
guardian Documentation
Release 2.4.0

Lukasz Balcerzak

Mar 25, 2022

Contents

1 Overview 3
1.1 Features . 3
1.2 Incoming . 3
1.3 Source and issue tracker . 3
1.4 Alternate projects . 4

2 Installation 5

3 Configuration 7

4 Optional settings 9
4.1 GUARDIAN_RAISE_403 . 9
4.2 GUARDIAN_RENDER_403 . 9
4.3 GUARDIAN_TEMPLATE_403 . 10
4.4 ANONYMOUS_USER_NAME . 10
4.5 GUARDIAN_GET_INIT_ANONYMOUS_USER . 10
4.6 GUARDIAN_GET_CONTENT_TYPE . 10
4.7 GUARDIAN_AUTO_PREFETCH . 11
4.8 GUARDIAN_USER_OBJ_PERMS_MODEL . 11
4.9 GUARDIAN_GROUP_OBJ_PERMS_MODEL . 11

5 User Guide 13
5.1 Example project . 13
5.2 Assign object permissions . 13
5.3 Check object permissions . 16
5.4 Remove object permissions . 19
5.5 Admin integration . 20
5.6 Custom User model . 21
5.7 Performance tuning . 22
5.8 Caveats . 24

6 API Reference 27
6.1 Admin . 27
6.2 Backends . 29
6.3 Core . 30
6.4 Decorators . 31
6.5 Forms . 32

i

6.6 Management commands . 34
6.7 Managers . 34
6.8 Mixins . 34
6.9 Models . 37
6.10 Shortcuts . 38
6.11 Utilities . 43
6.12 Template tags . 44

7 Development 47
7.1 Overview . 47
7.2 Testing . 48
7.3 Supported versions . 50
7.4 Changelog . 50

8 License 61

9 Indices and tables 63

Python Module Index 65

Index 67

ii

guardian Documentation, Release 2.4.0

Date Mar 25, 2022

Version 2.4.0

Documentation:

Contents 1

https://github.com/django-guardian/django-guardian/actions/workflows/tests.yml

guardian Documentation, Release 2.4.0

2 Contents

CHAPTER 1

Overview

django-guardian is an implementation of object permissions for Django providing an extra authentication back-
end.

1.1 Features

• Object permissions for Django

• AnonymousUser support

• High level API

• Heavily tested

• Django’s admin integration

• Decorators

1.2 Incoming

• Admin templates for grappelli

1.3 Source and issue tracker

Sources are available at issue-tracker. You may also file a bug there.

3

http://www.djangoproject.com/
http://www.djangoproject.com/
https://github.com/sehmaschine/django-grappelli
http://github.com/lukaszb/django-guardian

guardian Documentation, Release 2.4.0

1.4 Alternate projects

Django still only has the foundation for object permissions1 and django-guardian makes use of new facilities
and it is based on them. There are some other pluggable applications which do NOT require Django version 1.2+. For
instance, django-authority or django-permissions are great options available.

1 See https://docs.djangoproject.com/en/stable/topics/auth/customizing/#handling-object-permissions for more detail.

4 Chapter 1. Overview

http://www.djangoproject.com/
http://www.djangoproject.com/
https://github.com/jazzband/django-authority
https://github.com/lambdalisue/django-permission
https://docs.djangoproject.com/en/stable/topics/auth/customizing/#handling-object-permissions

CHAPTER 2

Installation

This application requires Django 2.2 or higher and it is the only prerequisite before django-guardian may be
used.

In order to install django-guardian simply use pip:

pip install django-guardian

This would be enough to run django-guardian. However, in order to run tests or example application, there are
some other requirements. See more details about the topics:

• Testing

• Example project

5

http://www.djangoproject.com/

guardian Documentation, Release 2.4.0

6 Chapter 2. Installation

CHAPTER 3

Configuration

After installation we can prepare our project for object permissions handling. In a settings module we need to add
guardian to INSTALLED_APPS:

INSTALLED_APPS = (
...
'guardian',

)

and hook guardian’s authentication backend:

AUTHENTICATION_BACKENDS = (
'django.contrib.auth.backends.ModelBackend', # this is default
'guardian.backends.ObjectPermissionBackend',

)

Note: Once project is configured to work with django-guardian, calling migrate management command
would create User instance for anonymous user support (with name of AnonymousUser).

Note: The Guardian anonymous user is different from the Django Anonymous user. The Django Anonymous user
does not have an entry in the database, however the Guardian anonymous user does. This means that the following
code will return an unexpected result:

from django.contrib.auth import get_user_model
User = get_user_model()
anon = User.get_anonymous()
anon.is_anonymous # returns False

We can change id to whatever we like. Project should be now ready to use object permissions.

7

guardian Documentation, Release 2.4.0

8 Chapter 3. Configuration

CHAPTER 4

Optional settings

Guardian has following, optional configuration variables:

4.1 GUARDIAN_RAISE_403

New in version 1.0.4.

If set to True, guardian would raise django.core.exceptions.PermissionDenied error instead of re-
turning empty django.http.HttpResponseForbidden.

Warning: Remember that you cannot use both GUARDIAN_RENDER_403 AND GUARDIAN_RAISE_403 - if
both are set to True, django.core.exceptions.ImproperlyConfigured would be raised.

4.2 GUARDIAN_RENDER_403

New in version 1.0.4.

If set to True, guardian would try to render 403 response rather than return contentless django.http.
HttpResponseForbidden. Would use template pointed by GUARDIAN_TEMPLATE_403 to do that. Default is
False.

Warning: Remember that you cannot use both GUARDIAN_RENDER_403 AND GUARDIAN_RAISE_403 - if
both are set to True, django.core.exceptions.ImproperlyConfigured would be raised.

9

guardian Documentation, Release 2.4.0

4.3 GUARDIAN_TEMPLATE_403

New in version 1.0.4.

Tells parts of guardian what template to use for responses with status code 403 (i.e. permission_required). Defaults
to 403.html.

4.4 ANONYMOUS_USER_NAME

New in version 1.4.2.

This is the username of the anonymous user. Used to create the anonymous user and subsequently fetch the anonymous
user as required.

If ANONYMOUS_USER_NAME is set to None, anonymous user object permissions-are disabled. You may need to
choose this option if creating an User object-to represent anonymous users would be problematic in your environment.

Defaults to "AnonymousUser".

See also:

https://docs.djangoproject.com/en/stable/topics/auth/customizing/#substituting-a-custom-user-model

4.5 GUARDIAN_GET_INIT_ANONYMOUS_USER

New in version 1.2.

Guardian supports object level permissions for anonymous users, however when in our project we use custom User
model, default function might fail. This can lead to issues as guardian tries to create anonymous user after each
migrate call. Object that is going to be created is retrieved using function pointed by this setting. Once retrieved,
save method would be called on that instance.

Defaults to "guardian.management.get_init_anonymous_user".

See also:

Anonymous user creation

4.6 GUARDIAN_GET_CONTENT_TYPE

New in version 1.5.

Guardian allows applications to supply a custom function to retrieve the content type from objects and models. This is
useful when a class or class hierarchy uses the ContentType framework in an non-standard way. Most applications
will not have to change this setting.

As an example, when using django-polymorphic it’s useful to use a permission on the base model which ap-
plies to all child models. In this case, the custom function would return the ContentType of the base class for
polymorphic models and the regular model ContentType for non-polymorphic classes.

Defaults to "guardian.ctypes.get_default_content_type".

10 Chapter 4. Optional settings

https://docs.djangoproject.com/en/stable/topics/auth/customizing/#substituting-a-custom-user-model

guardian Documentation, Release 2.4.0

4.7 GUARDIAN_AUTO_PREFETCH

New in version 2.x.x.

For vanilla deployments using standard ContentType interfaces and default UserObjectPermission or
GroupObjectPermission models, Guardian can automatically prefetch all User permissions for all object types.
This can be useful when manual prefetching is not feasible due to a large number of model types resulting in O(n)
queries. This setting may not be compatible with non-standard deployments, and should only be used when non-
prefetched invocations would result in a large number of queries or when latency is particularly important.

Defaults to False.

4.8 GUARDIAN_USER_OBJ_PERMS_MODEL

New in version 2.x.x.

Allows the default UserObjectPermission model to be overridden by a custom model. The custom model needs
to minimally inherit from UserObjectPermissionAbstract. This is only automatically supported when set
at the start of a project. This is NOT supported after the start of a project. If the dependent libraries do not call
UserObjectPermission = get_user_obj_perms_model() for the model, then the dependent library
does not support this feature.

Define a custom user object permission model

from guardian.models import UserObjectPermissionAbstract
class BigUserObjectPermission(UserObjectPermissionAbstract):

id = models.BigAutoField(editable=False, unique=True, primary_key=True)
class Meta(UserObjectPermissionAbstract.Meta):

abstract = False
indexes = [

*UserObjectPermissionAbstract.Meta.indexes,
models.Index(fields=['content_type', 'object_pk', 'user']),

]

Configure guardian to use the custom model in settings.py

GUARDIAN_USER_OBJ_PERMS_MODEL = 'myapp.BigUserObjectPermission'

To access the model use get_user_obj_perms_model() with no parameters

from guardian.utils import get_user_obj_perms_model
UserObjectPermission = get_user_obj_perms_model()

Defaults to 'guardian.UserObjectPermission'.

4.9 GUARDIAN_GROUP_OBJ_PERMS_MODEL

New in version 2.x.x.

Allows the default GroupObjectPermission model to be overridden by a custom model. The custom model
needs to minimally inherit from GroupObjectPermissionAbstract. This is only automatically supported
when set at the start of a project. This is NOT supported after the start of a project. If the dependent libraries do
not call GroupObjectPermission = get_user_obj_perms_model() for the model, then the dependent
library does not support this feature.

4.7. GUARDIAN_AUTO_PREFETCH 11

guardian Documentation, Release 2.4.0

Define a custom user object permission model

from guardian.models import GroupObjectPermissionAbstract
class BigGroupObjectPermission(GroupObjectPermissionAbstract):

id = models.BigAutoField(editable=False, unique=True, primary_key=True)
class Meta(GroupObjectPermissionAbstract.Meta):

abstract = False
indexes = [

*GroupObjectPermissionAbstract.Meta.indexes,
models.Index(fields=['content_type', 'object_pk', 'group']),

]

Configure guardian to use the custom model in settings.py

GUARDIAN_GROUP_OBJ_PERMS_MODEL = 'myapp.BigGroupObjectPermission'

To access the model use get_user_obj_perms_model() with no parameters

from guardian.utils import get_user_obj_perms_model
GroupObjectPermission = get_user_obj_perms_model()

Defaults to 'guardian.GroupObjectPermission'.

12 Chapter 4. Optional settings

CHAPTER 5

User Guide

5.1 Example project

Example project should be bundled with archive and be available at example_project. Before you can run it, some
requirements have to be met. Those are easily installed using following command at example project’s directory:

$ cd example_project
$ pip install -r requirements.txt

django-guardian from a directory above the example_project is automatically added to Python path at
runtime.

And last thing before we can run example project is to create sqlite database:

$./manage.py migrate

Finally we can run dev server:

$./manage.py runserver

You should also create a user who can login to the admin site:

$./manage.py createsuperuser

Project is really basic and shows almost nothing but eventually it should expose some django-guardian function-
ality.

To try out django-grappelli integration, set the GRAPPELLI environment variable before launching runserver.

5.2 Assign object permissions

Assigning object permissions should be very simple once permissions are created for models.

13

https://django-grappelli.readthedocs.io/en/latest/

guardian Documentation, Release 2.4.0

5.2.1 Prepare permissions

Let’s assume we have following model:

class Task(models.Model):
summary = models.CharField(max_length=32)
content = models.TextField()
reported_by = models.ForeignKey(User, on_delete=models.CASCADE)
created_at = models.DateTimeField(auto_now_add=True)

. . . and we want to be able to set custom permission assign_task. We let Django know to do so by adding
permissions tuple to Meta class and our final model could look like:

class Task(models.Model):
summary = models.CharField(max_length=32)
content = models.TextField()
reported_by = models.ForeignKey(User, on_delete=models.CASCADE)
created_at = models.DateTimeField(auto_now_add=True)

class Meta:
permissions = (

('assign_task', 'Assign task'),
)

After we call management commands makemigrations and migrate our assign_task permission would be added
to default set of permissions.

