Hordak Documentation, Release 1.0

– Electricity Payable (liability): £100

This should also make intuitive sense. Some of the housemate contributions will be used to pay the electricity bill,
therefore the former decreases and the latter increases.

Example 2: Saving money to pay a bill (with sign flipping)

At the start of every month each housemate pays into the communal bank account. We should therefore represent this
somehow in our double entry system (something we ignored in example 1).

We have an account called Bank which is an asset account (because this is money we actually have). We also have a
Housemate Contribution account which is an income account.

Therefore, to represent the fact that we have been paid money, we must create a transaction. However, money
cannot be injected from outside our double entry system, so how do we deal with this?

Let’s show how we represent a single housemate’s payment:

• Balances before:

– Bank (asset): £0

– Housemate Contribution (income): £0

• Transaction:

– £500 from Bank to Housemate Contribution

• Balances after:

– Bank (asset): -£500 * -1 = £500

– Housemate Contribution (income): £500

Because the bank account is an asset account, we flip the sign of its balance. The result is that both accounts increase
in value.

1.3 API Documentation

1.3.1 Models

Contents

• Models
– Design
– Account
– Transaction
– Leg
– StatementImport
– StatementLine

Design

The core models consist of:

1.3. API Documentation 5

Django Hordak Documentation, Release 1.0

• Account - Such as ‘Accounts Receivable’, a bank account, etc. Accounts can be arranged as a tree structure,
where the balance of the parent account is the summation of the balances of all its children.

• Transaction - Represents a movement between accounts. Each transaction must have two or more legs.

• Leg - Represents a flow of money into (debit) or out of (credit) a transaction. Debits are represented by negative
amounts, and credits by positive amounts. The sum of all a transaction’s legs must equal zero. This is enforced
with a database constraint.

Additionally, there are models which related to the import of external bank statement data:

• StatementImport - Represents a simple import of zero or more statement lines relating to a specific
Account.

• StatementLine - Represents a statement line. StatementLine.create_transaction() may be
called to create a transaction for the statement line.

Account

class hordak.models.Account(*args, **kwargs)
Represents an account

An account may have a parent, and may have zero or more children. Only root accounts can have a type, all
child accounts are assumed to have the same type as their parent.

An account’s balance is calculated as the sum of all of the transaction Leg’s referencing the account.

uuid
SmallUUID

UUID for account. Use to prevent leaking of IDs (if desired).

name
str

Name of the account. Required.

parent
Account|None

Parent account, nonen if root account

code
str

Account code. Must combine with account codes of parent accounts to get fully qualified account code.

type
str

Type of account as defined by Account.TYPES. Can only be set on root accounts. Child accounts are
assumed to have the same time as their parent.

TYPES
Choices

Available account types. Uses Choices from django-model-utils. Types can be accessed in the
form Account.TYPES.asset, Account.TYPES.expense, etc.

is_bank_account
bool

Is this a bank account. This implies we can import bank statements into it and that it only supports a single
currency.

6 Chapter 1. Requirements

Django Hordak Documentation, Release 1.0

classmethod validate_accounting_equation()
Check that all accounts sum to 0

full_code
Get the full code for this account

Do this by concatenating this account’s code with that of all the parent accounts.

sign
Returns 1 if a credit should increase the value of the account, or -1 if a credit should decrease the value of
the account.

This is based on the account type as is standard accounting practice. The signs can be derrived from the
following expanded form of the accounting equation:

Assets = Liabilities + Equity + (Income - Expenses)

Which can be rearranged as:

0 = Liabilities + Equity + Income - Expenses - Assets

Further details here: https://en.wikipedia.org/wiki/Debits_and_credits

balance(as_of=None, raw=False, **kwargs)
Get the balance for this account, including child accounts

Parameters

• as_of (Date) – Only include transactions on or before this date

• raw (bool) – If true the returned balance should not have its sign adjusted for display
purposes.

