
guardian Documentation
Release 1.2.5

Lukasz Balcerzak

November 12, 2015

Contents

1 Overview 3
1.1 Features . 3
1.2 Incoming . 3
1.3 Source and issue tracker . 3
1.4 Alternate projects . 3

2 Installation 5

3 Configuration 7

4 Optional settings 9
4.1 GUARDIAN_RAISE_403 . 9
4.2 GUARDIAN_RENDER_403 . 9
4.3 GUARDIAN_TEMPLATE_403 . 9
4.4 ANONYMOUS_DEFAULT_USERNAME_VALUE . 9
4.5 GUARDIAN_GET_INIT_ANONYMOUS_USER . 10

5 User Guide 11
5.1 Assign object permissions . 11
5.2 Check object permissions . 12
5.3 Remove object permissions . 15
5.4 Admin integration . 15
5.5 Custom User model . 17
5.6 Performance tuning . 18
5.7 Caveats . 19

6 API Reference 21
6.1 Admin . 22
6.2 Backends . 22
6.3 Core . 22
6.4 Decorators . 22
6.5 Forms . 22
6.6 Management commands . 22
6.7 Managers . 22
6.8 Mixins . 22
6.9 Models . 23
6.10 Shortcuts . 23
6.11 Utilities . 23
6.12 Template tags . 23

i

7 Development 25
7.1 Overview . 25
7.2 Example project . 26
7.3 Testing . 26
7.4 Supported versions . 28
7.5 Changelog . 28

8 License 33

9 Indices and tables 35

ii

guardian Documentation, Release 1.2.5

Date November 12, 2015

Version 1.2.5

Documentation:

Contents 1

guardian Documentation, Release 1.2.5

2 Contents

CHAPTER 1

Overview

django-guardian is an implementation of object permissions for Django providing extra authentication backend.

1.1 Features

• Object permissions for Django

• AnonymousUser support

• High level API

• Heavily tested

• Django’s admin integration

• Decorators

1.2 Incoming

• Admin templates for grappelli

1.3 Source and issue tracker

Sources are available at issue-tracker. You may also file a bug there.

1.4 Alternate projects

Django 1.2 still has only foundation for object permissions 1 and django-guardian make use of new facilities and
it is based on them. There are some other pluggable applications which does NOT require latest 1.2 version of Django.
For instance, there are great django-authority or django-permissions available out there.

1 See http://docs.djangoproject.com/en/1.2/topics/auth/#handling-object-permissions for more detail.

3

http://www.djangoproject.com/
http://www.djangoproject.com/
https://github.com/sehmaschine/django-grappelli
http://github.com/lukaszb/django-guardian
http://www.djangoproject.com/
http://www.djangoproject.com/
http://bitbucket.org/jezdez/django-authority/
http://bitbucket.org/diefenbach/django-permissions/
http://docs.djangoproject.com/en/1.2/topics/auth/#handling-object-permissions

guardian Documentation, Release 1.2.5

4 Chapter 1. Overview

CHAPTER 2

Installation

This application requires Django 1.3 or higher and it is only prerequisite before django-guardian may be used.

In order to install django-guardian simply use pip:

pip install django-guardian

or easy_install:

easy_install django-guardian

This would be enough to run django-guardian. However, in order to run tests or boundled example application,
there are some other requirements. See more details about the topics:

• Testing

• Example project

5

http://www.djangoproject.com/

guardian Documentation, Release 1.2.5

6 Chapter 2. Installation

CHAPTER 3

Configuration

After installation we can prepare our project for object permissions handling. In a settings module we need to add
guardian to INSTALLED_APPS:

INSTALLED_APPS = (
...
'guardian',

)

and hook guardian’s authentication backend:

AUTHENTICATION_BACKENDS = (
'django.contrib.auth.backends.ModelBackend', # this is default
'guardian.backends.ObjectPermissionBackend',

)

As django-guardian supports anonymous user’s object permissions we also need to add following to our settings
module:

ANONYMOUS_USER_ID = -1

Note: Once project is configured to work with django-guardian, calling syncdbmanagement command would
create User instance for anonymous user support (with name of AnonymousUser).

If ANONYMOUS_USER_ID is set to None, anonymous user object permissions are disabled. You may need to choose
this option if creating a User object to represent anonymous users would be problematic in your environment.

We can change id to whatever we like. Project should be now ready to use object permissions.

7

guardian Documentation, Release 1.2.5

8 Chapter 3. Configuration

CHAPTER 4

Optional settings

In addition to required ANONYMOUS_USER_ID setting, guardian has following, optional configuration variables:

4.1 GUARDIAN_RAISE_403

New in version 1.0.4.

If set to True, guardian would raise django.core.exceptions.PermissionDenied error instead of re-
turning empty django.http.HttpResponseForbidden.

Warning: Remember that you cannot use both GUARDIAN_RENDER_403 AND GUARDIAN_RAISE_403 - if
both are set to True, django.core.exceptions.ImproperlyConfigured would be raised.

4.2 GUARDIAN_RENDER_403

New in version 1.0.4.

If set to True, guardian would try to render 403 response rather than return contentless
django.http.HttpResponseForbidden. Would use template pointed by GUARDIAN_TEMPLATE_403 to
do that. Default is False.

Warning: Remember that you cannot use both GUARDIAN_RENDER_403 AND GUARDIAN_RAISE_403 - if
both are set to True, django.core.exceptions.ImproperlyConfigured would be raised.