Note: By default, Django adds 4 permissions for each registered model:

• add_modelname

• change_modelname

• delete_modelname

• view_modelname

(where modelname is a simplified name of our model’s class). See https://docs.djangoproject.com/en/stable/topics/
auth/default/#default-permissions for more detail.

There is nothing new here since creation of permissions is handled by django. Now we can move to assigning object
permissions.

5.2.2 Assign object permissions

We can assign permissions for any user/group and object pairs using same, convenient function: guardian.
shortcuts.assign_perm().

For user

Continuing our example we now can allow Joe user to assign some task:

>>> from django.contrib.auth.models import User
>>> boss = User.objects.create(username='Big Boss')
>>> joe = User.objects.create(username='joe')

(continues on next page)

14 Chapter 5. User Guide

https://docs.djangoproject.com/en/stable/topics/auth/default/#default-permissions
https://docs.djangoproject.com/en/stable/topics/auth/default/#default-permissions
https://docs.djangoproject.com/en/stable/topics/auth/

guardian Documentation, Release 2.4.0

(continued from previous page)

>>> task = Task.objects.create(summary='Some job', content='', reported_by=boss)
>>> joe.has_perm('assign_task', task)
False

Well, not so fast Joe, let us create an object permission finally:

>>> from guardian.shortcuts import assign_perm
>>> assign_perm('assign_task', joe, task)
>>> joe.has_perm('assign_task', task)
True

For group

This case doesn’t really differ from user permissions assignment. The only difference is we have to pass Group
instance rather than User.

>>> from django.contrib.auth.models import Group
>>> group = Group.objects.create(name='employees')
>>> assign_perm('change_task', group, task)
>>> joe.has_perm('change_task', task)
False
>>> # Well, joe is not yet within an *employees* group
>>> joe.groups.add(group)
>>> joe.has_perm('change_task', task)
True

Another example:

>>> from django.contrib.auth.models import User, Group
>>> from guardian.shortcuts import assign_perm
fictional companies
>>> company_a = Company.objects.create(name="Company A")
>>> company_b = Company.objects.create(name="Company B")
create groups
>>> company_user_group_a = Group.objects.create(name="Company User Group A")
>>> company_user_group_b = Group.objects.create(name="Company User Group B")
assign object specific permissions to groups
>>> assign_perm('change_company', company_user_group_a, company_a)
>>> assign_perm('change_company', company_user_group_b, company_b)
create user and add it to one group for testing
>>> user_a = User.objects.create(username="User A")
>>> user_a.groups.add(company_user_group_a)
>>> user_a.has_perm('change_company', company_a)
True
>>> user_a.has_perm('change_company', company_b)
False
>>> user_b = User.objects.create(username="User B")
>>> user_b.groups.add(company_user_group_b)
>>> user_b.has_perm('change_company', company_a)
False
>>> user_b.has_perm('change_company', company_b)
True

5.2. Assign object permissions 15

guardian Documentation, Release 2.4.0

5.2.3 Assigning Permissions inside Signals

Note that the Anonymous User is created before the Permissions are created. This may result in Django signals, e.g.
post_save being sent before the Permissions are created. You will need to take this into an account when processing
the signal.

@receiver(post_save, sender=User)
def user_post_save(sender, **kwargs):

"""
Create a Profile instance for all newly created User instances. We only
run on user creation to avoid having to check for existence on each call
to User.save.
"""
user, created = kwargs["instance"], kwargs["created"]
if created and user.username != settings.ANONYMOUS_USER_NAME:

from profiles.models import Profile
profile = Profile.objects.create(pk=user.pk, user=user, creator=user)
assign_perm("change_user", user, user)
assign_perm("change_profile", user, profile)

The check for user.username != settings.ANONYMOUS_USER_NAME is required otherwise the
assign_perm calls will occur when the Anonymous User is created, however before there are any permissions
available.

5.3 Check object permissions

Once we have assigned some permissions, we can get into detail about verifying permissions of a user or group.

5.3.1 Standard way

Normally to check if Joe is permitted to change Site objects we call has_perm method on an User instance:

>>> joe.has_perm('sites.change_site')
False

And for a specific Site instance we do the same but we pass site as additional argument:

>>> site = Site.objects.get_current()
>>> joe.has_perm('sites.change_site', site)
False

Let’s assign permission and check again:

>>> from guardian.shortcuts import assign_perm
>>> assign_perm('sites.change_site', joe, site)
<UserObjectPermission: example.com | joe | change_site>
>>> joe = User.objects.get(username='joe')
>>> joe.has_perm('sites.change_site', site)
True

This uses the backend we have specified at settings module (see Configuration). More on the backend can be found at
Backend's API.

16 Chapter 5. User Guide

guardian Documentation, Release 2.4.0

5.3.2 Inside views

Aside from the standard has_perm method, django-guardian provides some useful helpers for object permis-
sion checks.

get_perms

To check permissions we can use a quick-and-dirty shortcut:

>>> from guardian.shortcuts import get_perms
>>>
>>> joe = User.objects.get(username='joe')
>>> site = Site.objects.get_current()
>>>
>>> 'change_site' in get_perms(joe, site)
True

It is probably better to use standard has_perm method. But for Group instances it is not as easy and get_perms
could be handy here as it accepts both User and Group instances. If we need to do some more work, we can use
lower level ObjectPermissionChecker class which is described in the next section.

There is also get_user_perms to get permissions assigned directly to the user (and not inherited from its superuser
status or group membership). Similarly, get_group_perms returns only permissions which are inferred through
user’s group membership. get_user_perms and get_group_perms are useful when you care what permissions
user has assigned, while has_perm is useful when you care about user’s effective permissions.

get_objects_for_user

Sometimes there is a need to extract list of objects based on particular user, type of the object and provided permis-
sions. For instance, lets say there is a Project model at projects application with custom view_project
permission. We want to show our users projects they can actually view. This could be easily achieved using
get_objects_for_user:

from django.shortcuts import render
from django.template import RequestContext
from projects.models import Project
from guardian.shortcuts import get_objects_for_user

def user_dashboard(request, template_name='projects/dashboard.html'):
projects = get_objects_for_user(request.user, 'projects.view_project')
return render(request, template_name, {'projects': projects},

RequestContext(request))

It is also possible to provide list of permissions rather than single string, own queryset (as klass argument) or control
if result should be computed with (default) or without user’s groups permissions.

See also:

Documentation for get_objects_for_user

ObjectPermissionChecker

At the core module of django-guardian, there is a guardian.core.ObjectPermissionChecker
which checks permission of user/group for specific object. It caches results so it may be used at part of codes where
we check permissions more than once.

5.3. Check object permissions 17

guardian Documentation, Release 2.4.0

Let’s see it in action:

>>> joe = User.objects.get(username='joe')
>>> site = Site.objects.get_current()
>>> from guardian.core import ObjectPermissionChecker
>>> checker = ObjectPermissionChecker(joe) # we can pass user or group
>>> checker.has_perm('change_site', site)
True
>>> checker.has_perm('add_site', site) # no additional query made
False
>>> checker.get_perms(site)
[u'change_site']

Using decorators

Standard permission_required decorator doesn’t allow to check for object permissions. django-guardian
is shipped with two decorators which may be helpful for simple object permission checks but remember that those
decorators hits database before decorated view is called - this means that if there is similar lookup made within a view
then most probably one (or more, depending on lookups) extra database query would occur.

Let’s assume we pass 'group_name' argument to our view function which returns form to edit the group. Moreover,
we want to return 403 code if check fails. This can be simply achieved using permission_required_or_403
decorator:

>>> joe = User.objects.get(username='joe')
>>> foobars = Group.objects.create(name='foobars')
>>>
>>> from guardian.decorators import permission_required_or_403
>>> from django.http import HttpResponse
>>>
>>> @permission_required_or_403('auth.change_group',
>>> (Group, 'name', 'group_name'))
>>> def edit_group(request, group_name):
>>> return HttpResponse('some form')
>>>
>>> from django.http import HttpRequest
>>> request = HttpRequest()
>>> request.user = joe
>>> edit_group(request, group_name='foobars')
<django.http.HttpResponseForbidden object at 0x102b43dd0>
>>>
>>> joe.groups.add(foobars)
>>> edit_group(request, group_name='foobars')
<django.http.HttpResponseForbidden object at 0x102b43e50>
>>>
>>> from guardian.shortcuts import assign_perm
>>> assign_perm('auth.change_group', joe, foobars)
<UserObjectPermission: foobars | joe | change_group>
>>>
>>> edit_group(request, group_name='foobars')
<django.http.HttpResponse object at 0x102b8c8d0>
>>> # Note that we now get normal HttpResponse, not forbidden

More on decorators can be read at corresponding API page.

Note: Overall idea of decorators’ lookups was taken from django-authority and all credits go to it’s creator, Jannis

18 Chapter 5. User Guide

https://github.com/jazzband/django-authority

guardian Documentation, Release 2.4.0

Leidel.

5.3.3 Inside templates

django-guardian comes with special template tag guardian.templatetags.guardian_tags.
get_obj_perms() which can store object permissions for a given user/group and instance pair. In order to use it
we need to put following inside a template:

{% load guardian_tags %}

get_obj_perms

guardian.templatetags.guardian_tags.get_obj_perms(parser, token)
Returns a list of permissions (as codename strings) for a given user/group and obj (Model instance).

Parses get_obj_perms tag which should be in format:

{% get_obj_perms user/group for obj as "context_var" %}

Note: Make sure that you set and use those permissions in same template block ({% block %}).

Example of usage (assuming flatpage and perm objects are available from context):

{% get_obj_perms request.user for flatpage as "flatpage_perms" %}

{% if "delete_flatpage" in flatpage_perms %}
Remove page

{% endif %}

Note: Please remember that superusers would always get full list of permissions for a given object.

New in version 1.2.

As of v1.2, passing None as obj for this template tag won’t rise obfuscated exception and would return empty
permissions set instead.

5.4 Remove object permissions

Removing object permissions is as easy as assigning them. Just instead of guardian.shortcuts.
assign_perm() we would use guardian.shortcuts.remove_perm() function (it accepts same argu-
ments).

5.4.1 Example

Let’s get back to our fellow Joe:

5.4. Remove object permissions 19

guardian Documentation, Release 2.4.0

>>> site = Site.object.get_current()
>>> joe.has_perm('change_site', site)
True

Now, simply remove this permission:

>>> from guardian.shortcuts import remove_perm
>>> remove_perm('change_site', joe, site)
>>> joe = User.objects.get(username='joe')
>>> joe.has_perm('change_site', site)
False

5.5 Admin integration

Django comes with excellent and widely used Admin application. Basically, it provides content management for
Django applications. User with access to admin panel can manage users, groups, permissions and other data provided
by system.

django-guardian comes with simple object permissions management integration for Django’s admin application.

5.5.1 Usage

It is very easy to use admin integration. Simply use GuardedModelAdmin instead of standard django.
contrib.admin.ModelAdmin class for registering models within the admin. In example, look at following
model:

from django.db import models

class Post(models.Model):
title = models.CharField('title', max_length=64)
slug = models.SlugField(max_length=64)
content = models.TextField('content')
created_at = models.DateTimeField(auto_now_add=True, db_index=True)

class Meta:
permissions = (

('hide_post', 'Can hide post'),
)
get_latest_by = 'created_at'

def __str__(self):
return self.title

def get_absolute_url(self):
return {'post_slug': self.slug}

We want to register Post model within admin application. Normally, we would do this as follows within admin.py
file of our application:

from django.contrib import admin

from posts.models import Post

(continues on next page)

20 Chapter 5. User Guide

guardian Documentation, Release 2.4.0

(continued from previous page)

class PostAdmin(admin.ModelAdmin):
prepopulated_fields = {"slug": ("title",)}
list_display = ('title', 'slug', 'created_at')
search_fields = ('title', 'content')
ordering = ('-created_at',)
date_hierarchy = 'created_at'

admin.site.register(Post, PostAdmin)

If we would like to add object permissions management for Post model we would need to change PostAdmin base
class into GuardedModelAdmin. Our code could look as follows:

from django.contrib import admin

from posts.models import Post

from guardian.admin import GuardedModelAdmin

class PostAdmin(GuardedModelAdmin):
prepopulated_fields = {"slug": ("title",)}
list_display = ('title', 'slug', 'created_at')
search_fields = ('title', 'content')
ordering = ('-created_at',)
date_hierarchy = 'created_at'

admin.site.register(Post, PostAdmin)

And thats it. We can now navigate to change post page and just next to the history link we can click Object permissions
button to manage row level permissions.