• **kwargs (dict) – Will be used to filter the transaction legs

Returns Balance

See also:

simple_balance()

simple_balance(as_of=None, raw=False, **kwargs)
Get the balance for this account, ignoring all child accounts

Parameters

• as_of (Date) – Only include transactions on or before this date

• raw (bool) – If true the returned balance should not have its sign adjusted for display
purposes.

• **kwargs (dict) – Will be used to filter the transaction legs

Returns Balance

transfer_to(to_account, amount, **transaction_kwargs)
Create a transaction which transfers amount to to_account

This is a shortcut utility method which simplifies the process of transferring between accounts.

Parameters

• to_account (Account) – The destination account

• amount (Money) – The amount to be transferred

1.3. API Documentation 7

https://en.wikipedia.org/wiki/Debits_and_credits

Django Hordak Documentation, Release 1.0

Transaction

class hordak.models.Transaction(*args, **kwargs)
Represents a transaction

A transaction is a movement of funds between two accounts. Each transaction will have two or more legs, each
leg specifies an account and an amount.

See also:

Account.transfer_to() is a useful shortcut to avoid having to create transactions manually.

Examples

You can manually create a transaction as follows:

from django.db import transaction as db_transaction
from hordak.models import Transaction, Leg

with db_transaction.atomic():
transaction = Transaction.objects.create()
Leg.objects.create(transaction=transaction, account=my_account1, amount=Money(100, 'EUR'))
Leg.objects.create(transaction=transaction, account=my_account2, amount=Money(-100, 'EUR'))

uuid
SmallUUID

UUID for transaction. Use to prevent leaking of IDs (if desired).

timestamp
datetime

The datetime when the object was created.

date
date

The date when the transaction actually occurred, as this may be different to timestamp.

description
str

Optional user-provided description

Leg

class hordak.models.Leg(*args, **kwargs)
The leg of a transaction

Represents a single amount either into or out of a transaction. All legs for a transaction must sum to zero, all
legs must be of the same currency.

uuid
SmallUUID

UUID for transaction leg. Use to prevent leaking of IDs (if desired).

transaction
Transaction

Transaction to which the Leg belongs.

8 Chapter 1. Requirements

Django Hordak Documentation, Release 1.0

account
Account

Account the leg is transferring to/from.

amount
Money

The amount being transferred

description
str

Optional user-provided description

type
str

hordak.models.DEBIT or hordak.models.CREDIT.

StatementImport

class hordak.models.StatementImport(*args, **kwargs)
Records an import of a bank statement

uuid
SmallUUID

UUID for statement import. Use to prevent leaking of IDs (if desired).

timestamp
datetime

The datetime when the object was created.

bank_account
Account

The account the import is for (should normally point to an asset account which represents your bank
account)

StatementLine

class hordak.models.StatementLine(*args, **kwargs)
Records an single imported bank statement line

A StatementLine is purely a utility to aid in the creation of transactions (in the process known as reconciliation).
StatementLines have no impact on account balances.

However, the StatementLine.create_transaction() method can be used to create a transaction
based on the information in the StatementLine.

uuid
SmallUUID

UUID for statement line. Use to prevent leaking of IDs (if desired).

timestamp
datetime

The datetime when the object was created.

1.3. API Documentation 9

Django Hordak Documentation, Release 1.0

date
date

The date given by the statement line

statement_import
StatementImport

The import to which the line belongs

amount
Decimal

The amount for the statement line, positive or nagative.

description
str

Any description/memo information provided

transaction
Transaction

Optionally, the transaction created for this statement line. This normally occurs during reconciliation. See
also StatementLine.create_transaction().

is_reconciled
Has this statement line been reconciled?

Determined as True if transaction has been set.

Returns True if reconciled, False if not.

Return type bool

create_transaction(to_account)
Create a transaction for this statement amount and account, into to_account

This will also set this StatementLine’s transaction attribute to the newly created transaction.

Parameters to_account (Account) – The account the transaction is into / out of.