4.3 GUARDIAN_TEMPLATE_403

New in version 1.0.4.

Tells parts of guardian what template to use for responses with status code 403 (i.e. permission_required). Defaults
to 403.html.

4.4 ANONYMOUS_DEFAULT_USERNAME_VALUE

New in version 1.1.

9

guardian Documentation, Release 1.2.5

Due to changes introduced by Django 1.5 user model can have differently named username field (it can be removed
too, but guardian currently depends on it). After syncdb command we create anonymous user for convenience,
however it might be necessary to set this configuration in order to set proper value at username field.

See also:

https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#substituting-a-custom-user-model

4.5 GUARDIAN_GET_INIT_ANONYMOUS_USER

New in version 1.2.

Guardian supports object level permissions for anonymous users, however when in our project we use custom User
model, default function might fail. This can lead to issues as guardian tries to create anonymous user after each
syncdb call. Object that is going to be created is retrieved using function pointed by this setting. Once retrieved,
save method would be called on that instance.

Defaults to "guardian.management.get_init_anonymous_user".

See also:

Anonymous user creation

10 Chapter 4. Optional settings

https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#substituting-a-custom-user-model

CHAPTER 5

User Guide

5.1 Assign object permissions

Assigning object permissions should be very simple once permissions are created for models.

5.1.1 Prepare permissions

Let’s assume we have following model:

class Task(models.Model):
summary = models.CharField(max_length=32)
content = models.TextField()
reported_by = models.ForeignKey(User)
created_at = models.DateTimeField(auto_now_add=True)

... and we want to be able to set custom permission view_task. We let Django know to do so by adding permissions
tuple to Meta class and our final model could look like:

class Task(models.Model):
summary = models.CharField(max_length=32)
content = models.TextField()
reported_by = models.ForeignKey(User)
created_at = models.DateTimeField(auto_now_add=True)

class Meta:
permissions = (

('view_task', 'View task'),
)

After we call syncdb management command our view_task permission would be added to default set of permissions.

Note: By default, Django adds 3 permissions for each registered model:

• add_modelname

• change_modelname

• delete_modelname

(where modelname is a simplified name of our model’s class). See
http://docs.djangoproject.com/en/1.2/topics/auth/#default-permissions for more detail.

11

http://docs.djangoproject.com/en/1.2/topics/auth/#default-permissions

guardian Documentation, Release 1.2.5

There is nothing new here since creation of permissions is handled by django. Now we can move to assigning object
permissions.

5.1.2 Assign object permissions

We can assign permissions for any user/group and object pairs using same, convenient function:
guardian.shortcuts.assign_perm().

For user

Continuing our example we now can allow Joe user to view some task:

>>> from django.contrib.auth.models import User
>>> boss = User.objects.create(username='Big Boss')
>>> joe = User.objects.create(username='joe')
>>> task = Task.objects.create(summary='Some job', content='', reported_by=boss)
>>> joe.has_perm('view_task', task)
False

Well, not so fast Joe, let us create an object permission finally:

>>> from guardian.shortcuts import assign_perm
>>> assign_perm('view_task', joe, task)
>>> joe.has_perm('view_task', task)
True

For group

This case doesn’t really differ from user permissions assignment. The only difference is we have to pass Group
instance rather than User.

>>> from django.contrib.auth.models import Group
>>> group = Group.objects.create(name='employees')
>>> assign_perm('change_task', group, task)
>>> joe.has_perm('change_task', task)
False
>>> # Well, joe is not yet within an *employees* group
>>> joe.groups.add(group)
>>> joe.has_perm('change_task', task)
True

5.2 Check object permissions

Once we have assigned some permissions, we can get into detail about verifying permissions of a user or group.

5.2.1 Standard way

Normally to check if Joe is permitted to change Site objects we call has_perm method on an User instance:

>>> joe.has_perm('sites.change_site')
False

12 Chapter 5. User Guide

http://docs.djangoproject.com/en/1.2/topics/auth/#id1

guardian Documentation, Release 1.2.5

And for a specific Site instance we do the same but we pass site as additional argument:

>>> site = Site.objects.get_current()
>>> joe.has_perm('sites.change_site', site)
False

Let’s assign permission and check again:

>>> from guardian.shortcuts import assign_perm
>>> assign_perm('sites.change_site', joe, site)
<UserObjectPermission: example.com | joe | change_site>
>>> joe = User.objects.get(username='joe')
>>> joe.has_perm('sites.change_site', site)
True

This uses the backend we have specified at settings module (see Configuration). More on the backend can be found at
Backend’s API.

5.2.2 Inside views

Aside from the standard has_perm method, django-guardian provides some useful helpers for object permis-
sion checks.

get_perms

To check permissions we can use a quick-and-dirty shortcut:

>>> from guardian.shortcuts import get_perms
>>>
>>> joe = User.objects.get(username='joe')
>>> site = Site.objects.get_current()
>>>
>>> 'change_site' in get_perms(joe, site)
True

It is probably better to use standard has_perm method. But for Group instances it is not as easy and get_perms
could be handy here as it accepts both User and Group instances. If we need to do some more work, we can use
lower level ObjectPermissionChecker class which is described in the next section.

get_objects_for_user

Sometimes there is a need to extract list of objects based on particular user, type of the object and provided permis-
sions. For instance, lets say there is a Project model at projects application with custom view_project
permission. We want to show our users projects they can actually view. This could be easily achieved using
get_objects_for_user:

from django.shortcuts import render_to_response
from django.template import RequestContext
from projects.models import Project
from guardian.shortcuts import get_objects_for_user

def user_dashboard(request, template_name='projects/dashboard.html'):
projects = get_objects_for_user(request.user, 'projects.view_project')
return render_to_response(template_name, {'projects': projects},

RequestContext(request))

5.2. Check object permissions 13

guardian Documentation, Release 1.2.5

It is also possible to provide list of permissions rather than single string, own queryset (as klass argument) or control
if result should be computed with (default) or without user’s groups permissions.