Note: Example above is shipped with django-guardian package with the example project.

5.6 Custom User model

New in version 1.1.

Django comes with the ability to customize default auth.User model - either by subclassing AbstractUser or
defining very own class. This can be very powerful, it must be done with caution, though. Basically, if we subclass
AbstractUser or define many-to-many relation with auth.Group (and give reverse relate name groups) we
should be fine.

By default django-guardian monkey patches the user model to add some needed functionality. This can result in errors
if guardian is imported into the models.py of the same app where the custom user model lives.

To fix this, it is recommended to add the setting GUARDIAN_MONKEY_PATCH = False in your settings.py and
subclass guardian.mixins.GuardianUserMixin in your custom user model.

Important: django-guardian relies heavily on the auth.User model. Specifically it was build from the
ground-up with relation between auth.User and auth.Group models. Retaining this relation is crucial for

5.6. Custom User model 21

guardian Documentation, Release 2.4.0

guardian - without many to many User (custom or default) and auth.Group relation django-guardian will
BREAK.

See also:

Read more about customizing User model here: https://docs.djangoproject.com/en/stable/topics/auth/customizing/
#substituting-a-custom-user-model.

5.6.1 Anonymous user creation

It is also possible to override default behavior of how instance for anonymous user is created. In example, let’s imagine
we have our user model as follows:

from django.contrib.auth.models import AbstractUser
from django.db import models

class CustomUser(AbstractUser):
real_username = models.CharField(max_length=120, unique=True)
birth_date = models.DateField() # field without default value

USERNAME_FIELD = 'real_username'

Note that there is a birth_date field defined at the model and it does not have a default value. It would fail to create
anonymous user instance as default implementation cannot know anything about CustomUser model.

In order to override the way anonymous instance is created we need to make
GUARDIAN_GET_INIT_ANONYMOUS_USER pointing at our custom implementation. In example, let’s de-
fine our init function:

import datetime

def get_anonymous_user_instance(User):
return User(real_username='Anonymous', birth_date=datetime.date(1970, 1, 1))

and put it at myapp/models.py. Last step is to set proper configuration in our settings module:

GUARDIAN_GET_INIT_ANONYMOUS_USER = 'myapp.models.get_anonymous_user_instance'

5.7 Performance tuning

It is important to remember that by default django-guardian uses generic foreign keys to retain relation with any
Django model. For most cases, it’s probably good enough, however if we have a lot of queries being spanned and our
database seems to be choking it might be a good choice to use direct foreign keys. Let’s start with quick overview of
how generic solution work and then we will move on to the tuning part.

5.7.1 Default, generic solution

django-guardian comes with two models: UserObjectPermission and GroupObjectPermission.
They both have same, generic way of pointing to other models:

22 Chapter 5. User Guide

https://docs.djangoproject.com/en/stable/topics/auth/customizing/#substituting-a-custom-user-model
https://docs.djangoproject.com/en/stable/topics/auth/customizing/#substituting-a-custom-user-model

guardian Documentation, Release 2.4.0

• content_type field telling what table (model class) target permission references to (ContentType in-
stance)

• object_pk field storing value of target model instance primary key

• content_object field being a GenericForeignKey. Actually, it is not a foreign key in standard, re-
lational database meaning - it is simply a proxy that can retrieve proper model instance being targeted by two
previous fields

See also:

https://docs.djangoproject.com/en/stable/ref/contrib/contenttypes/#generic-relations

Let’s consider following model:

class Project(models.Model):
name = models.CharField(max_length=128, unique=True)

In order to add a change_project permission for joe user we would use assign_perm shortcut:

>>> from guardian.shortcuts import assign_perm
>>> project = Project.objects.get(name='Foobar')
>>> joe = User.objects.get(username='joe')
>>> assign_perm('change_project', joe, project)

What it really does is: create an instance of UserObjectPermission. Something similar to:

>>> content_type = ContentType.objects.get_for_model(Project)
>>> perm = Permission.objects.get(content_type__app_label='app',
... codename='change_project')
>>> UserObjectPermission.objects.create(user=joe, content_type=content_type,
... permission=perm, object_pk=project.pk)

As there are no real foreign keys pointing at the target model, this solution might not be enough for all cases. For
example, if we try to build an issues tracking service and we’d like to be able to support thousands of users and their
project/tickets, object level permission checks can be slow with this generic solution.

5.7.2 Direct foreign keys

New in version 1.1.

In order to make our permission checks faster we can use direct foreign key solution. It actually is very simple to setup
- we need to declare two new models next to our Project model, one for User and one for Group models:

from guardian.models import UserObjectPermissionBase
from guardian.models import GroupObjectPermissionBase

class Project(models.Model):
name = models.CharField(max_length=128, unique=True)

class ProjectUserObjectPermission(UserObjectPermissionBase):
content_object = models.ForeignKey(Project, on_delete=models.CASCADE)

class ProjectGroupObjectPermission(GroupObjectPermissionBase):
content_object = models.ForeignKey(Project, on_delete=models.CASCADE)

5.7. Performance tuning 23

https://docs.djangoproject.com/en/stable/ref/contrib/contenttypes/#generic-relations

guardian Documentation, Release 2.4.0

Important: Name of the ForeignKey field is important and it should be content_object as underlying queries
depends on it.

From now on, guardian will figure out that Project model has direct relation for user/group object permissions
and will use those models. It is also possible to use only user or only group-based direct relation, however it is
discouraged (it’s not consistent and might be a quick road to hell from the maintainence point of view, especially).

To temporarily disable the detection of this direct relation model, add enabled = False to the object permission
model classes. This is useful to allow the ORM to create the tables for you and for you to migrate data from the generic
model tables before using the direct models.

Note: By defining direct relation models we can also tweak that object permission model, i.e. by adding some fields.

5.7.3 Prefetching permissions

New in version 1.4.3.

Naively looping through objects and checking permissions on each one using has_perms results in a permissions
lookup in the database for each object. Large numbers of objects therefore produce large numbers of database queries
which can considerably slow down your app. To avoid this, create an ObjectPermissionChecker and use its
prefetch_perms method before looping through the objects. This will do a single lookup for all the objects and
cache the results.

from guardian.core import ObjectPermissionChecker

joe = User.objects.get(username='joe')
projects = Project.objects.all()
checker = ObjectPermissionChecker(joe)

Prefetch the permissions
checker.prefetch_perms(projects)

for project in projects:
No additional lookups needed to check permissions
checker.has_perm('change_project', project)

5.8 Caveats

5.8.1 Orphaned object permissions

Note the following does not apply if using direct foreign keys, as documented in Direct foreign keys.

Permissions, including so called per object permissions, are sometimes tricky to manage. One case is how we can
manage permissions that are no longer used. Normally, there should be no problems, however with some particular
setup it is possible to reuse primary keys of database models which were used in the past once. We will not answer
how bad such situation can be - instead we will try to cover how we can deal with this.

Let’s imagine our table has primary key to the filesystem path. We have a record with pk equal to /home/www/
joe.config. User jane has read access to joe’s configuration and we store that information in database by creating
guardian’s object permissions. Now, joe user removes account from our site and another user creates account with

24 Chapter 5. User Guide

guardian Documentation, Release 2.4.0

joe as username. The problem is that if we haven’t removed object permissions explicitly in the process of first joe
account removal, jane still has read permissions for joe’s configuration file - but this is another user.

There is no easy way to deal with orphaned permissions as they are not foreign keyed with objects directly. Even if
they would, there are some database engines - or ON DELETE rules - which restricts removal of related objects.

Important: It is extremely important to remove UserObjectPermission and GroupObjectPermission
as we delete objects for which permissions are defined.

Guardian comes with utility function which tries to help to remove orphaned object permissions. Remember - those
are only helpers. Applications should remove those object permissions explicitly by itself.

Taking our previous example, our application should remove user object for joe, however, permisions for joe user
assigned to jane would NOT be removed. In this case, it would be very easy to remove user/group object permissions
if we connect proper action with proper signal. This could be achieved by following snippet:

from django.contrib.contenttypes.models import ContentType
from django.db.models import Q
from django.db.models.signals import pre_delete
from guardian.models import User
from guardian.models import UserObjectPermission
from guardian.models import GroupObjectPermission

def remove_obj_perms_connected_with_user(sender, instance, **kwargs):
filters = Q(content_type=ContentType.objects.get_for_model(instance),

object_pk=instance.pk)
UserObjectPermission.objects.filter(filters).delete()
GroupObjectPermission.objects.filter(filters).delete()

pre_delete.connect(remove_obj_perms_connected_with_user, sender=User)

This signal handler would remove all object permissions connected with user just before user is actually removed.

If we forgot to add such handlers, we may still remove orphaned object permissions by using
clean_orphan_obj_perms command. If our application uses celery, it is also very easy to remove orphaned
permissions periodically with guardian.utils.clean_orphan_obj_perms() function. We would still
strongly advise to remove orphaned object permissions explicitly (i.e. at view that confirms object removal or us-
ing signals as described above).

See also:

• guardian.utils.clean_orphan_obj_perms()

• clean_orphan_obj_perms

5.8.2 Using multiple databases

This is not supported at present time due to a Django bug. See 288 and 16281.

5.8. Caveats 25

http://www.celeryproject.org/
https://github.com/django-guardian/django-guardian/issues/288
https://code.djangoproject.com/ticket/16281

guardian Documentation, Release 2.4.0

26 Chapter 5. User Guide

CHAPTER 6

API Reference

6.1 Admin

6.1.1 GuardedModelAdmin

class guardian.admin.GuardedModelAdmin(model, admin_site)
Extends django.contrib.admin.ModelAdmin class. Provides some extra views for object permis-
sions management at admin panel. It also changes default change_form_template option to 'admin/
guardian/model/change_form.html' which is required for proper url (object permissions related)
being shown at the model pages.

Extra options

GuardedModelAdmin.obj_perms_manage_template

Default: admin/guardian/model/obj_perms_manage.html

GuardedModelAdmin.obj_perms_manage_user_template

Default: admin/guardian/model/obj_perms_manage_user.html

GuardedModelAdmin.obj_perms_manage_group_template

Default: admin/guardian/model/obj_perms_manage_group.html

GuardedModelAdmin.user_can_access_owned_objects_only

Default: False

If this would be set to True, request.user would be used to filter out objects he or
she doesn’t own (checking user field of used model - field name may be overridden by
user_owned_objects_field option).

Note: Please remember that this will NOT affect superusers! Admins would still see all items.

GuardedModelAdmin.user_can_access_owned_by_group_objects_only

27

guardian Documentation, Release 2.4.0

Default: False

If this would be set to True, request.user would be used to filter out objects her or his group
doesn’t own (checking if any group user belongs to is set as group field of the object; name of the
field can be changed by overriding group_owned_objects_field).

Note: Please remember that this will NOT affect superusers! Admins would still see all items.

GuardedModelAdmin.group_owned_objects_field

Default: group

GuardedModelAdmin.include_object_permissions_urls

Default: True

New in version 1.2.

Might be set to False in order NOT to include guardian-specific urls.

Usage example

Just use GuardedModelAdmin instead of django.contrib.admin.ModelAdmin.

from django.contrib import admin
from guardian.admin import GuardedModelAdmin
from myapp.models import Author

class AuthorAdmin(GuardedModelAdmin):
pass

admin.site.register(Author, AuthorAdmin)

6.1.2 GuardedModelAdminMixin

class guardian.admin.GuardedModelAdminMixin
Serves as a helper for custom subclassing admin.ModelAdmin.

get_obj_perms_base_context(request, obj)
Returns context dictionary with common admin and object permissions related content. It uses Admin-
Site.each_context, making sure all required template vars are in the context.

get_obj_perms_group_select_form(request)
Returns form class for selecting a group for permissions management. By default GroupManage is
returned.

get_obj_perms_manage_group_form(request)
Returns form class for group object permissions management. By default
AdminGroupObjectPermissionsForm is returned.

get_obj_perms_manage_group_template()
Returns object permissions for group admin template. May be overridden if need to change it dynamically.