Returns The newly created (and committed) transaction.

Return type Transaction

1.3.2 Currency

Contents

• Currency
– Overview
– Classes
– Caching
– Currency Exchange
– Balance
– Exchange Rate Backends

10 Chapter 1. Requirements

Django Hordak Documentation, Release 1.0

Overview

Hordak features multi currency support. Each account in Hordak can support one or more currencies. Hordak does
provide currency conversion functionality, but should be as part of the display logic only. It is also a good idea to make
it clear to users that you are showing converted values.

The preference for Hordak internals is to always store & process values in the intended currency. This is because
currency conversion is an inherently lossy process. Exchange rates vary over time, and rounding errors mean that
currency conversions are not reversible without data loss (e.g. ¥176.51 -> $1.54 -> ¥176.20).

Classes

Money instances:

The Money class is provided by moneyd and combines both an amount and a currency into a single value.
Hordak uses these these as the core unit of monetary value.

Balance instances (see below for more details):

An account can hold multiple currencies, and a Balance instance is how we represent this.

A Balance may contain one or more Money objects. There will be precisely one Money object for each
currency which the account holds.

Balance objects may be added, subtracted etc. This will produce a new Balance object containing a union
of all the currencies involved in the calculation, even where the result was zero.

Accounts with is_bank_account=True may only support a single currency.

Caching

Currency conversion makes use of Django’s cache. It is therefore recommended that you setup your Django cache to
something other than the default in-memory store.

Currency Exchange

The currency_exchange() helper function is provided to assist in creating currency conversion Transactions.

hordak.utilities.currency.currency_exchange(source, source_amount, destination,
destination_amount, trading_account,
fee_destination=None, fee_amount=None,
date=None, description=None)

Exchange funds from one currency to another

Use this method to represent a real world currency transfer. Note this process doesn’t care about exchange rates,
only about the value of currency going in and out of the transaction.

You can also record any exchange fees by syphoning off funds to fee_account of amount fee_amount.
Note that the free currency must be the same as the source currency.

Examples

For example, imagine our Canadian bank has obligingly transferred 120 CAD into our US bank account. We
sent CAD 120, and received USD 100. We were also changed 1.50 CAD in fees.

We can represent this exchange in Hordak as follows:

1.3. API Documentation 11

https://github.com/limist/py-moneyed
https://docs.djangoproject.com/en/1.10/topics/cache/

Django Hordak Documentation, Release 1.0

from hordak.utilities.currency import currency_exchange

currency_exchange(
Source account and amount
source=cad_cash,
source_amount=Money(120, 'CAD'),
Destination account and amount
destination=usd_cash,
destination_amount=Money(100, 'USD'),
Trading account the exchange will be done through
trading_account=trading,
We also incur some fees
fee_destination=banking_fees,
fee_amount=Money(1.50, 'CAD')

)

We should now find that:

1.cad_cash.balance() has decreased by CAD 120

2.usd_cash.balance() has increased by USD 100

3.banking_fees.balance() is CAD 1.50

4.trading_account.balance() is USD 100, CAD -120

You can perform trading_account.normalise() to discover your unrealised gains/losses on currency
traded through that account.

Parameters

• source (Account) – The account the funds will be taken from

• source_amount (Money) – A Money instance containing the inbound amount and cur-
rency.

• destination (Account) – The account the funds will be placed into

• destination_amount (Money) – A Money instance containing the outbound amount
and currency

• trading_account (Account) – The trading account to be used. The normalised bal-
ance of this account will indicate gains/losses you have made as part of your activity via this
account. Note that the normalised balance fluctuates with the current exchange rate.

• fee_destination (Account) – Your exchange may incur fees. Specifying this will
move incurred fees into this account (optional).

• fee_amount (Money) – The amount and currency of any incurred fees (optional).

• description (str) – Description for the transaction. Will default to describing funds
in/out & fees (optional).