See also:

Documentation for get_objects_for_user

ObjectPermissionChecker

At the core module of django-guardian, there is a guardian.core.ObjectPermissionChecker
which checks permission of user/group for specific object. It caches results so it may be used at part of codes where
we check permissions more than once.

Let’s see it in action:

>>> joe = User.objects.get(username='joe')
>>> site = Site.objects.get_current()
>>> from guardian.core import ObjectPermissionChecker
>>> checker = ObjectPermissionChecker(joe) # we can pass user or group
>>> checker.has_perm('change_site', site)
True
>>> checker.has_perm('add_site', site) # no additional query made
False
>>> checker.get_perms(site)
[u'change_site']

Using decorators

Standard permission_required decorator doesn’t allow to check for object permissions. django-guardian
is shipped with two decorators which may be helpful for simple object permission checks but remember that those
decorators hits database before decorated view is called - this means that if there is similar lookup made within a view
then most probably one (or more, depending on lookups) extra database query would occur.

Let’s assume we pass ’group_name’ argument to our view function which returns form to edit the group. Moreover,
we want to return 403 code if check fails. This can be simply achieved using permission_required_or_403
decorator:

>>> joe = User.objects.get(username='joe')
>>> foobars = Group.objects.create(name='foobars')
>>>
>>> from guardian.decorators import permission_required_or_403
>>> from django.http import HttpResponse
>>>
>>> @permission_required_or_403('auth.change_group',
>>> (Group, 'name', 'group_name'))
>>> def edit_group(request, group_name):
>>> return HttpResponse('some form')
>>>
>>> from django.http import HttpRequest
>>> request = HttpRequest()
>>> request.user = joe
>>> edit_group(request, group_name='foobars')
<django.http.HttpResponseForbidden object at 0x102b43dd0>
>>>
>>> joe.groups.add(foobars)
>>> edit_group(request, group_name='foobars')
<django.http.HttpResponseForbidden object at 0x102b43e50>

14 Chapter 5. User Guide

guardian Documentation, Release 1.2.5

>>>
>>> from guardian.shortcuts import assign_perm
>>> assign_perm('auth.change_group', joe, foobars)
<UserObjectPermission: foobars | joe | change_group>
>>>
>>> edit_group(request, group_name='foobars')
<django.http.HttpResponse object at 0x102b8c8d0>
>>> # Note that we now get normal HttpResponse, not forbidden

More on decorators can be read at corresponding API page.

Note: Overall idea of decorators’ lookups was taken from django-authority and all credits go to it’s creator, Jannis
Leidel.

5.2.3 Inside templates

django-guardian comes with special template tag guardian.templatetags.guardian_tags.get_obj_perms()
which can store object permissions for a given user/group and instance pair. In order to use it we need to put following
inside a template:

{% load guardian_tags %}

get_obj_perms

5.3 Remove object permissions

Removing object permissions is as easy as assigning them. Just instead of guardian.shortcuts.assign()
we would use guardian.shortcuts.remove_perm() function (it accepts same arguments).

5.3.1 Example

Let’s get back to our fellow Joe:

>>> site = Site.object.get_current()
>>> joe.has_perm('change_site', site)
True

Now, simply remove this permission:

>>> from guardian.shortcuts import remove_perm
>>> remove_perm('change_site', joe, site)
>>> joe = User.objects.get(username='joe')
>>> joe.has_perm('change_site', site)
False

5.4 Admin integration

Django comes with excellent and widely used Admin application. Basically, it provides content management for
Django applications. User with access to admin panel can manage users, groups, permissions and other data provided
by system.

5.3. Remove object permissions 15

http://bitbucket.org/jezdez/django-authority/

guardian Documentation, Release 1.2.5

django-guardian comes with simple object permissions management integration for Django’s admin application.

5.4.1 Usage

It is very easy to use admin integration. Simply use GuardedModelAdmin instead of standard
django.contrib.admin.ModelAdmin class for registering models within the admin. In example, look at
following model:

from django.db import models

class Post(models.Model):
title = models.CharField('title', max_length=64)
slug = models.SlugField(max_length=64)
content = models.TextField('content')
created_at = models.DateTimeField(auto_now_add=True, db_index=True)

class Meta:
permissions = (

('view_post', 'Can view post'),
)
get_latest_by = 'created_at'

def __unicode__(self):
return self.title

@models.permalink
def get_absolute_url(self):

return {'post_slug': self.slug}

We want to register Post model within admin application. Normally, we would do this as follows within admin.py
file of our application:

from django.contrib import admin

from example_project.posts.models import Post

class PostAdmin(admin.ModelAdmin):
prepopulated_fields = {"slug": ("title",)}
list_display = ('title', 'slug', 'created_at')
search_fields = ('title', 'content')
ordering = ('-created_at',)
date_hierarchy = 'created_at'

admin.site.register(Post, PostAdmin)

If we would like to add object permissions management for Post model we would need to change PostAdmin base
class into GuardedModelAdmin. Our code could look as follows:

from django.contrib import admin

from example_project.posts.models import Post

from guardian.admin import GuardedModelAdmin

class PostAdmin(GuardedModelAdmin):

16 Chapter 5. User Guide

guardian Documentation, Release 1.2.5

prepopulated_fields = {"slug": ("title",)}
list_display = ('title', 'slug', 'created_at')
search_fields = ('title', 'content')
ordering = ('-created_at',)
date_hierarchy = 'created_at'

admin.site.register(Post, PostAdmin)

And thats it. We can now navigate to change post page and just next to the history link we can click Object permissions
button to manage row level permissions.