Note: If INSTALLED_APPS contains grappelli this function would return "admin/guardian/
grappelli/obj_perms_manage_group.html".

28 Chapter 6. API Reference

guardian Documentation, Release 2.4.0

get_obj_perms_manage_template()
Returns main object permissions admin template. May be overridden if need to change it dynamically.

Note: If INSTALLED_APPS contains grappelli this function would return "admin/guardian/
grappelli/obj_perms_manage.html".

get_obj_perms_manage_user_form(request)
Returns form class for user object permissions management. By default
AdminUserObjectPermissionsForm is returned.

get_obj_perms_manage_user_template()
Returns object permissions for user admin template. May be overridden if need to change it dynamically.

Note: If INSTALLED_APPS contains grappelli this function would return "admin/guardian/
grappelli/obj_perms_manage_user.html".

get_obj_perms_user_select_form(request)
Returns form class for selecting a user for permissions management. By default UserManage is returned.

get_urls()
Extends standard admin model urls with the following:

• .../permissions/ under app_mdodel_permissions url name (params: object_pk)

• .../permissions/user-manage/<user_id>/ under app_model_permissions_manage_user
url name (params: object_pk, user_pk)

• .../permissions/group-manage/<group_id>/ under app_model_permissions_manage_group
url name (params: object_pk, group_pk)

Note: ... above are standard, instance detail url (i.e. /admin/flatpages/1/)

obj_perms_manage_group_view(request, object_pk, group_id)
Manages selected groups’ permissions for current object.

obj_perms_manage_user_view(request, object_pk, user_id)
Manages selected users’ permissions for current object.

obj_perms_manage_view(request, object_pk)
Main object permissions view. Presents all users and groups with any object permissions for the current
model instance. Users or groups without object permissions for related instance would not be shown. In
order to add or manage user or group one should use links or forms presented within the page.

6.2 Backends

6.2.1 ObjectPermissionBackend

class guardian.backends.ObjectPermissionBackend

get_all_permissions(user_obj, obj=None)
Returns a set of permission strings that the given user_obj has for obj

6.2. Backends 29

guardian Documentation, Release 2.4.0

has_perm(user_obj, perm, obj=None)
Returns True if given user_obj has perm for obj. If no obj is given, False is returned.

Note: Remember, that if user is not active, all checks would return False.

Main difference between Django’s ModelBackend is that we can pass obj instance here and perm
doesn’t have to contain app_label as it can be retrieved from given obj.

Inactive user support

If user is authenticated but inactive at the same time, all checks always returns False.

6.3 Core

6.3.1 ObjectPermissionChecker

class guardian.core.ObjectPermissionChecker(user_or_group=None)
Generic object permissions checker class being the heart of django-guardian.

Note: Once checked for single object, permissions are stored and we don’t hit database again if another check
is called for this object. This is great for templates, views or other request based checks (assuming we don’t
have hundreds of permissions on a single object as we fetch all permissions for checked object).

On the other hand, if we call has_perm for perm1/object1, then we change permission state and call
has_perm again for same perm1/object1 on same instance of ObjectPermissionChecker we won’t see a differ-
ence as permissions are already fetched and stored within cache dictionary.

Constructor for ObjectPermissionChecker.

Parameters user_or_group – should be an User, AnonymousUser or Group instance

get_local_cache_key(obj)
Returns cache key for _obj_perms_cache dict.

get_perms(obj)
Returns list of codename’s of all permissions for given obj.

Parameters obj – Django model instance for which permission should be checked

has_perm(perm, obj)
Checks if user/group has given permission for object.

Parameters

• perm – permission as string, may or may not contain app_label prefix (if not prefixed, we
grab app_label from obj)

• obj – Django model instance for which permission should be checked

prefetch_perms(objects)
Prefetches the permissions for objects in objects and puts them in the cache.

Parameters objects – Iterable of Django model objects

30 Chapter 6. API Reference

guardian Documentation, Release 2.4.0

6.4 Decorators

6.4.1 permission_required

guardian.decorators.permission_required(perm, lookup_variables=None, **kwargs)
Decorator for views that checks whether a user has a particular permission enabled.

Optionally, instances for which check should be made may be passed as an second argument or as a tuple
parameters same as those passed to get_object_or_404 but must be provided as pairs of strings. This way
decorator can fetch i.e. User instance based on performed request and check permissions on it (without this,
one would need to fetch user instance at view’s logic and check permission inside a view).

Parameters

• login_url – if denied, user would be redirected to location set by this parameter. Defaults
to django.conf.settings.LOGIN_URL.

• redirect_field_name – name of the parameter passed if redirected. Defaults to
django.contrib.auth.REDIRECT_FIELD_NAME.

• return_403 – if set to True then instead of redirecting to the login page, response with
status code 403 is returned (django.http.HttpResponseForbidden instance or
rendered template - see GUARDIAN_RENDER_403). Defaults to False.

• return_404 – if set to True then instead of redirecting to the login page, response with
status code 404 is returned (django.http.HttpResponseNotFound instance or
rendered template - see GUARDIAN_RENDER_404). Defaults to False.

• accept_global_perms – if set to True, then object level permission would be re-
quired only if user does NOT have global permission for target model. If turned
on, makes this decorator like an extension over standard django.contrib.admin.
decorators.permission_required as it would check for global permissions first.
Defaults to False.

Examples:

@permission_required('auth.change_user', return_403=True)
def my_view(request):

return HttpResponse('Hello')

@permission_required('auth.change_user', (User, 'username', 'username'))
def my_view(request, username):

'''
auth.change_user permission would be checked based on given
'username'. If view's parameter would be named ``name``, we would
rather use following decorator::

@permission_required('auth.change_user', (User, 'username', 'name'))
'''
user = get_object_or_404(User, username=username)
return user.get_absolute_url()

@permission_required('auth.change_user',
(User, 'username', 'username', 'groups__name', 'group_name'))

def my_view(request, username, group_name):
'''
Similar to the above example, here however we also make sure that
one of user's group is named same as request's ``group_name`` param.

(continues on next page)

6.4. Decorators 31

guardian Documentation, Release 2.4.0

(continued from previous page)

'''
user = get_object_or_404(User, username=username,

group__name=group_name)
return user.get_absolute_url()

6.4.2 permission_required_or_403

guardian.decorators.permission_required_or_403(perm, *args, **kwargs)
Simple wrapper for permission_required decorator.

Standard Django’s permission_required decorator redirects user to login page in case permission check failed.
This decorator may be used to return HttpResponseForbidden (status 403) instead of redirection.

The only difference between permission_required decorator is that this one always set return_403
parameter to True.

6.5 Forms

6.5.1 UserObjectPermissionsForm

class guardian.forms.UserObjectPermissionsForm(user, *args, **kwargs)
Bases: guardian.forms.BaseObjectPermissionsForm

Object level permissions management form for usage with User instances.

Example usage:

from django.shortcuts import get_object_or_404
from myapp.models import Post
from guardian.forms import UserObjectPermissionsForm
from django.contrib.auth.models import User

def my_view(request, post_slug, user_id):
user = get_object_or_404(User, id=user_id)
post = get_object_or_404(Post, slug=post_slug)
form = UserObjectPermissionsForm(user, post, request.POST or None)
if request.method == 'POST' and form.is_valid():

form.save_obj_perms()
...

get_obj_perms_field_initial()
Returns initial object permissions management field choices. Default: [] (empty list).

save_obj_perms()
Saves selected object permissions by creating new ones and removing those which were not selected but
already exists.

Should be called after form is validated.

6.5.2 GroupObjectPermissionsForm

class guardian.forms.GroupObjectPermissionsForm(group, *args, **kwargs)
Bases: guardian.forms.BaseObjectPermissionsForm

32 Chapter 6. API Reference

guardian Documentation, Release 2.4.0

Object level permissions management form for usage with Group instances.

Example usage:

from django.shortcuts import get_object_or_404
from myapp.models import Post
from guardian.forms import GroupObjectPermissionsForm
from guardian.models import Group

def my_view(request, post_slug, group_id):
group = get_object_or_404(Group, id=group_id)
post = get_object_or_404(Post, slug=post_slug)
form = GroupObjectPermissionsForm(group, post, request.POST or None)
if request.method == 'POST' and form.is_valid():

form.save_obj_perms()
...

get_obj_perms_field_initial()
Returns initial object permissions management field choices. Default: [] (empty list).

save_obj_perms()
Saves selected object permissions by creating new ones and removing those which were not selected but
already exists.

Should be called after form is validated.

6.5.3 BaseObjectPermissionsForm

class guardian.forms.BaseObjectPermissionsForm(obj, *args, **kwargs)
Base form for object permissions management. Needs to be extended for usage with users and/or groups.

Constructor for BaseObjectPermissionsForm.

Parameters obj – Any instance which form would use to manage object permissions”

are_obj_perms_required()
Indicates if at least one object permission should be required. Default: False.

get_obj_perms_field()
Returns field instance for object permissions management. May be replaced entirely.

get_obj_perms_field_choices()
Returns choices for object permissions management field. Default: list of tuples (codename, name)
for each Permission instance for the managed object.

get_obj_perms_field_class()
Returns object permissions management field’s base class. Default: django.forms.
MultipleChoiceField.

get_obj_perms_field_initial()
Returns initial object permissions management field choices. Default: [] (empty list).

get_obj_perms_field_label()
Returns label of the object permissions management field. Defualt: _("Permissions") (marked to be
translated).

get_obj_perms_field_name()
Returns name of the object permissions management field. Default: permission.

6.5. Forms 33

guardian Documentation, Release 2.4.0

get_obj_perms_field_widget()
Returns object permissions management field’s widget base class. Default: django.forms.
SelectMultiple.

save_obj_perms()
Must be implemented in concrete form class. This method should store selected object permissions.

6.6 Management commands

class guardian.management.commands.clean_orphan_obj_perms.Command(stdout=None,
stderr=None,
no_color=False,
force_color=False)

clean_orphan_obj_perms command is a tiny wrapper around guardian.utils.
clean_orphan_obj_perms().

Usage:

$ python manage.py clean_orphan_obj_perms
Removed 11 object permission entries with no targets

6.7 Managers

6.7.1 UserObjectPermissionManager

class guardian.managers.UserObjectPermissionManager

6.7.2 GroupObjectPermissionManager

class guardian.managers.GroupObjectPermissionManager

6.8 Mixins

New in version 1.0.4.

6.8.1 LoginRequiredMixin

class guardian.mixins.LoginRequiredMixin
A login required mixin for use with class based views. This Class is a light wrapper around the login_required
decorator and hence function parameters are just attributes defined on the class.

Due to parent class order traversal this mixin must be added as the left most mixin of a view.

The mixin has exactly the same flow as login_required decorator:

If the user isn’t logged in, redirect to settings.LOGIN_URL, passing the current absolute path in
the query string. Example: /accounts/login/?next=/polls/3/.

If the user is logged in, execute the view normally. The view code is free to assume the user is logged
in.

34 Chapter 6. API Reference

guardian Documentation, Release 2.4.0

Class Settings

LoginRequiredMixin.redirect_field_name

Default: 'next'

LoginRequiredMixin.login_url

Default: settings.LOGIN_URL

6.8.2 PermissionRequiredMixin

class guardian.mixins.PermissionRequiredMixin
A view mixin that verifies if the current logged in user has the specified permission by wrapping the request.
user.has_perm(..) method.

If a get_object() method is defined either manually or by including another mixin (for example
SingleObjectMixin) or self.object is defined then the permission will be tested against that spe-
cific instance, alternatively you can specify get_permission_object() method if self.object or get_object()
does not return the object against you want to test permission

The mixin does the following:

If the user isn’t logged in, redirect to settings.LOGIN_URL, passing the current absolute path in the
query string. Example: /accounts/login/?next=/polls/3/.