• date (datetime.date) – The date on which the transaction took place. Defaults to
today (optional).

Returns The transaction created

Return type (Transaction)

See also:

You can see the above example in practice in CurrencyExchangeTestCase.test_fees in
test_currency.py.

12 Chapter 1. Requirements

https://github.com/adamcharnock/django-hordak/blob/master/hordak/tests/utilities/test_currency.py

Django Hordak Documentation, Release 1.0

Balance

class hordak.utilities.currency.Balance(_money_obs=None, *args)
An account balance

Accounts may have multiple currencies. This class represents these multi-currency balances and provides math
functionality. Balances can be added, subtracted, multiplied, divided, absolute’ed, and have their sign changed.

Examples

Example use:

Balance([Money(100, 'USD'), Money(200, 'EUR')])

Or in short form
Balance(100, 'USD', 200, 'EUR')

Important: Balances can also be compared, but note that this requires a currency conversion step. Therefore
it is possible that balances will compare differently as exchange rates change over time.

monies()
Get a list of the underlying Money instances

Returns A list of zero or money money instances. Currencies will be unique.

Return type ([Money])

normalise(to_currency)
Normalise this balance into a single currency

Parameters to_currency (str) – Destination currency

Returns A new balance object containing a single Money value in the specified currency

Return type (Balance)

Exchange Rate Backends

class hordak.utilities.currency.BaseBackend
Top-level exchange rate backend

This should be extended to hook into your preferred exchange rate service. The primary method which needs
defining is _get_rate().

cache_rate(currency, date, rate)
Cache a rate for future use

get_rate(currency, date)
Get the exchange rate for currency against _INTERNAL_CURRENCY

If implementing your own backend, you should probably override _get_rate() rather than this.

_get_rate(currency, date)
Get the exchange rate for currency against INTERNAL_CURRENCY

You should implement this in any custom backend. For each rate you should call cache_rate().

Normally you will only need to call cache_rate() once. However, some services provide multiple
exchange rates in a single response, in which it will likely be expedient to cache them all.

1.3. API Documentation 13

Django Hordak Documentation, Release 1.0

Important: Not calling cache_rate() will result in your backend service being called for every
currency conversion. This could be very slow and may result in your software being rate limited (or, if you
pay for your exchange rates, you may get a big bill).

class hordak.utilities.currency.FixerBackend
Use fixer.io for currency conversions

1.3.3 Forms

Contents

• Forms

Base forms for Django Hordak

This section is a work in progress. Forms will be added as work progresses with the swiftwind and battlecat projects.

1.3.4 Exceptions

exception hordak.exceptions.HordakError
Abstract exception type for all Hordak errors

exception hordak.exceptions.AccountingError
Abstract exception type for errors specifically related to accounting

exception hordak.exceptions.AccountTypeOnChildNode
Raised when trying to set a type on a child account

The type of a child account is always inferred from its root account

exception hordak.exceptions.ZeroAmountError
Raised when a zero amount is found on a transaction leg

Transaction leg amounts must be none zero.

exception hordak.exceptions.AccountingEquationViolationError
Raised if - upon checking - the accounting equation is found to be violated.

The accounting equation is:

0 = Liabilities + Equity + Income - Expenses - Assets

exception hordak.exceptions.LossyCalculationError
Raised to prevent a lossy or imprecise calculation from occurring.

Typically this may happen when trying to multiply/divide a monetary value by a float.

exception hordak.exceptions.BalanceComparisonError
Raised when comparing a balance to an invalid value

A balance must be compared against another balance or a Money instance

exception hordak.exceptions.TradingAccountRequiredError
Raised when trying to perform a currency exchange via an account other than a ‘trading’ account

exception hordak.exceptions.InvalidFeeCurrency
Raised when fee currency does not match source currency

14 Chapter 1. Requirements

Django Hordak Documentation, Release 1.0

1.4 Notes

A collection of notes and points which may prove useful.