Note: Example above is shipped with django-guardian package with the example project.

5.5 Custom User model

New in version 1.1.

Django 1.5 comes with the ability to customize default auth.User model - either by subclassing AbstractUser
or defining very own class. This can be very powerful, it must be done with caution, though. Basically, if we subclass
AbstractUser or define many-to-many relation with auth.Group (and give reverse relate name groups) we
should be fine.

By default django-guardian monkey patches the user model to add some needed functionality. This can result in errors
if guardian is imported into the models.py of the same app where the custom user model lives.

To fix this, it is recommended to add the setting GUARDIAN_MONKEY_PATCH = False in your settings.py and
add the GuardianUserMixin to your custom user model.

Important: django-guardian relies heavily on the auth.User model. Specifically it was build from the
ground-up with relation between auth.User and auth.Group models. Retaining this relation is crucial for
guardian - without many to many User (custom or default) and auth.Group relation django-guardian will
BREAK.

See also:

Read more about customizing User model introduced in Django 1.5 here:
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#substituting-a-custom-user-model.

5.5.1 Anonymous user creation

It is also possible to override default behavior of how instance for anonymous user is created. In example, let’s imagine
we have our user model as follows:

from django.contrib.auth.models import AbstractUser
from django.db import models

class CustomUser(AbstractUser):
real_username = models.CharField(max_length=120, unique=True)
birth_date = models.DateField() # field without default value

USERNAME_FIELD = 'real_username'

5.5. Custom User model 17

https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#substituting-a-custom-user-model

guardian Documentation, Release 1.2.5

Note that there is a birth_date field defined at the model and it does not have a default value. It would fail to create
anonymous user instance as default implementation cannot know anything about CustomUser model.

In order to override the way anonymous instance is created we need to make
GUARDIAN_GET_INIT_ANONYMOUS_USER pointing at our custom implementation. In example, let’s de-
fine our init function:

import datetime

def get_anonymous_user_instance(User):
return User(real_username='Anonymous', birth_date=datetime.date(1970, 1, 1))

and put it at myapp/models.py. Last step is to set proper configuration in our settings module:

GUARDIAN_GET_INIT_ANONYMOUS_USER = 'myapp.models.get_anonymous_user_instance'

5.6 Performance tuning

It is important to remember that by default django-guardian uses generic foreign keys to retain relation with any
Django model. For most cases, it’s probably good enough, however if we have a lot of queries being spanned and our
database seems to be choking it might be a good choice to use direct foreign keys. Let’s start with quick overview of
how generic solution work and then we will move on to the tuning part.

5.6.1 Default, generic solution

django-guardian comes with two models: UserObjectPermission and GroupObjectPermission.
They both have same, generic way of pointing to other models:

• content_type field telling what table (model class) target permission references to (ContentType in-
stance)

• object_pk field storing value of target model instance primary key

• content_object field being a GenericForeignKey. Actually, it is not a foreign key in standard, re-
lational database meaning - it is simply a proxy that can retrieve proper model instance being targeted by two
previous fields

See also:

https://docs.djangoproject.com/en/1.4/ref/contrib/contenttypes/#generic-relations

Let’s consider following model:

class Project(models.Model):
name = models.CharField(max_length=128, unique=True)

In order to add a change_project permission for joe user we would use assign_perm shortcut:

>>> from guardian.shortcuts import assign_perm
>>> project = Project.objects.get(name='Foobar')
>>> joe = User.objects.get(username='joe')
>>> assign_perm('change_project', joe, project)

What it really does is: create an instance of UserObjectPermission. Something similar to:

18 Chapter 5. User Guide

https://docs.djangoproject.com/en/1.4/ref/contrib/contenttypes/#generic-relations

guardian Documentation, Release 1.2.5

>>> content_type = ContentType.objects.get_for_model(Project)
>>> perm = Permission.objects.get(content_type__app_label='app',
... codename='change_project')
>>> UserObjectPermission.objects.create(user=joe, content_type=content_type,
... permission=perm, object_pk=project.pk)

As there are no real foreign keys pointing at the target model, this solution might not be enough for all cases. For
example, if we try to build an issues tracking service and we’d like to be able to support thousands of users and their
project/tickets, object level permission checks can be slow with this generic solution.

5.6.2 Direct foreign keys

New in version 1.1.

In order to make our permission checks faster we can use direct foreign key solution. It actually is very simple to setup
- we need to declare two new models next to our Project model, one for User and one for Group models:

from guardian.models import UserObjectPermissionBase
from guardian.models import GroupObjectPermissionBase

class Project(models.Model):
name = models.CharField(max_length=128, unique=True)

class ProjectUserObjectPermission(UserObjectPermissionBase):
content_object = models.ForeignKey(Project)

class ProjectGroupObjectPermission(GroupObjectPermissionBase):
content_object = models.ForeignKey(Project)

Important: Name of the ForeignKey field is important and it should be content_object as underlying queries
depends on it.

