

 Navigation

 	
 index

 	django-gcharts latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/django-gcharts/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/django-gcharts/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	django-gcharts latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		django-gcharts latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

LICENSE.html

 Navigation

 		
 index

 		django-gcharts latest documentation »

 Copyright (c) 2012 Rolf Håvard Blindheim

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		django-gcharts latest documentation »

 ##Yet another Google Charts library for Django##

		~~Requires installation of the gviz_api library which is freely available from Google.~~

		See http://code.google.com/p/google-visualization-python/ for details.

UPDATE: The gviz_api library is now included.

Note

Development status updated to beta. The code is still short on unit tests, so bad stuff can happen!

Please feel free submit patches/pull requests ;)

Disclaimer

This library is heavy influenced by mvasilkov’s django-google-charts [https://github.com/mvasilkov/django-google-charts],
and some of the code (template tags and javascript code) are directly copied from him. I’ve done some minor adjustments to
make it work for my approach.

About django-gcharts

As I find mvasilkov’s approach very clever, I think it would be nice if the model could deliver it’s data in a format
the Google Visualization API can read.

This library is an attempt of doing that, by using a custom QuerySet and Manager which is plugged directly into the model,
and some wrapper methods to bind the QuerySet data up against the gviz_api library.
The goal is to “fully” support the QuerySet (with aggregates, joins, extra, annotates, etc) so that we can gather data
by using familiar QuerySet syntax.

Demo site

The git version now includes a demo site which can be run at your local machine once cloned. The demo site previews a few
of the charts included in the Google Visualization API, and should contain enough working examples for you to figure out
how this stuff works.

To get started with the demo site, follow these steps.

 $ git clone https://github.com/rhblind/django-gcharts.git
 $ cd django-gcharts
 $ python manage.py syncdb
 $ python manage.py initdata
 $ python manage.py runserver

Then point your browser to http://localhost:8000 and you should see a few different charts displayed.

Configuration

Installation

$ pip install django-gcharts

settings.py

GOOGLECHARTS_API = "1.1"
GOOGLECHARTS_PACKAGES = ["corechart"]

INSTALLED_APPS = (
 ...
 'gcharts',
 ...
)

		GOOGLECHARTS_API - Optional. Defaults to 1.1

		GOOGLECHARTS_PACKAGES - Optional. List of packages that should be loaded. Defaults to only corechart.

Packages

The charts in the Google Visualization API are separated into different packages. For the most basic charts
you would only need to load the corechart package (which is the default if none is specified).
Below follows a list of which charts are available in the different packages.

Please note that all packages specified in settings.py will load every time the {% gcharts %} ... {% endgcharts %}
block is rendered.

Optionally, the package for the specific chart can be specified in the {% render ... %} tag as a the last option.
The tag should in that case be written as: {% render "div_id" "data" "options" "package name" %}. This will cause
the package to be applied to the current {% gcharts %} ... {% endgcharts %} block only, in addition to those specified
in settings.py.

		corechart contains these charts
		AreaChart [https://developers.google.com/chart/interactive/docs/gallery/areachart]

		BarChart [https://developers.google.com/chart/interactive/docs/gallery/barchart]

		BubbleChart [https://developers.google.com/chart/interactive/docs/gallery/bubblechart]

		CandleStickChart [https://developers.google.com/chart/interactive/docs/gallery/candlestickchart]

		ColumnChart [https://developers.google.com/chart/interactive/docs/gallery/columnchart]

		ComboChart [https://developers.google.com/chart/interactive/docs/gallery/combochart]

		LineChart [https://developers.google.com/chart/interactive/docs/gallery/linechart]

		PieChart [https://developers.google.com/chart/interactive/docs/gallery/piechart]

		ScatterChart [https://developers.google.com/chart/interactive/docs/gallery/scatterchart]

		SteppedAreaChart [https://developers.google.com/chart/interactive/docs/gallery/steppedareachart]

		gauge
		Gauge [https://developers.google.com/chart/interactive/docs/gallery/gauge]

		geochart
		GeoChart [https://developers.google.com/chart/interactive/docs/gallery/geochart]

		table
		Table [https://developers.google.com/chart/interactive/docs/gallery/table]

		treemap
		TreeMap [https://developers.google.com/chart/interactive/docs/gallery/treemap]

models.py

Register the GChartsManager to the model you’d like to draw charts from

from django.db import models
from gcharts import GChartsManager

class MyModel(models.Model):

 # register the GChartsManager as default manager for this model.
 objects = GChartsManager()

 my_field = models.CharField(....)
 my_other_field = models.IntegerField()

 ...

Examples

Spam Inc. needs to chart how much spam they sell.

models.py

from django.db import models
from gcharts import GChartsManager

class Spam(models.Model):

 objects = GChartsManager()

 name = models.Charfield(max_length=10)
 ...
 ...
 cdt = models.DateTimeField(auto_add_now=True, verbose_name="Creation datetime")

views.py

from dateutil.relativedelta import relativedelta
from django.shortcuts import render_to_response
from django.template.context import RequestContext

from models import Spam

def render_chart(request):
 if request.method == "GET":

 # Get a point in time we want to render chart from
 series_age = datetime.today() - relativedelta(months=3)

 # Create a fairly advanced QuerySet using:
 # - filter() to get records newer than 'series_age'
 # - extra() to cast a PostgreSQL 'timestampz' to 'date' which translates to a pyton date object
 # - values() to extract fields of interest
 # - annotate() to group aggregate Count into 'id__count'
 # - order_by() to make the aggregate work
 qset = Spam.objects.filter(cdt__gt=series_age).extra(select={"date": "cdt::date"}) \
 .values("date").annotate(Count("id")).order_by()

 # Call the qset.to_json() method to output the data in json
 # - labels is a dict which sets labels and the correct javascript data type for
 # fields in the QuerySet. The javascript data types are automatically set,
 # except for extra fields, which needs to be specified in a dict as:
 # {'extra_name': {'javascript data type': 'label for field'}}
 # - order is an iterable which sets the column order in which the data should be
 # rendered
 # - formatting is a dict {'field_name': 'expression'}, where expression is a
 # valid string.format() expression.
 spam_json = qset.to_json(labels={"id__count": "Spam sold", "date": {"date": "Date"}},
 order=("date", "id__count"),
 formatting={"id__count": "{0:d} units of spam"})

 return render_to_response("sales_overviews/spamreport.html, {"spam_data": spam_json},
 context_instance=RequestContext(request))

spamreport.html

...

{% load gcharts %}

{% gcharts %}
 <!-- Global options for all charts -->
 options = {
 width: 500,
 height: 300
 };

 <!-- cloned option and adapted for "spam_opt" -->
 spam_opt = _clone(options);
 spam_opt.title = "Units of Spam sold last 3 month";

 {% options spam_opt %}
 kind: "ColumnChart",
 options: spam_opt,
 {% endoptions %}

 {% render "spam_chart" "spam_data" "spam_opt" %}

{% endgcharts %}

<div id="spam_chart">
 <!-- container for spam_data chart -->
</div>

...

Should output something like this.

[image: django-gcharts-example]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