If the raise_exception is set to True than rather than redirect to login page a PermissionDenied (403)
is raised.

If the user is logged in, and passes the permission check than the view is executed normally.

Example Usage:

class SecureView(PermissionRequiredMixin, View):
...
permission_required = 'auth.change_user'
...

Class Settings

PermissionRequiredMixin.permission_required

Default: None, must be set to either a string or list of strings in format:
<app_label>.<permission_codename>.

PermissionRequiredMixin.login_url

Default: settings.LOGIN_URL

PermissionRequiredMixin.redirect_field_name

Default: 'next'

PermissionRequiredMixin.return_403

Default: False. Returns 403 error page instead of redirecting user.

PermissionRequiredMixin.return_404

Default: False. Returns 404 error page instead of redirecting user.

PermissionRequiredMixin.raise_exception

Default: False

6.8. Mixins 35

guardian Documentation, Release 2.4.0

permission_required - the permission to check of form “<app_label>.<permission codename>”
i.e. ‘polls.can_vote’ for a permission on a model in the polls application.

PermissionRequiredMixin.accept_global_perms

Default: False, If accept_global_perms would be set to True, then mixing would first check
for global perms, if none found, then it will proceed to check object level permissions.

PermissionRequiredMixin.permission_object Default: (not set), object against which test
the permission; if not set fallback to self.get_permission_object() which return self.
get_object() or self.object by default.

PermissionRequiredMixin.any_perm

Default: False. if True, any of permission in sequence is accepted.

check_permissions(request)
Checks if request.user has all permissions returned by get_required_permissions method.

Parameters request – Original request.

get_required_permissions(request=None)
Returns list of permissions in format <app_label>.<codename> that should be checked against re-
quest.user and object. By default, it returns list from permission_required attribute.

Parameters request – Original request.

on_permission_check_fail(request, response, obj=None)
Method called upon permission check fail. By default it does nothing and should be overridden, if needed.

Parameters

• request – Original request

• response – 403 response returned by check_permissions method.

• obj – Object that was fetched from the view (using get_object method or object
attribute, in that order).

6.8.3 PermissionListMixin

class guardian.mixins.PermissionListMixin
A view mixin that filter object in queryset for the current logged by required permission.

Example Usage:

class SecureView(PermissionListMixin, ListView):
...
permission_required = 'articles.view_article'
...

or:

class SecureView(PermissionListMixin, ListView):
...
permission_required = 'auth.change_user'
get_objects_for_user_extra_kwargs = {'use_groups': False}
...

36 Chapter 6. API Reference

guardian Documentation, Release 2.4.0

Class Settings

PermissionListMixin.permission_required

Default: None, must be set to either a string or list of strings in format:
<app_label>.<permission_codename>.

PermissionListMixin.get_objects_for_user_extra_kwargs

Default: {}, A extra params to pass for `guardian.shortcuts.
get_objects_for_user`

get_get_objects_for_user_kwargs(queryset)
Returns dict of kwargs that should be pass to `get_objects_for_user`.

Parameters request – Queryset to filter

get_required_permissions(request=None)
Returns list of permissions in format <app_label>.<codename> that should be checked against re-
quest.user and object. By default, it returns list from permission_required attribute.

Parameters request – Original request.

6.9 Models

6.9.1 BaseObjectPermission

class guardian.models.BaseObjectPermission(*args, **kwargs)
Abstract ObjectPermission class. Actual class should additionally define a content_object field and either
user or group field.

save(*args, **kwargs)
Save the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL
insert or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

6.9.2 UserObjectPermission

class guardian.models.UserObjectPermission(id, permission, content_type, object_pk, user)

exception DoesNotExist

exception MultipleObjectsReturned

6.9.3 GroupObjectPermission

class guardian.models.GroupObjectPermission(id, permission, content_type, object_pk,
group)

exception DoesNotExist

exception MultipleObjectsReturned

6.9. Models 37

guardian Documentation, Release 2.4.0

6.10 Shortcuts

Convenient shortcuts to manage or check object permissions.

6.10.1 assign_perm

guardian.shortcuts.assign_perm(perm, user_or_group, obj=None)
Assigns permission to user/group and object pair.

Parameters

• perm – proper permission for given obj, as string (in format: app_label.codename
or codename) or Permission instance. If obj is not given, must be in format
app_label.codename or Permission instance.

• user_or_group – instance of User, AnonymousUser, Group, list of User or
Group, or queryset of User or Group; passing any other object would raise guardian.
exceptions.NotUserNorGroup exception

• obj – persisted Django’s Model instance or QuerySet of Django Model instances or list
of Django Model instances or None if assigning global permission. Default is None.

We can assign permission for Model instance for specific user:

>>> from django.contrib.sites.models import Site
>>> from guardian.models import User
>>> from guardian.shortcuts import assign_perm
>>> site = Site.objects.get_current()
>>> user = User.objects.create(username='joe')
>>> assign_perm("change_site", user, site)
<UserObjectPermission: example.com | joe | change_site>
>>> user.has_perm("change_site", site)
True

. . . or we can assign permission for group:

>>> group = Group.objects.create(name='joe-group')
>>> user.groups.add(group)
>>> assign_perm("delete_site", group, site)
<GroupObjectPermission: example.com | joe-group | delete_site>
>>> user.has_perm("delete_site", site)
True

Global permissions

This function may also be used to assign standard, global permissions if obj parameter is omitted. Added
Permission would be returned in that case:

>>> assign_perm("sites.change_site", user)
<Permission: sites | site | Can change site>

6.10.2 remove_perm

guardian.shortcuts.remove_perm(perm, user_or_group=None, obj=None)
Removes permission from user/group and object pair.

Parameters

38 Chapter 6. API Reference

guardian Documentation, Release 2.4.0

• perm – proper permission for given obj, as string (in format: app_label.codename
or codename). If obj is not given, must be in format app_label.codename.

• user_or_group – instance of User, AnonymousUser or Group; passing any other
object would raise guardian.exceptions.NotUserNorGroup exception

• obj – persisted Django’s Model instance or QuerySet of Django Model instances or None
if assigning global permission. Default is None.

6.10.3 get_perms

guardian.shortcuts.get_perms(user_or_group, obj)
Returns permissions for given user/group and object pair, as list of strings.

6.10.4 get_user_perms

guardian.shortcuts.get_user_perms(user, obj)
Returns permissions for given user and object pair, as list of strings, only those assigned directly for the user.

6.10.5 get_group_perms

guardian.shortcuts.get_group_perms(user_or_group, obj)
Returns permissions for given user/group and object pair, as list of strings. It returns only those which are
inferred through groups.

6.10.6 get_perms_for_model

guardian.shortcuts.get_perms_for_model(cls)
Returns queryset of all Permission objects for the given class. It is possible to pass Model as class or instance.

6.10.7 get_users_with_perms

guardian.shortcuts.get_users_with_perms(obj, attach_perms=False,
with_superusers=False, with_group_users=True,
only_with_perms_in=None)

Returns queryset of all User objects with any object permissions for the given obj.

Parameters

• obj – persisted Django’s Model instance

• attach_perms – Default: False. If set to True result would be dictionary of User
instances with permissions’ codenames list as values. This would fetch users eagerly!

• with_superusers – Default: False. If set to True result would contain all supe-
rusers.

• with_group_users – Default: True. If set to False result would not contain those
users who have only group permissions for given obj.

• only_with_perms_in – Default: None. If set to an iterable of permission strings then
only users with those permissions would be returned.

Example:

6.10. Shortcuts 39

guardian Documentation, Release 2.4.0

>>> from django.contrib.flatpages.models import FlatPage
>>> from django.contrib.auth.models import User
>>> from guardian.shortcuts import assign_perm, get_users_with_perms
>>>
>>> page = FlatPage.objects.create(title='Some page', path='/some/page/')
>>> joe = User.objects.create_user('joe', 'joe@example.com', 'joesecret')
>>> dan = User.objects.create_user('dan', 'dan@example.com', 'dansecret')
>>> assign_perm('change_flatpage', joe, page)
>>> assign_perm('delete_flatpage', dan, page)
>>>
>>> get_users_with_perms(page)
[<User: joe>, <User: dan>]
>>>
>>> get_users_with_perms(page, attach_perms=True)
{<User: joe>: [u'change_flatpage'], <User: dan>: [u'delete_flatpage']}
>>> get_users_with_perms(page, only_with_perms_in=['change_flatpage'])
[<User: joe>]

6.10.8 get_groups_with_perms

guardian.shortcuts.get_groups_with_perms(obj, attach_perms=False)
Returns queryset of all Group objects with any object permissions for the given obj.

Parameters

• obj – persisted Django’s Model instance

• attach_perms – Default: False. If set to True result would be dictionary of Group
instances with permissions’ codenames list as values. This would fetch groups eagerly!

Example:

>>> from django.contrib.flatpages.models import FlatPage
>>> from guardian.shortcuts import assign_perm, get_groups_with_perms
>>> from guardian.models import Group
>>>
>>> page = FlatPage.objects.create(title='Some page', path='/some/page/')
>>> admins = Group.objects.create(name='Admins')
>>> assign_perm('change_flatpage', admins, page)
>>>
>>> get_groups_with_perms(page)
[<Group: admins>]
>>>
>>> get_groups_with_perms(page, attach_perms=True)
{<Group: admins>: [u'change_flatpage']}

6.10.9 get_objects_for_user

guardian.shortcuts.get_objects_for_user(user, perms, klass=None, use_groups=True,
any_perm=False, with_superuser=True, ac-
cept_global_perms=True)

Returns queryset of objects for which a given user has all permissions present at perms.

Parameters

• user – User or AnonymousUser instance for which objects would be returned.

40 Chapter 6. API Reference

guardian Documentation, Release 2.4.0

• perms – single permission string, or sequence of permission strings which should be
checked. If klass parameter is not given, those should be full permission names rather
than only codenames (i.e. auth.change_user). If more than one permission is present
within sequence, their content type must be the same or MixedContentTypeError
exception would be raised.

• klass – may be a Model, Manager or QuerySet object. If not given this parameter would
be computed based on given params.

• use_groups – if False, wouldn’t check user’s groups object permissions. Default is
True.

• any_perm – if True, any of permission in sequence is accepted. Default is False.

• with_superuser – if True and if user.is_superuser is set, returns the entire
queryset. Otherwise will only return objects the user has explicit permissions. This must be
True for the accept_global_perms parameter to have any affect. Default is True.

• accept_global_perms – if True takes global permissions into account. Object based
permissions are taken into account if more than one permission is handed in in perms and at
least one of these perms is not globally set. If any_perm is set to false then the intersection of
matching object is returned. Note, that if with_superuser is False, accept_global_perms will
be ignored, which means that only object permissions will be checked! Default is True.

Raises

• MixedContentTypeError – when computed content type for perms and/or klass
clashes.

• WrongAppError – if cannot compute app label for given perms/ klass.

Example:

>>> from django.contrib.auth.models import User
>>> from guardian.shortcuts import get_objects_for_user
>>> joe = User.objects.get(username='joe')
>>> get_objects_for_user(joe, 'auth.change_group')
[]
>>> from guardian.shortcuts import assign_perm
>>> group = Group.objects.create('some group')
>>> assign_perm('auth.change_group', joe, group)
>>> get_objects_for_user(joe, 'auth.change_group')
[<Group some group>]

The permission string can also be an iterable. Continuing with the previous example:

>>> get_objects_for_user(joe, ['auth.change_group', 'auth.delete_group'])
[]
>>> get_objects_for_user(joe, ['auth.change_group', 'auth.delete_group'], any_
→˓perm=True)
[<Group some group>]
>>> assign_perm('auth.delete_group', joe, group)
>>> get_objects_for_user(joe, ['auth.change_group', 'auth.delete_group'])
[<Group some group>]

Take global permissions into account:

>>> jack = User.objects.get(username='jack')
>>> assign_perm('auth.change_group', jack) # this will set a global permission
>>> get_objects_for_user(jack, 'auth.change_group')

(continues on next page)

6.10. Shortcuts 41

guardian Documentation, Release 2.4.0

(continued from previous page)

[<Group some group>]
>>> group2 = Group.objects.create('other group')
>>> assign_perm('auth.delete_group', jack, group2)
>>> get_objects_for_user(jack, ['auth.change_group', 'auth.delete_group']) # this
→˓retrieves intersection
[<Group other group>]
>>> get_objects_for_user(jack, ['auth.change_group', 'auth.delete_group'], any_
→˓perm) # this retrieves union
[<Group some group>, <Group other group>]

If accept_global_perms is set to True, then all assigned global permissions will also be taken into account.