From now on, guardian will figure out that Project model has direct relation for user/group object permissions
and will use those models. It is also possible to use only user or only group-based direct relation, however it is
discouraged (it’s not consistent and might be a quick road to hell from the maintainence point of view, especially).

Note: By defining direct relation models we can also tweak that object permission model, i.e. by adding some fields.

5.7 Caveats

5.7.1 Orphaned object permissions

Permissions, including so called per object permissions, are sometimes tricky to manage. One case is how we can
manage permissions that are no longer used. Normally, there should be no problems, however with some particular
setup it is possible to reuse primary keys of database models which were used in the past once. We will not answer
how bad such situation can be - instead we will try to cover how we can deal with this.

Let’s imagine our table has primary key to the filesystem path. We have a record with pk equal to
/home/www/joe.config. User jane has read access to joe’s configuration and we store that information in
database by creating guardian’s object permissions. Now, joe user removes account from our site and another user
creates account with joe as username. The problem is that if we haven’t removed object permissions explicitly in the
process of first joe account removal, jane still has read permissions for joe’s configuration file - but this is another user.

5.7. Caveats 19

guardian Documentation, Release 1.2.5

There is no easy way to deal with orphaned permissions as they are not foreign keyed with objects directly. Even if
they would, there are some database engines - or ON DELETE rules - which restricts removal of related objects.

Important: It is extremely important to remove UserObjectPermission and GroupObjectPermission
as we delete objects for which permissions are defined.

Guardian comes with utility function which tries to help to remove orphaned object permissions. Remember - those
are only helpers. Applications should remove those object permissions explicitly by itself.

Taking our previous example, our application should remove user object for joe, however, permisions for joe user
assigned to jane would NOT be removed. In this case, it would be very easy to remove user/group object permissions
if we connect proper action with proper signal. This could be achieved by following snippet:

from django.contrib.contenttypes.models import ContentType
from django.db.models import Q
from django.db.models.signals import pre_delete
from guardian.models import User
from guardian.models import UserObjectPermission
from guardian.models import GroupObjectPermission

def remove_obj_perms_connected_with_user(sender, instance, **kwargs):
filters = Q(content_type=ContentType.objects.get_for_model(instance),

object_pk=instance.pk)
UserObjectPermission.objects.filter(filters).delete()
GroupObjectPermission.objects.filter(filters).delete()

pre_delete.connect(remove_obj_perms_connected_with_user, sender=User)

This signal handler would remove all object permissions connected with user just before user is actually removed.

If we forgot to add such handlers, we may still remove orphaned object permissions by using
clean_orphan_obj_perms command. If our application uses celery, it is also very easy to remove orphaned
permissions periodically with guardian.utils.clean_orphan_obj_perms() function. We would still
strongly advise to remove orphaned object permissions explicitly (i.e. at view that confirms object removal or us-
ing signals as described above).

See also:

• guardian.utils.clean_orphan_obj_perms()

• clean_orphan_obj_perms

20 Chapter 5. User Guide

http://www.celeryproject.org/

21

guardian Documentation, Release 1.2.5

CHAPTER 6

API Reference

6.1 Admin

6.1.1 GuardedModelAdmin

6.2 Backends

6.2.1 ObjectPermissionBackend

6.3 Core

6.3.1 ObjectPermissionChecker

6.4 Decorators

6.4.1 permission_required

6.4.2 permission_required_or_403

6.5 Forms

6.5.1 UserObjectPermissionsForm

6.5.2 GroupObjectPermissionsForm

6.5.3 BaseObjectPermissionsForm

6.6 Management commands

6.7 Managers

6.7.1 UserObjectPermissionManager

6.7.2 GroupObjectPermissionManager

6.8 Mixins

New in version 1.0.4.

22 Chapter 6. API Reference

guardian Documentation, Release 1.2.5

6.8.1 LoginRequiredMixin

6.8.2 PermissionRequiredMixin

6.9 Models

6.9.1 BaseObjectPermission

6.9.2 UserObjectPermission

6.9.3 GroupObjectPermission

6.10 Shortcuts

6.10.1 assign_perm

6.10.2 remove_perm

6.10.3 get_perms

6.10.4 get_perms_for_model

6.10.5 get_users_with_perms

6.10.6 get_groups_with_perms

6.10.7 get_objects_for_user

6.10.8 get_objects_for_group

6.11 Utilities

6.11.1 get_anonymous_user

6.11.2 get_identity

6.11.3 clean_orphan_obj_perms

6.12 Template tags

6.12.1 get_obj_perms

6.9. Models 23

guardian Documentation, Release 1.2.5

24 Chapter 6. API Reference

CHAPTER 7

Development

7.1 Overview

Here we describe the development process overview. It’s in F.A.Q. format to make it simple.

7.1.1 Why devel is default branch?

Since version 1.2 we try to make master in a production-ready state. It does NOT mean it is production ready, but it
SHOULD be. In example, tests at master should always pass. Actually, whole tox suite should pass. And it’s test
coverage should be at 100% level.

devel branch, on the other hand, can break. It shouldn’t but it is acceptable. As a user, you should NEVER use
non-master branches at production. All the changes are pushed from devel to master before next release. It might
happen more frequently.