1.4.1 Fixtures

The following should work well for creating fixtures for your Hordak data:

./manage.py dumpdata hordak --indent=2 --natural-primary --natural-foreign > fixtures/my-fixture.json

1.4. Notes 15

Django Hordak Documentation, Release 1.0

16 Chapter 1. Requirements

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

17

Django Hordak Documentation, Release 1.0

18 Chapter 2. Indices and tables

Python Module Index

h
hordak.exceptions, 14
hordak.forms, 14
hordak.models, 5
hordak.utilities.currency, 10

19

Django Hordak Documentation, Release 1.0

20 Python Module Index

Index

Symbols
_get_rate() (hordak.utilities.currency.BaseBackend

method), 13

A
Account (class in hordak.models), 6
account (hordak.models.Leg attribute), 8
AccountingEquationViolationError, 14
AccountingError, 14
AccountTypeOnChildNode, 14
amount (hordak.models.Leg attribute), 9
amount (hordak.models.StatementLine attribute), 10

B
Balance (class in hordak.utilities.currency), 13
balance() (hordak.models.Account method), 7
BalanceComparisonError, 14
bank_account (hordak.models.StatementImport at-

tribute), 9
BaseBackend (class in hordak.utilities.currency), 13

C
cache_rate() (hordak.utilities.currency.BaseBackend

method), 13
code (hordak.models.Account attribute), 6
create_transaction() (hordak.models.StatementLine

method), 10
currency_exchange() (in module hor-

dak.utilities.currency), 11

D
date (hordak.models.StatementLine attribute), 9
date (hordak.models.Transaction attribute), 8
description (hordak.models.Leg attribute), 9
description (hordak.models.StatementLine attribute), 10
description (hordak.models.Transaction attribute), 8

F
FixerBackend (class in hordak.utilities.currency), 14
full_code (hordak.models.Account attribute), 7

G
get_rate() (hordak.utilities.currency.BaseBackend

method), 13

H
hordak.exceptions (module), 14
hordak.forms (module), 14
hordak.models (module), 5
hordak.utilities.currency (module), 10
HordakError, 14

I
InvalidFeeCurrency, 14
is_bank_account (hordak.models.Account attribute), 6
is_reconciled (hordak.models.StatementLine attribute),

10

L
Leg (class in hordak.models), 8
LossyCalculationError, 14

M
monies() (hordak.utilities.currency.Balance method), 13

N
name (hordak.models.Account attribute), 6
normalise() (hordak.utilities.currency.Balance method),

13

P
parent (hordak.models.Account attribute), 6

S
sign (hordak.models.Account attribute), 7
simple_balance() (hordak.models.Account method), 7
statement_import (hordak.models.StatementLine at-

tribute), 10
StatementImport (class in hordak.models), 9
StatementLine (class in hordak.models), 9

21

Django Hordak Documentation, Release 1.0

T
timestamp (hordak.models.StatementImport attribute), 9
timestamp (hordak.models.StatementLine attribute), 9
timestamp (hordak.models.Transaction attribute), 8
TradingAccountRequiredError, 14
Transaction (class in hordak.models), 8
transaction (hordak.models.Leg attribute), 8
transaction (hordak.models.StatementLine attribute), 10
transfer_to() (hordak.models.Account method), 7
type (hordak.models.Account attribute), 6
type (hordak.models.Leg attribute), 9
TYPES (hordak.models.Account attribute), 6

U
uuid (hordak.models.Account attribute), 6
uuid (hordak.models.Leg attribute), 8
uuid (hordak.models.StatementImport attribute), 9
uuid (hordak.models.StatementLine attribute), 9
uuid (hordak.models.Transaction attribute), 8

V
validate_accounting_equation() (hordak.models.Account

class method), 7

Z
ZeroAmountError, 14

22 Index

	Requirements
	Installation
	Double Entry Accounting for Developers
	API Documentation
	Notes

	Indices and tables
	Python Module Index