• Scenario 1: a user has view permissions generally defined on the model ‘books’ but no object based
permission on a single book instance:

– If accept_global_perms is True: List of all books will be returned.

– If accept_global_perms is False: list will be empty.

• Scenario 2: a user has view permissions generally defined on the model ‘books’ and also has an object
based permission to view book ‘Whatever’:

– If accept_global_perms is True: List of all books will be returned.

– If accept_global_perms is False: list will only contain book ‘Whatever’.

• Scenario 3: a user only has object based permission on book ‘Whatever’:

– If accept_global_perms is True: List will only contain book ‘Whatever’.

– If accept_global_perms is False: List will only contain book ‘Whatever’.

• Scenario 4: a user does not have any permission:

– If accept_global_perms is True: Empty list.

– If accept_global_perms is False: Empty list.

6.10.10 get_objects_for_group

guardian.shortcuts.get_objects_for_group(group, perms, klass=None, any_perm=False, ac-
cept_global_perms=True)

Returns queryset of objects for which a given group has all permissions present at perms.

Parameters

• group – Group instance for which objects would be returned.

• perms – single permission string, or sequence of permission strings which should be
checked. If klass parameter is not given, those should be full permission names rather
than only codenames (i.e. auth.change_user). If more than one permission is present
within sequence, their content type must be the same or MixedContentTypeError
exception would be raised.

• klass – may be a Model, Manager or QuerySet object. If not given this parameter would
be computed based on given params.

• any_perm – if True, any of permission in sequence is accepted

• accept_global_perms – if True takes global permissions into account. If any_perm
is set to false then the intersection of matching objects based on global and object based
permissions is returned. Default is True.

42 Chapter 6. API Reference

guardian Documentation, Release 2.4.0

Raises

• MixedContentTypeError – when computed content type for perms and/or klass
clashes.

• WrongAppError – if cannot compute app label for given perms/ klass.

Example:

Let’s assume we have a Task model belonging to the tasker app with the default add_task, change_task and
delete_task permissions provided by Django:

>>> from guardian.shortcuts import get_objects_for_group
>>> from tasker import Task
>>> group = Group.objects.create('some group')
>>> task = Task.objects.create('some task')
>>> get_objects_for_group(group, 'tasker.add_task')
[]
>>> from guardian.shortcuts import assign_perm
>>> assign_perm('tasker.add_task', group, task)
>>> get_objects_for_group(group, 'tasker.add_task')
[<Task some task>]

The permission string can also be an iterable. Continuing with the previous example:

>>> get_objects_for_group(group, ['tasker.add_task', 'tasker.delete_task'])
[]
>>> assign_perm('tasker.delete_task', group, task)
>>> get_objects_for_group(group, ['tasker.add_task', 'tasker.delete_task'])
[<Task some task>]

Global permissions assigned to the group are also taken into account. Continuing with previous example:

>>> task_other = Task.objects.create('other task')
>>> assign_perm('tasker.change_task', group)
>>> get_objects_for_group(group, ['tasker.change_task'])
[<Task some task>, <Task other task>]
>>> get_objects_for_group(group, ['tasker.change_task'], accept_global_
→˓perms=False)
[<Task some task>]

6.11 Utilities

django-guardian helper functions.

Functions defined within this module should be considered as django-guardian’s internal functionality. They are not
guaranteed to be stable - which means they actual input parameters/output type may change in future releases.

6.11.1 get_anonymous_user

guardian.utils.get_anonymous_user()
Returns User instance (not AnonymousUser) depending on ANONYMOUS_USER_NAME configuration.

6.11. Utilities 43

guardian Documentation, Release 2.4.0

6.11.2 get_identity

guardian.utils.get_identity(identity)
Returns (user_obj, None) or (None, group_obj) tuple depending on what is given. Also accepts AnonymousUser
instance but would return User instead - it is convenient and needed for authorization backend to support
anonymous users.

Parameters identity – either User or Group instance

Raises NotUserNorGroup – if cannot return proper identity instance

Examples:

>>> from django.contrib.auth.models import User
>>> user = User.objects.create(username='joe')
>>> get_identity(user)
(<User: joe>, None)

>>> group = Group.objects.create(name='users')
>>> get_identity(group)
(None, <Group: users>)

>>> anon = AnonymousUser()
>>> get_identity(anon)
(<User: AnonymousUser>, None)

>>> get_identity("not instance")
...
NotUserNorGroup: User/AnonymousUser or Group instance is required (got)

6.11.3 clean_orphan_obj_perms

guardian.utils.clean_orphan_obj_perms()
Seeks and removes all object permissions entries pointing at non-existing targets.

Returns number of removed objects.

6.12 Template tags

django-guardian template tags. To use in a template just put the following load tag inside a template:

{% load guardian_tags %}

6.12.1 get_obj_perms

guardian.templatetags.guardian_tags.get_obj_perms(parser, token)
Returns a list of permissions (as codename strings) for a given user/group and obj (Model instance).

Parses get_obj_perms tag which should be in format:

{% get_obj_perms user/group for obj as "context_var" %}

44 Chapter 6. API Reference

guardian Documentation, Release 2.4.0

Note: Make sure that you set and use those permissions in same template block ({% block %}).

Example of usage (assuming flatpage and perm objects are available from context):

{% get_obj_perms request.user for flatpage as "flatpage_perms" %}

{% if "delete_flatpage" in flatpage_perms %}
Remove page

{% endif %}

Note: Please remember that superusers would always get full list of permissions for a given object.

New in version 1.2.

As of v1.2, passing None as obj for this template tag won’t rise obfuscated exception and would return empty
permissions set instead.

6.12. Template tags 45

guardian Documentation, Release 2.4.0

46 Chapter 6. API Reference

CHAPTER 7

Development

7.1 Overview

Here we describe the development process overview. It’s in F.A.Q. format to make it simple.

7.1.1 Why devel is default branch?

Since version 1.2 we try to make master in a production-ready state. It does NOT mean it is production ready, but it
SHOULD be. In example, tests at master should always pass. Actually, whole tox suite should pass. And it’s test
coverage should be at 100% level.

devel branch, on the other hand, can break. It shouldn’t but it is acceptable. As a user, you should NEVER use
non-master branches at production. All the changes are pushed from devel to master before next release. It might
happen more frequently.

7.1.2 How to file a ticket?

Just go to https://github.com/django-guardian/django-guardian/issues and create new one.

7.1.3 How do I get involved?

It’s simple! If you want to fix a bug, extend documentation or whatever you think is appropriate for the project
and involves changes, just fork the project at github (https://github.com/django-guardian/django-guardian), create a
separate branch, hack on it, publish changes at your fork and create a pull request.

Here is a quick how to:

1. Fork a project: https://github.com/django-guardian/django-guardian/fork

2. Checkout project to your local machine:

47

https://github.com/django-guardian/django-guardian/issues
https://github.com/django-guardian/django-guardian
https://github.com/django-guardian/django-guardian/fork

guardian Documentation, Release 2.4.0

$ git clone git@github.com:YOUR_NAME/django-guardian.git

3. Create a new branch with name describing change you are going to work on:

$ git checkout -b bugfix/support-for-custom-model

4. Perform changes at newly created branch. Remember to include tests (if this is code related change) and run
test suite. See running tests documentation. Also, remember to add yourself to the AUTHORS file.

5. (Optional) Squash commits. If you have multiple commits and it doesn’t make much sense to have them sep-
arated (and it usually makes little sense), please consider merging all changes into single commit. Please see
https://help.github.com/articles/interactive-rebase if you need help with that.

6. Publish changes:

$ git push origin YOUR_BRANCH_NAME

6. Create a Pull Request (https://help.github.com/articles/creating-a-pull-request). Usually it’s as simple as open-
ing up https://github.com/YOUR_NAME/django-guardian and clicking on review button for newly created
branch. There you can make final review of your changes and if everything seems fine, create a Pull Request.

7.1.4 Why my issue/pull request was closed?

We usually put an explonation while we close issue or PR. It might be for various reasons, i.e. there were no reply for
over a month after our last comment, there were no tests for the changes etc.

7.1.5 How to do a new release?

To enroll a new release you should perform the following task:

• Ensure file CHANGES reflects all important changes.

• Ensure file CHANGES includes a new version identifier and current release date.

• Execute bumpversion patch (or accordinly - see Semantic Versioning 2.0) to reflects changes in codebase.

• Commit changes of codebase, e.g. git commit -m "Release 1.4.8" -a.

• Tag a new release, e.g. git tag "v1.4.8".

• Push new tag to repo - git push origin --tags.

• Build a new release - python3 setup.py sdist bdist_wheel

• Push a new release to PyPI - twine upload.

7.2 Testing

7.2.1 Introduction

django-guardian is extending capabilities of Django’s authorization facilities and as so, it changes it’s security
somehow. It is extremaly important to provide as simplest API Reference as possible.

According to OWASP, broken authentication is one of most commonly security issue exposed in web applications.

48 Chapter 7. Development

https://help.github.com/articles/interactive-rebase
https://help.github.com/articles/creating-a-pull-request
https://github.com/YOUR_NAME/django-guardian
http://semver.org/
http://www.owasp.org/
http://www.owasp.org/index.php/Top_10_2010-A3

guardian Documentation, Release 2.4.0

Having this on mind we tried to build small set of necessary functions and created a lot of testing scenarios. Neverthe-
less, if anyone would found a bug in this application, please take a minute and file it at issue-tracker. Moreover, if some-
one would spot a security hole (a bug that might affect security of systems that use django-guardian as permission
management library), please DO NOT create a public issue but contact me directly (lukaszbalcerzak@gmail.com).

7.2.2 Running tests

Tests are run by Django’s buildin test runner. To call it simply run:

$ python setup.py test

or inside a project with guardian set at INSTALLED_APPS:

$ python manage.py test guardian

or using the bundled testapp project:

$ python manage.py test

7.2.3 Coverage support

Coverage is a tool for measuring code coverage of Python programs. It is great for tests and we use it as a backup
- we try to cover 100% of the code used by django-guardian. This of course does NOT mean that if all of the
codebase is covered by tests we can be sure there is no bug (as specification of almost all applications requries some
unique scenarios to be tested). On the other hand it definitely helps to track missing parts.

To run tests with coverage support and show the report after we have provided simple bash script which can by called
by running:

$./run_test_and_report.sh

Result should be somehow similar to following:

(...)
..
--
Ran 48 tests in 2.516s

OK
Destroying test database 'default'...
Name Stmts Exec Cover Missing

guardian/__init__ 4 4 100%
guardian/backends 20 20 100%
guardian/conf/__init__ 1 1 100%
guardian/core 29 29 100%
guardian/exceptions 8 8 100%
guardian/management/__init__ 10 10 100%
guardian/managers 40 40 100%
guardian/models 36 36 100%
guardian/shortcuts 30 30 100%
guardian/templatetags/__init__ 1 1 100%
guardian/templatetags/guardian_tags 39 39 100%
guardian/utils 13 13 100%

(continues on next page)

7.2. Testing 49

http://github.com/lukaszb/django-guardian
mailto:lukaszbalcerzak@gmail.com
http://nedbatchelder.com/code/coverage/
http://nedbatchelder.com/code/coverage/

guardian Documentation, Release 2.4.0

(continued from previous page)

TOTAL 231 231 100%

7.2.4 Tox

New in version 1.0.4.

We also started using tox to ensure django-guardian’s tests would pass on all supported Python and Django
versions (see Supported versions). To use it, simply install tox:

pip install tox

and run it within django-guardian checkout directory:

tox

First time should take some time (it needs to create separate virtual environments and pull dependencies) but would
ensure everything is fine.