7.1.2 How to file a ticket?

Just go to https://github.com/lukaszb/django-guardian/issues and create new one.

7.1.3 How do I get involved?

It’s simple! If you want to fix a bug, extend documentation or whatever you think is appropriate for the project
and involves changes, just fork the project at github (https://github.com/lukaszb/django-guardian), create a separate
branch, hack on it, publish changes at your fork and create a pull request.

Here is a quick how to:

1. Fork a project: https://github.com/lukaszb/django-guardian/fork

2. Checkout project to your local machine:

$ git clone git@github.com:YOUR_NAME/django-guardian.git

3. Create a new branch with name describing change you are going to work on:

$ git checkout -b bugfix/support-for-custom-model

4. Perform changes at newly created branch. Remember to include tests (if this is code related change) and run
test suite. See running tests documentation. Also, remember to add yourself to the AUTHORS file.

25

https://github.com/lukaszb/django-guardian/issues
https://github.com/lukaszb/django-guardian
https://github.com/lukaszb/django-guardian/fork

guardian Documentation, Release 1.2.5

5. (Optional) Squash commits. If you have multiple commits and it doesn’t make much sense to have them sep-
arated (and it usually makes little sense), please consider merging all changes into single commit. Please see
https://help.github.com/articles/interactive-rebase if you need help with that.

6. Publish changes:

$ git push origin YOUR_BRANCH_NAME

6. Create a Pull Request (https://help.github.com/articles/creating-a-pull-request). Usually it’s as simple as open-
ing up https://github.com/YOUR_NAME/django-guardian and clicking on review button for newly created
branch. There you can make final review of your changes and if everything seems fine, create a Pull Request.

7.1.4 Why my issue/pull request was closed?

We usually put an explonation while we close issue or PR. It might be for various reasons, i.e. there were no reply for
over a month after our last comment, there were no tests for the changes etc.

7.2 Example project

Example project should be boundled with archive and be available at example_project. Before you can run it,
some requirements have to be met. Those are easily installed using following command at example project’s directory:

$ pip install -r requirements.txt

And last thing before we can run example project is to create sqlite database:

$ python manage.py syncdb

Finally we can run dev server:

$ python manage.py runserver

Project is really basic and shows almost nothing but eventually it should expose some django-guardian function-
ality.

Note: Example project must be run with Django 1.5 or later. This is to ensure that custom user model can be used.

7.3 Testing

7.3.1 Introduction

django-guardian is extending capabilities of Django’s authorization facilities and as so, it changes it’s security
somehow. It is extremaly important to provide as simplest API Reference as possible.

According to OWASP, broken authentication is one of most commonly security issue exposed in web applications.

Having this on mind we tried to build small set of necessary functions and created a lot of testing scenarios. Neverte-
less, if anyone would found a bug in this application, please take a minute and file it at issue-tracker. Moreover, if some-
one would spot a security hole (a bug that might affect security of systems that use django-guardian as permission
management library), please DO NOT create a public issue but contact me directly (lukaszbalcerzak@gmail.com).

26 Chapter 7. Development

https://help.github.com/articles/interactive-rebase
https://help.github.com/articles/creating-a-pull-request
https://github.com/YOUR_NAME/django-guardian
http://www.owasp.org/
http://www.owasp.org/index.php/Top_10_2010-A3
http://github.com/lukaszb/django-guardian
mailto:lukaszbalcerzak@gmail.com

guardian Documentation, Release 1.2.5

7.3.2 Running tests

Tests are run by Django’s buildin test runner. To call it simply run:

$ python setup.py test

or inside a project with guardian set at INSTALLED_APPS:

$ python manage.py test guardian

7.3.3 Coverage support

Coverage is a tool for measuring code coverage of Python programs. It is great for tests and we use it as a backup
- we try to cover 100% of the code used by django-guardian. This of course does NOT mean that if all of the
codebase is covered by tests we can be sure there is no bug (as specification of almost all applications requries some
unique scenarios to be tested). On the other hand it definitely helps to track missing parts.

To run tests with coverage support and show the report after we have provided simple bash script which can by called
by running:

$./run_test_and_report.sh

Result should be somehow similar to following:

(...)
..
--
Ran 48 tests in 2.516s

OK
Destroying test database 'default'...
Name Stmts Exec Cover Missing

guardian/__init__ 4 4 100%
guardian/backends 20 20 100%
guardian/conf/__init__ 1 1 100%
guardian/core 29 29 100%
guardian/exceptions 8 8 100%
guardian/management/__init__ 10 10 100%
guardian/managers 40 40 100%
guardian/models 36 36 100%
guardian/shortcuts 30 30 100%
guardian/templatetags/__init__ 1 1 100%
guardian/templatetags/guardian_tags 39 39 100%
guardian/utils 13 13 100%

TOTAL 231 231 100%

7.3.4 Tox

New in version 1.0.4.

We also started using tox to ensure django-guardian‘s tests would pass on all supported Python and Django
versions (see Supported versions). To use it, simply install tox:

pip install tox

7.3. Testing 27

http://nedbatchelder.com/code/coverage/
http://nedbatchelder.com/code/coverage/
http://pypi.python.org/pypi/tox

guardian Documentation, Release 1.2.5

and run it within django-guardian checkout directory:

tox

First time should take some time (it needs to create separate virtual environments and pull dependencies) but would
ensure everything is fine.

