
latest
Release 0.13.0

Feb 12, 2018

Contents

1 HTML5 Features 3

2 Installation 5

3 Usage 7

4 File Uploads 9

5 Configuration 11

6 Custom Fields and Widgets 13

7 Email Templates 15

8 Signals 17

9 Dynamic Field Defaults 19

10 XLS Export 21

i

ii

latest, Release 0.13.0

Created by Stephen McDonald

A Django reusable app providing the ability for admin users to create their own forms within the admin interface,
drawing from a range of field widgets such as regular text fields, drop-down lists and file uploads. Options are also
provided for controlling who gets sent email notifications when a form is submitted. All form entries are made
available in the admin via filterable reporting with CSV/XLS export.

Form builder:

Data reporting:

Contents 1

http://travis-ci.org/stephenmcd/django-forms-builder
http://twitter.com/stephen_mcd

latest, Release 0.13.0

2 Contents

CHAPTER 1

HTML5 Features

The following HTML5 form features are supported.

• placeholder attributes

• required attributes

• email fields

• date fields

• datetime fields

• number fields

• url fields

3

latest, Release 0.13.0

4 Chapter 1. HTML5 Features

CHAPTER 2

Installation

The easiest way to install django-forms-builder is directly from PyPi using pip by running the command below:

$ pip install -U django-forms-builder

Otherwise you can download django-forms-builder and install it directly from source:

$ python setup.py install

Once installed you can configure your project to use django-forms-builder with the following steps.

Add forms_builder.forms to INSTALLED_APPS in your project’s settings module:

INSTALLED_APPS = (
other apps
'forms_builder.forms',

)

If you haven’t already, ensure django.core.context_processors.request is in the
TEMPLATE_CONTEXT_PROCESSORS setting in your project’s settings module:

TEMPLATE_CONTEXT_PROCESSORS = (
other context processors
"django.core.context_processors.request",
Django 1.6 also needs:
'django.contrib.auth.context_processors.auth',

)

Then add forms_builder.forms.urls to your project’s urls module:

from django.conf.urls.defaults import patterns, include, url
import forms_builder.forms.urls # add this import

from django.contrib import admin
admin.autodiscover()

5

http://www.pip-installer.org/

latest, Release 0.13.0

urlpatterns = patterns('',
other urlpatterns
url(r'^admin/', include(admin.site.urls)),
url(r'^forms/', include(forms_builder.forms.urls)),

)

Finally, sync your database:

$ python manage.py syncdb

As of version 0.5, django-forms-builder provides South migrations. If you use south in your project, you’ll also need
to run migrations:

$ python manage.py migrate forms

6 Chapter 2. Installation

http://south.aeracode.org/

CHAPTER 3

Usage

Once installed and configured for your project just go to the admin page for your project and you will see a new Forms
section. In this you can create and edit forms. Forms are then each viewable with their own URLs. A template tag
render_built_form is also available for displaying forms outside of the main form view provided. It will display
a form when given an argument in one of the following formats, where form_instance is an instance of the Form
model:

{% load forms_builder_tags %}

{% render_built_form form_instance %}
{% render_built_form form=form_instance %}
{% render_built_form id=form_instance.id %}
{% render_built_form slug=form_instance.slug %}

This allows forms to be displayed without having a form instance, using a form’s slug or ID, which could be hard-coded
in a template, or stored in another model instance.

7

latest, Release 0.13.0

8 Chapter 3. Usage

CHAPTER 4

File Uploads

It’s possible for admin users to create forms that allow file uploads which can be accessed via a download URL for
each file that is provided in the CSV export. By default these uploaded files are stored in an obscured location under
your project’s MEDIA_ROOT directory but ideally the should be stored somewhere inaccessible to the public. To set
the location where files are stored to be somewhere outside of your project’s MEDIA_ROOT directory you just need to
define the FORMS_BUILDER_UPLOAD_ROOT setting in your project’s settings module. Its value should be an
absolute path on the web server that isn’t accessible to the public.

9

latest, Release 0.13.0

10 Chapter 4. File Uploads

CHAPTER 5

Configuration

The following settings can be defined in your project’s settings module.

• FORMS_BUILDER_FIELD_MAX_LENGTH - Maximum allowed length for field values. Defaults to 2000

• FORMS_BUILDER_LABEL_MAX_LENGTH - Maximum allowed length for field labels. Defaults to 20

• FORMS_BUILDER_EXTRA_FIELDS - Sequence of custom fields that will be added to the form field types.
Defaults to ()

• FORMS_BUILDER_UPLOAD_ROOT - The absolute path where files will be uploaded to. Defaults to None

• FORMS_BUILDER_USE_HTML5 - Boolean controlling whether HTML5 form fields are used. Defaults to
True

• FORMS_BUILDER_USE_SITES - Boolean controlling whether forms are associated to Django’s Sites frame-
work. Defaults to "django.contrib.sites" in settings.INSTALLED_APPS

• FORMS_BUILDER_EDITABLE_SLUGS - Boolean controlling whether form slugs are editable in the admin.
Defaults to False

• FORMS_BUILDER_CHOICES_QUOTE - Char to start a quoted choice with. Defaults to the backtick char: ‘

• FORMS_BUILDER_CHOICES_UNQUOTE - Char to end a quoted choice with. Defaults to the backtick char: ‘

• FORMS_BUILDER_CSV_DELIMITER - Char to use as a field delimiter when exporting form responses as
CSV. Defaults to a comma: ,

• FORMS_BUILDER_EMAIL_FAIL_SILENTLY - Bool used for Django’s fail_silently argument when
sending email. Defaults to settings.DEBUG.