7.2.5 GitHub Actions

New in version 2.4.0.

We have support for GitHub Actions to make it easy to follow if test fails with new commits.

7.3 Supported versions

django-guardian supports Python 3.5+ and Django 2.2+.

7.3.1 Rules

• We support Python 3.5+.

• We support Django 2.2+. This is due to many simplifications in code we could do.

7.4 Changelog

7.4.1 Release 2.4.0 (May 24, 2021)

• Add support for Python 3.9

• Add support for Django 3.1, Django 3.2

• Add parameter any_perm to PermissionRequiredMixin

• Switch from Travis CI to GitHub Actions

50 Chapter 7. Development

http://pypi.python.org/pypi/tox
https://github.com/django-guardian/django-guardian/actions/workflows/tests.yml
https://github.com/django-guardian/django-guardian/actions
https://github.com/django-guardian/django-guardian/actions

guardian Documentation, Release 2.4.0

7.4.2 Release 2.3.0 (June 6, 2020)

• Drop support for Django 2.1

• Fix compatibility with UUIDField primary keys

• Fix formatting for pyupgrade

• Fix error with get_objects_for_user on PostgreSQL

• Modify ‘assign_perm’ shortcut to treat lists as a queryset

• Updated links to Django documentation and django-authority repository

• Removed reference to “easy_install” in the documentation

• Run migrations check only if required version of django is installed

7.4.3 Release 2.2.0 (January 3, 2020)

• Add support for Django 3.0 and Python 3.8.

• Add support for custom generic object permission models.

• Don’t initialise anonymous user on DB where it’s not migrated.

• Allow object permissions with dots.

• Several performance improvements

– Improve performance of get_objects_for_user

– Update get_users_with_perms to avoid a large join

Important: The 2.2.x release line will be the last one that has support for Django 2.1.

7.4.4 Release 2.1.0 (September 9, 2019)

• Upgrade to use `django.urls.path` in routing

– Add admin support for user primary key as UUID

• Auto pre-fetching permission via `GUARDIAN_AUTO_PREFETCH`

• Add tests for missing migrations

7.4.5 Release 2.0.0 (June 11, 2019)

• Drop support for Python 2.7 & 3.4 and Django 1.11 & 2.0

7.4.6 Release 1.5.1 (May 2, 2019)

• Restore compatibility with Python 2.7

Important: The 1.5.x release line will be the last one that has support for Python 2.7.

7.4. Changelog 51

guardian Documentation, Release 2.4.0

7.4.7 Release 1.5.0 (Jan 31, 2019)

• Updates for compatibility with latest Python and Django versions.

7.4.8 Release 1.4.9 (Jul 01, 2017)

• Drop django_guardian.compat.OrderedDict as a consequence of drop Python 1.6 earlier.

• Fix django admin 1.11 not showing selected permissions

• Add a optional checker variable to get_obj_perms

• Add missing classifiers in setup.py

7.4.9 Release 1.4.8 (Apr 04, 2017)

• Improved performance of clean_orphan_obj_perms management command

• Use bumpversion for versioning.

• Enable Python 3.6 testing

• Python 2.7, 3.4, 3.5, 3.6 are only supported Python versions

• Django 1.8, 1.10, and 1.11 are only supported Django versions

• Added explicity on_delete to all ForeignKeys

7.4.10 Release 1.4.6 (Sep 09, 2016)

• Improved performance of get_objects_for_user

• Added test-covered and documented guardian.mixins.PermissionListMixin

• Allow content type retrieval to be overridden fg. for django-polymorphic support

• Added support CreateView-like (no object) view in PermissionRequiredMixin

• Added django 1.10 to TravisCI and tox

• Run tests for example_project in TravisCI

• Require django 1.9+ for example_project (django-guardian core support django 1.7+)

• Fix django versions compatibility in example_project

• Drop django in install_requires of setuptools

7.4.11 Release 1.4.5 (Aug 09, 2016)

• Fix caching issue with prefetch_perms.

• Convert readthedocs link for their .org -> .io migration for hosted projects

• Added example CRUD CBV project

• Added TEMPLATES in example_project settings

• Added Queryset support to assign_perm

• Added QuerySet support to remove_perm

52 Chapter 7. Development

guardian Documentation, Release 2.4.0

• Updated assign_perm and remove_perm docstrings

• Moved queryset support in assign_perms to its own function

• Moved queryset support in remove_perms to its own function

• Consolidated {User,Group}ObjectPermissionManager, move logic of bulk_*_perm to managers

• assign_perm and remove_perm shortcuts accept Permission instance as perm and QuerySet as obj too.

• Consolidated bulk_assign_perm to assign_perm and bulk_remove_perm to remove_perm

• Upgraded Grappelli templates breadcrumbs block to new Django 1.9 and Grappelli 2.8 standards, including
proper URLs and support for preserved_filters. Removed the duplicated field.errors in the field.html template
file.

• Made UserManage/GroupManage forms overridable

• Fixed GuardedModelAdminMixin views render for Django 1.10

7.4.12 Release 1.4.4 (Apr 04, 2016)

• Don’t install support example_project.

• Direct ForeignKey perms in prefetch_perms.

7.4.13 Release 1.4.3 (Apr 03, 2016)

• guardian.VERSION should be a tuple, not a list. Fixes #411.

• Support for prefetching permissions.

• Fixed union between queries.

• Allow specifying an empty list of permissions for get_objects_for_group.

• Mixed group and user direction relations broken. Fixes #271.

• Lookup anonymous user using custom username field.

• Fix up processing of ANONYMOUS_USER_NAME where set to None. Fixes #409.

• Require TEMPLATE_403 to exist if RENDER_403 set.

7.4.14 Release 1.4.2 (Mar 09, 2016)

• Test against django-master (Django 1.10 - not released).

• Django 1.10 fixes.

• Fixes for documentation.

• PEP8 fixes.

• Fix distributed files in MANIFEST.in

• Use pytest for tests.

• Add dependancy on django-environ.

• Don’t use ANONYMOUS_USER_ID. Uses ANONYMOUS_DEFAULT_USERNAME and USER-
NAME_FIELD instead.

7.4. Changelog 53

guardian Documentation, Release 2.4.0

• Use setuptools_scm for versioning.

• Initialise admin context using each_context for Django >= 1.8.

• Add missing with_superusers parameter to get_users_with_perms().

• Use setuptools scm for versioning.

• Fixes for example_project.

• Only display permissions if permission actually assigned.

• When using attach_perms with get_users_with_perms, and with_group_users and with_superusers set to False,
only directly assigned permissions are now returned, and not effective (infered) permissions.

7.4.15 Release 1.4.1 (Jan 10, 2016)

• Fix broken documentation.

• Fix setup.py errors (#387).

• Fix tox tests.

• Fix travis tests.

7.4.16 Release 1.4.0 (Jan 8, 2016)

• Drop support for Django < 1.7

• Drop support for django south migrations.

• Remove depreciated code.

• Fix many Django depreciated warnings.

• Fix tests and example_project.

• Work around for postgresql specific Django bug (#366). This is a regression that was introduced in version
1.3.2.

• Updates to documentation.

• Require can_change permission to change object perms in admin.

• Fixes broke admin URLS (#376 and #381).

• Tests now work with Mysql and Postgresql as well as sqlite.

• Uses django-environ for tests.

7.4.17 Release 1.3.2 (Nov 14, 2015)

• Fixes tests for all versions of Django.

• Tests pass for Django 1.9b1.

• Drops support for Django < 1.5

• Add Russian translation.

• Various bug fixes.

• Ensure password for anonymous user is set to unusable, not None.

54 Chapter 7. Development

guardian Documentation, Release 2.4.0

7.4.18 Release 1.3.1 (Oct 20, 2015)

• Fixes for 1.8 compat

7.4.19 Release 1.3 (Jun 3, 2015)

• Official Django 1.8 support (thanks to multiple contributors)

7.4.20 Release 1.2.5 (Dec 28, 2014)

• Official Django 1.7 support (thanks Troy Grosfield and Brian May)

• Allow to override PermissionRequiredMixin.get_permission_object, part of
PermissionRequiredMixin.check_permissions method, responsible for retrieving single
object (Thanks zauddelig)

• French translations (Thanks Morgan Aubert)

• Added support for User.get_all_permissions (thanks Michael Drescher)

7.4.21 Release 1.2.4 (Jul 14, 2014)

• Fixed another issue with custom primary keys at admin extensions (Thanks Omer Katz)

7.4.22 Release 1.2.3 (Jul 14, 2014)

Unfortunately this was broken release not including any important changes.

7.4.23 Release 1.2.2 (Jul 2, 2014)

• Fixed issue with custom primary keys at admin extensions (Thanks Omer Katz)

• get_403_or_None now accepts Python path to the view function, for example 'django.contrib.
auth.views.login' (Thanks Warren Volz)

• Added with_superuser flag to guardian.shortcuts.get_objects_for_user (Thanks Bruno
Ribeiro da Silva)

• Added possibility to disable monkey patching of the User model. (Thanks Cezar Jenkins)

7.4.24 Release 1.2 (Mar 7, 2014)

• Removed get_for_object methods from managers (#188)

• Extended documentation

• GuardedModelAdmin has been splitted into mixins

• Faster queries in get_objects_for_user when use_groups=False or any_perm=True (#148)

• Improved speed of get_objects_for_user shortcut

• Support for custom User model with not default username field

• Added GUARDIAN_GET_INIT_ANONYMOUS_USER setting (#179)

7.4. Changelog 55

guardian Documentation, Release 2.4.0

• Added accept_global_perms to PermissionRequiredMixin

• Added brazilian portuguese translations

• Added polish translations

• Added wheel support

• Fixed wrong anonymous user checks

• Support for Django 1.6

• Support for Django 1.7 alpha

Important: In this release we have removed undocumented get_for_object method from both
UserObjectPermissionManager and GroupObjectPermissionManager. Not deprecated, removed.
Those methods were not used within django-guardian and their odd names could lead to issues if user would
believe they would return object level permissions associated with user/group and object passed as the input. If you
depend on those methods, you’d need to stick with version 1.1 and make sure you do not misuse them.

7.4.25 Release 1.1 (May 26, 2013)

• Support for Django 1.5 (including Python 3 combination)

• Support for custom user models (introduced by Django 1.5)

• Ability to create permissions using Foreign Keys

• Added user_can_access_owned_by_group_objects_only option to GuardedModelAdmin.

• Minor documentation fixups

• Spanish translations

• Better support for grappelli

• Updated examples project

• Speed up get_perms shortcut function

7.4.26 Release 1.0.4 (Jul 15, 2012)

• Added GUARDIAN_RENDER_403 and GUARDIAN_RAISE_403 settings (#40)

• Updated docstring for get_obj_perms (#43)

• Updated codes to run with newest django-grappelli (#51)

• Fixed problem with building a RPM package (#50)

• Updated caveats docs related with oprhaned object permissions (#47)

• Updated permission_required docstring (#49)

• Added accept_global_perms for decorators (#49)

• Fixed problem with MySQL and booleans (#56)

• Added flag to check for any permission in get_objects_for_user and get_objects_for_group
(#65)

• Added missing tag closing at template (#63)

56 Chapter 7. Development

https://github.com/sehmaschine/django-grappelli

guardian Documentation, Release 2.4.0

• Added view mixins related with authorization and authentication (#73)

• Added tox support

• Added Travis support

7.4.27 Release 1.0.3 (Jul 25, 2011)

• Added get_objects_for_group shortcut (thanks to Rafael Ponieman)

• Added user_can_access_owned_objects_only flag to GuardedModelAdmin

• Updated and fixed issues with example app (thanks to Bojan Mihelac)

• Minor typo fixed at documentation

• Included ADC theme for documentation

7.4.28 Release 1.0.2 (Apr 12, 2011)

• get_users_with_perms now accepts with_group_users flag

• Fixed group_id issue at admin templates

• Small fix for documentation building process

• It’s 2011 (updated dates within this file)

7.4.29 Release 1.0.1 (Mar 25, 2011)

• get_users_with_perms now accepts with_superusers flag

• Small fix for documentation building process

7.4.30 Release 1.0.0 (Jan 27, 2011)

• A final v1.0 release!