7.3.5 Travis CI

New in version 1.0.4. Recently we have added support for Travis, continuous integration server so it is even more
easy to follow if test fails with new commits: http://travis-ci.org/#!/lukaszb/django-guardian.

7.4 Supported versions

django-guardian supports Python 2.6+/3.3+ and Django 1.3+. Also, we support django-grappelli 2.3.5.

Note: django-grappelli support was an experiment. We are not going to maintain this support starting with
version 1.2. It means that since v1.2 grappelli parts within guardian would be deprecated. And removed before next
big release (which most probably would be 2.0).

7.4.1 Rules

• We would support Python 2.7 and Python 2.6 (until Django drops support for 2.6). Since Django 1.5 we also
support Python 3.3+.

• We support Django 1.3+, however next big guardian release (v2.0) we would support Django 1.6+ (or higher,
depending on the date guardian v2.0 would be released). This is due to many simplifications in code we could
do. There is also a chance that v2.0 would drop support for Python 2.X.

7.5 Changelog

7.5.1 Release 1.2.5 (Dec 28, 2014)

• Official Django 1.7 support (thanks Troy Grosfield and Brian May)

• Allow to override PermissionRequiredMixin.get_permission_object, part of
PermissionRequiredMixin.check_permissions method, responsible for retrieving single
object (Thanks zauddelig)

• French translations (Thanks Morgan Aubert)

• Added support for User.get_all_permissions (thanks Michael Drescher)

7.5.2 Release 1.2.4 (Jul 14, 2014)

• Fixed another issue with custom primary keys at admin extensions (Thanks Omer Katz)

28 Chapter 7. Development

http://travis-ci.org/
http://travis-ci.org/#!/lukaszb/django-guardian

guardian Documentation, Release 1.2.5

7.5.3 Release 1.2.3 (Jul 14, 2014)

Unfortunately this was broken release not including any important changes.

7.5.4 Release 1.2.2 (Jul 2, 2014)

• Fixed issue with custom primary keys at admin extensions (Thanks Omer Katz)

• get_403_or_None now accepts Python path to the view function, for example
’django.contrib.auth.views.login’ (Thanks Warren Volz)

• Added with_superuser flag to guardian.shortcuts.get_objects_for_user (Thanks Bruno
Ribeiro da Silva)

• Added possibility to disable monkey patching of the User model. (Thanks Cezar Jenkins)

7.5.5 Release 1.2 (Mar 7, 2014)

• Removed get_for_object methods from managers (#188)

• Extended documentation

• GuardedModelAdmin has been splitted into mixins

• Faster queries in get_objects_for_user when use_groups=False or any_perm=True (#148)

• Improved speed of get_objects_for_user shortcut

• Support for custom User model with not default username field

• Added GUARDIAN_GET_INIT_ANONYMOUS_USER setting (#179)

• Added accept_global_perms to PermissionRequiredMixin

• Added brazilian portuguese translations

• Added polish translations

• Added wheel support

• Fixed wrong anonymous user checks

• Support for Django 1.6

• Support for Django 1.7 alpha

Important: In this release we have removed undocumented get_for_object method from both
UserObjectPermissionManager and GroupObjectPermissionManager. Not deprecated, removed.
Those methods were not used within django-guardian and their odd names could lead to issues if user would
believe they would return object level permissions associated with user/group and object passed as the input. If you
depend on those methods, you’d need to stick with version 1.1 and make sure you do not misuse them.

7.5.6 Release 1.1 (May 26, 2013)

• Support for Django 1.5 (including Python 3 combination)

• Support for custom user models (introduced by Django 1.5)

• Ability to create permissions using Foreign Keys

7.5. Changelog 29

guardian Documentation, Release 1.2.5

• Added user_can_access_owned_by_group_objects_only option to GuardedModelAdmin.

• Minor documentation fixups

• Spanish translations

• Better support for grappelli

• Updated examples project

• Speed up get_perms shortcut function

7.5.7 Release 1.0.4 (Jul 15, 2012)

• Added GUARDIAN_RENDER_403 and GUARDIAN_RAISE_403 settings (#40)

• Updated docstring for get_obj_perms (#43)

• Updated codes to run with newest django-grappelli (#51)

• Fixed problem with building a RPM package (#50)

• Updated caveats docs related with oprhaned object permissions (#47)

• Updated permission_required docstring (#49)

• Added accept_global_perms for decorators (#49)

• Fixed problem with MySQL and booleans (#56)

• Added flag to check for any permission in get_objects_for_user and get_objects_for_group
(#65)

• Added missing tag closing at template (#63)

• Added view mixins related with authorization and authentication (#73)

• Added tox support

• Added Travis support

7.5.8 Release 1.0.3 (Jul 25, 2011)

• Added get_objects_for_group shortcut (thanks to Rafael Ponieman)

• Added user_can_access_owned_objects_only flag to GuardedModelAdmin

• Updated and fixed issues with example app (thanks to Bojan Mihelac)

• Minor typo fixed at documentation

• Included ADC theme for documentation

7.5.9 Release 1.0.2 (Apr 12, 2011)

• get_users_with_perms now accepts with_group_users flag

• Fixed group_id issue at admin templates

• Small fix for documentation building process

• It’s 2011 (updated dates within this file)

30 Chapter 7. Development

https://github.com/sehmaschine/django-grappelli
http://tox.testrun.org/
http://travis-ci.org/

guardian Documentation, Release 1.2.5

7.5.10 Release 1.0.1 (Mar 25, 2011)

• get_users_with_perms now accepts with_superusers flag

• Small fix for documentation building process

7.5.11 Release 1.0.0 (Jan 27, 2011)

• A final v1.0 release!