11

latest, Release 0.13.0

12 Chapter 5. Configuration

CHAPTER 6

Custom Fields and Widgets

You can also add your own custom fields or widgets to the choices of fields available for a form. Simply define
a sequence for the FORMS_BUILDER_EXTRA_FIELDS setting in your project’s settings module, where each
item in the sequence is a custom field that will be available.

Each field in the sequence should be a three-item sequence containing an ID, a dotted import path for the field class,
and a field name, for each custom field type. The ID is simply a numeric constant for the field, but cannot be a value
already used, so choose a high number such as 100 or greater to avoid conflicts:

FORMS_BUILDER_EXTRA_FIELDS = (
(100, "django.forms.BooleanField", "My cool checkbox"),
(101, "my_module.MyCustomField", "Another field"),

)

You can also define custom widget classes for any of the existing or custom form fields via the
FORMS_BUILDER_EXTRA_WIDGETS setting. Each field in the sequence should be a two-item sequence containing
the same ID referred to above for the form field class, and a dotted import path for the widget class:

FORMS_BUILDER_EXTRA_WIDGETS = (
(100, "my_module.MyCoolWidget"),
(101, "my_other_module.AnotherWidget"),

)

Note that using the FORMS_BUILDER_EXTRA_WIDGETS setting to define custom widgets for field classes of your
own is somewhat redundant, since you could simply define the widgets on the field classes directly in their code.

13

latest, Release 0.13.0

14 Chapter 6. Custom Fields and Widgets

CHAPTER 7

Email Templates

The django-email-extras package is used to send multipart email notifications using Django’s templating system for
constructing the emails, to users submitting forms, and any recipients specified when creating a form via Django’s
admin.

Templates for HTML and text versions of the email can be found in the templates/email_extras directory.
This allows you to customize the look and feel of emails that are sent to form submitters. Along with each of
the form_response email templates which are used to email the form submitter, you’ll also find corresponding
form_response_copies templates, that extend the former set - these are used as the templates for emailing any
extra recipients specified for the form in the admin interface. By default they simply extend the form_response
templates, but you can modify them should you need to customize the emails sent to any extra recipients.

Note: With django-email-extras installed, it’s also possible to configure PGP encrypted emails to be send
to staff members, allowing forms to be built for capturing sensitive information. Consult the django-email-extras
documentation for more info.

15

https://github.com/stephenmcd/django-email-extras
http://en.wikipedia.org/wiki/Pretty_Good_Privacy
https://github.com/stephenmcd/django-email-extras

latest, Release 0.13.0

16 Chapter 7. Email Templates

CHAPTER 8

Signals

Two signals are provided for hooking into different states of the form submission process.

• form_invalid(sender=request, form=form) - Sent when the form is submitted with invalid data.

• form_valid(sender=request, form=form, entry=entry) - Sent when the form is submitted
with valid data.

For each signal the sender argument is the current request. Both signals receive a form argument is given which is
the FormForForm instance, a ModelForm for the FormEntry model. The form_valid signal also receives a
entry argument, which is the FormEntry model instance created.

Some examples of using the signals would be to monitor how users are causing validation errors with the form, or a
pipeline of events to occur on successful form submissions. Suppose we wanted to store a logged in user’s username
against each form when submitted, given a form containing a field with the label Username with its field_type set to
Hidden:

from django.dispatch import receiver
from forms_builder.forms.signals import form_valid

@receiver(form_valid)
def set_username(sender=None, form=None, entry=None, **kwargs):

request = sender
if request.user.is_authenticated():

field = entry.form.fields.get(label="Username")
field_entry, _ = entry.fields.get_or_create(field_id=field.id)
field_entry.value = request.user.username
field_entry.save()

17

latest, Release 0.13.0

18 Chapter 8. Signals

CHAPTER 9

Dynamic Field Defaults

As of version 0.6, you can use Django template code for default field values. For example you could enter {{
request.user.username }} and the field will be pre-populated with a user’s username if they’re authenticated.

19

latest, Release 0.13.0

20 Chapter 9. Dynamic Field Defaults

CHAPTER 10

XLS Export

By default, django-forms-builder provides export of form entries via CSV file. You can also enable export via XLS
file (Microsoft Excel) by installing the xlwt package:

$ pip install xlwt

21

http://www.python-excel.org/

	HTML5 Features
	Installation
	Usage
	File Uploads
	Configuration
	Custom Fields and Widgets
	Email Templates
	Signals
	Dynamic Field Defaults
	XLS Export