7.4.31 Release 1.0.0.beta2 (Jan 14, 2011)

• Added get_objects_for_user shortcut function

• Added few tests

• Fixed issues related with django.contrib.auth tests

• Removed example project from source distribution

7.4.32 Release 1.0.0.beta1 (Jan 11, 2011)

• Simplified example project

• Fixed issues related with test suite

• Added ability to clear orphaned object permissions

• Added clean_orphan_obj_perms management command

7.4. Changelog 57

http://tox.testrun.org/
http://travis-ci.org/

guardian Documentation, Release 2.4.0

• Documentation cleanup

• Added grappelli admin templates

7.4.33 Release 1.0.0.alpha2 (Dec 2, 2010)

• Added possibility to operate with global permissions for assign and remove_perm shortcut functions

• Added possibility to generate PDF documentation

• Fixed some tests

7.4.34 Release 1.0.0.alpha1 (Nov 23, 2010)

• Fixed admin templates not included in MANIFEST.in

• Fixed admin integration codes

7.4.35 Release 1.0.0.pre (Nov 23, 2010)

• Added admin integration

• Added reusable forms for object permissions management

7.4.36 Release 0.2.3 (Nov 17, 2010)

• Added guardian.shortcuts.get_users_with_perms function

• Added AUTHORS file

7.4.37 Release 0.2.2 (Oct 19, 2010)

• Fixed migrations order (thanks to Daniel Rech)

7.4.38 Release 0.2.1 (Oct 3, 2010)

• Fixed migration (it wasn’t actually updating object_pk field)

7.4.39 Release 0.2.0 (Oct 3, 2010)

Fixes

• #4: guardian now supports models with not-integer primary keys and they don’t need to be called “id”.

Important: For 0.1.X users: it is required to migrate guardian in your projects. Add south to
INSTALLED_APPS and run:

python manage.py syncdb
python manage.py migrate guardian 0001 --fake
python manage.py migrate guardian

58 Chapter 7. Development

https://github.com/sehmaschine/django-grappelli

guardian Documentation, Release 2.4.0

Improvements

• Added South migrations support

7.4.40 Release 0.1.1 (Sep 27, 2010)

Improvements

• Added view decorators: permission_required and permission_required_403

7.4.41 Release 0.1.0 (Jun 6, 2010)

• Initial public release

7.4. Changelog 59

http://south.aeracode.org/

guardian Documentation, Release 2.4.0

60 Chapter 7. Development

CHAPTER 8

License

Copyright (c) 2010-2016 Lukasz Balcerzak <lukaszbalcerzak@gmail.com>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The SVG icons in guardian/static/guardian/img are copied from Django.

SVG icons source: https://github.com/encharm/Font-Awesome-SVG-PNG
Font-Awesome-SVG-PNG is licensed under the MIT license:

The MIT License (MIT)

Copyright (c) 2014 Code Charm Ltd

(continues on next page)

61

guardian Documentation, Release 2.4.0

(continued from previous page)

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

62 Chapter 8. License

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

63

guardian Documentation, Release 2.4.0

64 Chapter 9. Indices and tables

Python Module Index

g
guardian.admin, 27
guardian.backends, 29
guardian.core, 30
guardian.decorators, 31
guardian.forms, 32
guardian.managers, 34
guardian.mixins, 34
guardian.models, 37
guardian.shortcuts, 38
guardian.templatetags.guardian_tags, 44
guardian.utils, 43

65

guardian Documentation, Release 2.4.0

66 Python Module Index

Index

A
admin

GuardedModelAdmin, 27
ANONYMOUS_USER_NAME

setting, 10
are_obj_perms_required()

(guardian.forms.BaseObjectPermissionsForm
method), 33

assign_perm() (in module guardian.shortcuts), 38

B
BaseObjectPermission

model, 37
BaseObjectPermission (class in guardian.models),

37
BaseObjectPermissionsForm

form, 33
BaseObjectPermissionsForm (class in

guardian.forms), 33

C
check_permissions()

(guardian.mixins.PermissionRequiredMixin
method), 36

clean_orphan_obj_perms
command, 34

clean_orphan_obj_perms() (in module
guardian.utils), 44

command
clean_orphan_obj_perms, 34

Command (class in guardian.management.commands.clean_orphan_obj_perms),
34

F
form

BaseObjectPermissionsForm, 33
GroupObjectPermissionsForm, 32
UserObjectPermissionsForm, 32

G
get_all_permissions()

(guardian.backends.ObjectPermissionBackend
method), 29

get_anonymous_user() (in module guardian.utils),
43

get_get_objects_for_user_kwargs()
(guardian.mixins.PermissionListMixin
method), 37

get_group_perms() (in module guardian.shortcuts),
39

get_groups_with_perms() (in module
guardian.shortcuts), 40

get_identity() (in module guardian.utils), 44
get_local_cache_key()

(guardian.core.ObjectPermissionChecker
method), 30

get_obj_perms() (in module
guardian.templatetags.guardian_tags), 44

get_obj_perms_base_context()
(guardian.admin.GuardedModelAdminMixin
method), 28

get_obj_perms_field()
(guardian.forms.BaseObjectPermissionsForm
method), 33

get_obj_perms_field_choices()
(guardian.forms.BaseObjectPermissionsForm
method), 33

get_obj_perms_field_class()
(guardian.forms.BaseObjectPermissionsForm
method), 33

get_obj_perms_field_initial()
(guardian.forms.BaseObjectPermissionsForm
method), 33

get_obj_perms_field_initial()
(guardian.forms.GroupObjectPermissionsForm
method), 33

get_obj_perms_field_initial()
(guardian.forms.UserObjectPermissionsForm

67

guardian Documentation, Release 2.4.0

method), 32
get_obj_perms_field_label()

(guardian.forms.BaseObjectPermissionsForm
method), 33

get_obj_perms_field_name()
(guardian.forms.BaseObjectPermissionsForm
method), 33

get_obj_perms_field_widget()
(guardian.forms.BaseObjectPermissionsForm
method), 33

get_obj_perms_group_select_form()
(guardian.admin.GuardedModelAdminMixin
method), 28

get_obj_perms_manage_group_form()
(guardian.admin.GuardedModelAdminMixin
method), 28

get_obj_perms_manage_group_template()
(guardian.admin.GuardedModelAdminMixin
method), 28

get_obj_perms_manage_template()
(guardian.admin.GuardedModelAdminMixin
method), 28

get_obj_perms_manage_user_form()
(guardian.admin.GuardedModelAdminMixin
method), 29

get_obj_perms_manage_user_template()
(guardian.admin.GuardedModelAdminMixin
method), 29

get_obj_perms_user_select_form()
(guardian.admin.GuardedModelAdminMixin
method), 29

get_objects_for_group() (in module
guardian.shortcuts), 42

get_objects_for_user
shortcut, 40

get_objects_for_user() (in module
guardian.shortcuts), 40

get_perms() (guardian.core.ObjectPermissionChecker
method), 30

get_perms() (in module guardian.shortcuts), 39
get_perms_for_model() (in module

guardian.shortcuts), 39
get_required_permissions()

(guardian.mixins.PermissionListMixin
method), 37

get_required_permissions()
(guardian.mixins.PermissionRequiredMixin
method), 36

get_urls() (guardian.admin.GuardedModelAdminMixin
method), 29

get_user_perms() (in module guardian.shortcuts),
39

get_users_with_perms() (in module
guardian.shortcuts), 39

GroupObjectPermission
model, 37

GroupObjectPermission (class in
guardian.models), 37

GroupObjectPermission.DoesNotExist, 37
GroupObjectPermission.MultipleObjectsReturned,

37
GroupObjectPermissionManager

manager, 34
GroupObjectPermissionManager (class in

guardian.managers), 34
GroupObjectPermissionsForm

form, 32
GroupObjectPermissionsForm (class in

guardian.forms), 32
GuardedModelAdmin

admin, 27
GuardedModelAdmin (class in guardian.admin), 27
GuardedModelAdminMixin (class in

guardian.admin), 28
guardian.admin (module), 27
guardian.backends (module), 29
guardian.core (module), 30
guardian.decorators (module), 31
guardian.forms (module), 32
guardian.managers (module), 34
guardian.mixins (module), 34
guardian.models (module), 37
guardian.shortcuts (module), 38
guardian.templatetags.guardian_tags

(module), 44
guardian.utils (module), 43
GUARDIAN_GET_INIT_ANONYMOUS_USER

setting, 10
GUARDIAN_RAISE_403

setting, 9
GUARDIAN_RENDER_403

setting, 9
GUARDIAN_TEMPLATE_403

setting, 9

H
has_perm() (guardian.backends.ObjectPermissionBackend

method), 29
has_perm() (guardian.core.ObjectPermissionChecker

method), 30

L
LoginRequiredMixin

mixin, 34
LoginRequiredMixin (class in guardian.mixins), 34

M
manager

68 Index

guardian Documentation, Release 2.4.0

GroupObjectPermissionManager, 34
UserObjectPermissionManager, 34

mixin
LoginRequiredMixin, 34
PermissionRequiredMixin, 35

model
BaseObjectPermission, 37
GroupObjectPermission, 37
UserObjectPermission, 37

O
obj_perms_manage_group_view()

(guardian.admin.GuardedModelAdminMixin
method), 29

obj_perms_manage_user_view()
(guardian.admin.GuardedModelAdminMixin
method), 29

obj_perms_manage_view()
(guardian.admin.GuardedModelAdminMixin
method), 29

ObjectPermissionBackend (class in
guardian.backends), 29

ObjectPermissionChecker (class in
guardian.core), 30

on_permission_check_fail()
(guardian.mixins.PermissionRequiredMixin
method), 36

P
permission_required() (in module

guardian.decorators), 31
permission_required_or_403() (in module

guardian.decorators), 32
PermissionListMixin (class in guardian.mixins),

36
PermissionRequiredMixin

mixin, 35
PermissionRequiredMixin (class in

guardian.mixins), 35
prefetch_perms() (guardian.core.ObjectPermissionChecker

method), 30

R
remove_perm() (in module guardian.shortcuts), 38

S
save() (guardian.models.BaseObjectPermission

method), 37
save_obj_perms() (guardian.forms.BaseObjectPermissionsForm

method), 34
save_obj_perms() (guardian.forms.GroupObjectPermissionsForm

method), 33
save_obj_perms() (guardian.forms.UserObjectPermissionsForm

method), 32

setting
ANONYMOUS_USER_NAME, 10
GUARDIAN_GET_INIT_ANONYMOUS_USER, 10
GUARDIAN_RAISE_403, 9
GUARDIAN_RENDER_403, 9
GUARDIAN_TEMPLATE_403, 9

shortcut
get_objects_for_user, 40

U
UserObjectPermission

model, 37
UserObjectPermission (class in guardian.models),

37
UserObjectPermission.DoesNotExist, 37
UserObjectPermission.MultipleObjectsReturned,

37
UserObjectPermissionManager

manager, 34
UserObjectPermissionManager (class in

guardian.managers), 34
UserObjectPermissionsForm

form, 32
UserObjectPermissionsForm (class in

guardian.forms), 32

Index 69

	Overview
	Features
	Incoming
	Source and issue tracker
	Alternate projects

	Installation
	Configuration
	Optional settings
	GUARDIAN_RAISE_403
	GUARDIAN_RENDER_403
	GUARDIAN_TEMPLATE_403
	ANONYMOUS_USER_NAME
	GUARDIAN_GET_INIT_ANONYMOUS_USER
	GUARDIAN_GET_CONTENT_TYPE
	GUARDIAN_AUTO_PREFETCH
	GUARDIAN_USER_OBJ_PERMS_MODEL
	GUARDIAN_GROUP_OBJ_PERMS_MODEL

	User Guide
	Example project
	Assign object permissions
	Check object permissions
	Remove object permissions
	Admin integration
	Custom User model
	Performance tuning
	Caveats

	API Reference
	Admin
	Backends
	Core
	Decorators
	Forms
	Management commands
	Managers
	Mixins
	Models
	Shortcuts
	Utilities
	Template tags

	Development
	Overview
	Testing
	Supported versions
	Changelog

	License
	Indices and tables
	Python Module Index
	Index