7.5.12 Release 1.0.0.beta2 (Jan 14, 2011)

• Added get_objects_for_user shortcut function

• Added few tests

• Fixed issues related with django.contrib.auth tests

• Removed example project from source distribution

7.5.13 Release 1.0.0.beta1 (Jan 11, 2011)

• Simplified example project

• Fixed issues related with test suite

• Added ability to clear orphaned object permissions

• Added clean_orphan_obj_perms management command

• Documentation cleanup

• Added grappelli admin templates

7.5.14 Release 1.0.0.alpha2 (Dec 2, 2010)

• Added possibility to operate with global permissions for assign and remove_perm shortcut functions

• Added possibility to generate PDF documentation

• Fixed some tests

7.5.15 Release 1.0.0.alpha1 (Nov 23, 2010)

• Fixed admin templates not included in MANIFEST.in

• Fixed admin integration codes

7.5.16 Release 1.0.0.pre (Nov 23, 2010)

• Added admin integration

• Added reusable forms for object permissions management

7.5. Changelog 31

https://github.com/sehmaschine/django-grappelli

guardian Documentation, Release 1.2.5

7.5.17 Release 0.2.3 (Nov 17, 2010)

• Added guardian.shortcuts.get_users_with_perms function

• Added AUTHORS file

7.5.18 Release 0.2.2 (Oct 19, 2010)

• Fixed migrations order (thanks to Daniel Rech)

7.5.19 Release 0.2.1 (Oct 3, 2010)

• Fixed migration (it wasn’t actually updating object_pk field)

7.5.20 Release 0.2.0 (Oct 3, 2010)

Fixes

• #4: guardian now supports models with not-integer primary keys and they don’t need to be called “id”.

Important: For 0.1.X users: it is required to migrate guardian in your projects. Add south to
INSTALLED_APPS and run:

python manage.py syncdb
python manage.py migrate guardian 0001 --fake
python manage.py migrate guardian

Improvements

• Added South migrations support

7.5.21 Release 0.1.1 (Sep 27, 2010)

Improvements

• Added view decorators: permission_required and permission_required_403

7.5.22 Release 0.1.0 (Jun 6, 2010)

• Initial public release

32 Chapter 7. Development

http://south.aeracode.org/

CHAPTER 8

License

Copyright (c) 2010-2014 Lukasz Balcerzak <lukaszbalcerzak@gmail.com>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

33

guardian Documentation, Release 1.2.5

34 Chapter 8. License

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

35

guardian Documentation, Release 1.2.5

36 Chapter 9. Indices and tables

Index

A
admin

GuardedModelAdmin, 22
ANONYMOUS_DEFAULT_USERNAME_VALUE

setting, 9

B
BaseObjectPermission

model, 23
BaseObjectPermissionsForm

form, 22

C
clean_orphan_obj_perms

command, 22
command

clean_orphan_obj_perms, 22

F
form

BaseObjectPermissionsForm, 22
GroupObjectPermissionsForm, 22
UserObjectPermissionsForm, 22

G
get_objects_for_user

shortcut, 23
GroupObjectPermission

model, 23
GroupObjectPermissionManager

manager, 22
GroupObjectPermissionsForm

form, 22
GuardedModelAdmin

admin, 22
GUARDIAN_GET_INIT_ANONYMOUS_USER

setting, 10
GUARDIAN_RAISE_403

setting, 9
GUARDIAN_RENDER_403

setting, 9
GUARDIAN_TEMPLATE_403

setting, 9

L
LoginRequiredMixin

mixin, 22

M
manager

GroupObjectPermissionManager, 22
UserObjectPermissionManager, 22

mixin
LoginRequiredMixin, 22
PermissionRequiredMixin, 23

model
BaseObjectPermission, 23
GroupObjectPermission, 23
UserObjectPermission, 23

P
PermissionRequiredMixin

mixin, 23

S
setting

ANONYMOUS_DEFAULT_USERNAME_VALUE,
9

GUARDIAN_GET_INIT_ANONYMOUS_USER,
10

GUARDIAN_RAISE_403, 9
GUARDIAN_RENDER_403, 9
GUARDIAN_TEMPLATE_403, 9

shortcut
get_objects_for_user, 23

U
UserObjectPermission

model, 23
UserObjectPermissionManager

37

guardian Documentation, Release 1.2.5

manager, 22
UserObjectPermissionsForm

form, 22

38 Index

	Overview
	Features
	Incoming
	Source and issue tracker
	Alternate projects

	Installation
	Configuration
	Optional settings
	GUARDIAN_RAISE_403
	GUARDIAN_RENDER_403
	GUARDIAN_TEMPLATE_403
	ANONYMOUS_DEFAULT_USERNAME_VALUE
	GUARDIAN_GET_INIT_ANONYMOUS_USER

	User Guide
	Assign object permissions
	Check object permissions
	Remove object permissions
	Admin integration
	Custom User model
	Performance tuning
	Caveats

	API Reference
	Admin
	Backends
	Core
	Decorators
	Forms
	Management commands
	Managers
	Mixins
	Models
	Shortcuts
	Utilities
	Template tags

	Development
	Overview
	Example project
	Testing
	Supported versions
	Changelog

	License
	Indices and tables

