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Created by Stephen McDonald

A Django reusable app providing the ability for admin users to create their own forms within the admin interface,
drawing from a range of field widgets such as regular text fields, drop-down lists and file uploads. Options are also
provided for controlling who gets sent email notifications when a form is submitted. All form entries are made
available in the admin via filterable reporting with CSV/XLS export.

Form builder:

Data reporting:
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CHAPTER 1

HTML5 Features

The following HTML5 form features are supported.

• placeholder attributes

• required attributes

• email fields

• date fields

• datetime fields

• number fields

• url fields
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CHAPTER 2

Installation

The easiest way to install django-forms-builder is directly from PyPi using pip by running the command below:

$ pip install -U django-forms-builder

Otherwise you can download django-forms-builder and install it directly from source:

$ python setup.py install

Once installed you can configure your project to use django-forms-builder with the following steps.

Add forms_builder.forms to INSTALLED_APPS in your project’s settings module:

INSTALLED_APPS = (
# other apps
'forms_builder.forms',

)

If you haven’t already, ensure django.core.context_processors.request is in the
TEMPLATE_CONTEXT_PROCESSORS setting in your project’s settings module:

TEMPLATE_CONTEXT_PROCESSORS = (
# other context processors
"django.core.context_processors.request",
# Django 1.6 also needs:
'django.contrib.auth.context_processors.auth',

)

Then add forms_builder.forms.urls to your project’s urls module:

from django.conf.urls.defaults import patterns, include, url
import forms_builder.forms.urls # add this import

from django.contrib import admin
admin.autodiscover()
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urlpatterns = patterns('',
# other urlpatterns
url(r'^admin/', include(admin.site.urls)),
url(r'^forms/', include(forms_builder.forms.urls)),

)

Finally, sync your database:

$ python manage.py syncdb

As of version 0.5, django-forms-builder provides South migrations. If you use south in your project, you’ll also need
to run migrations:

$ python manage.py migrate forms
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CHAPTER 3

Usage

Once installed and configured for your project just go to the admin page for your project and you will see a new Forms
section. In this you can create and edit forms. Forms are then each viewable with their own URLs. A template tag
render_built_form is also available for displaying forms outside of the main form view provided. It will display
a form when given an argument in one of the following formats, where form_instance is an instance of the Form
model:

{% load forms_builder_tags %}

{% render_built_form form_instance %}
{% render_built_form form=form_instance %}
{% render_built_form id=form_instance.id %}
{% render_built_form slug=form_instance.slug %}

This allows forms to be displayed without having a form instance, using a form’s slug or ID, which could be hard-coded
in a template, or stored in another model instance.
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CHAPTER 4

File Uploads

It’s possible for admin users to create forms that allow file uploads which can be accessed via a download URL for
each file that is provided in the CSV export. By default these uploaded files are stored in an obscured location under
your project’s MEDIA_ROOT directory but ideally the should be stored somewhere inaccessible to the public. To set
the location where files are stored to be somewhere outside of your project’s MEDIA_ROOT directory you just need to
define the FORMS_BUILDER_UPLOAD_ROOT setting in your project’s settings module. Its value should be an
absolute path on the web server that isn’t accessible to the public.
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CHAPTER 5

Configuration

The following settings can be defined in your project’s settings module.

• FORMS_BUILDER_FIELD_MAX_LENGTH - Maximum allowed length for field values. Defaults to 2000

• FORMS_BUILDER_LABEL_MAX_LENGTH - Maximum allowed length for field labels. Defaults to 20

• FORMS_BUILDER_EXTRA_FIELDS - Sequence of custom fields that will be added to the form field types.
Defaults to ()

• FORMS_BUILDER_UPLOAD_ROOT - The absolute path where files will be uploaded to. Defaults to None

• FORMS_BUILDER_USE_HTML5 - Boolean controlling whether HTML5 form fields are used. Defaults to
True

• FORMS_BUILDER_USE_SITES - Boolean controlling whether forms are associated to Django’s Sites frame-
work. Defaults to "django.contrib.sites" in settings.INSTALLED_APPS

• FORMS_BUILDER_EDITABLE_SLUGS - Boolean controlling whether form slugs are editable in the admin.
Defaults to False

• FORMS_BUILDER_CHOICES_QUOTE - Char to start a quoted choice with. Defaults to the backtick char: ‘

• FORMS_BUILDER_CHOICES_UNQUOTE - Char to end a quoted choice with. Defaults to the backtick char: ‘

• FORMS_BUILDER_CSV_DELIMITER - Char to use as a field delimiter when exporting form responses as
CSV. Defaults to a comma: ,

• FORMS_BUILDER_EMAIL_FAIL_SILENTLY - Bool used for Django’s fail_silently argument when
sending email. Defaults to settings.DEBUG.
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CHAPTER 6

Custom Fields and Widgets

You can also add your own custom fields or widgets to the choices of fields available for a form. Simply define
a sequence for the FORMS_BUILDER_EXTRA_FIELDS setting in your project’s settings module, where each
item in the sequence is a custom field that will be available.

Each field in the sequence should be a three-item sequence containing an ID, a dotted import path for the field class,
and a field name, for each custom field type. The ID is simply a numeric constant for the field, but cannot be a value
already used, so choose a high number such as 100 or greater to avoid conflicts:

FORMS_BUILDER_EXTRA_FIELDS = (
(100, "django.forms.BooleanField", "My cool checkbox"),
(101, "my_module.MyCustomField", "Another field"),

)

You can also define custom widget classes for any of the existing or custom form fields via the
FORMS_BUILDER_EXTRA_WIDGETS setting. Each field in the sequence should be a two-item sequence containing
the same ID referred to above for the form field class, and a dotted import path for the widget class:

FORMS_BUILDER_EXTRA_WIDGETS = (
(100, "my_module.MyCoolWidget"),
(101, "my_other_module.AnotherWidget"),

)

Note that using the FORMS_BUILDER_EXTRA_WIDGETS setting to define custom widgets for field classes of your
own is somewhat redundant, since you could simply define the widgets on the field classes directly in their code.
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CHAPTER 7

Email Templates

The django-email-extras package is used to send multipart email notifications using Django’s templating system for
constructing the emails, to users submitting forms, and any recipients specified when creating a form via Django’s
admin.

Templates for HTML and text versions of the email can be found in the templates/email_extras directory.
This allows you to customize the look and feel of emails that are sent to form submitters. Along with each of
the form_response email templates which are used to email the form submitter, you’ll also find corresponding
form_response_copies templates, that extend the former set - these are used as the templates for emailing any
extra recipients specified for the form in the admin interface. By default they simply extend the form_response
templates, but you can modify them should you need to customize the emails sent to any extra recipients.

Note: With django-email-extras installed, it’s also possible to configure PGP encrypted emails to be send
to staff members, allowing forms to be built for capturing sensitive information. Consult the django-email-extras
documentation for more info.
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CHAPTER 8

Signals

Two signals are provided for hooking into different states of the form submission process.

• form_invalid(sender=request, form=form) - Sent when the form is submitted with invalid data.

• form_valid(sender=request, form=form, entry=entry) - Sent when the form is submitted
with valid data.

For each signal the sender argument is the current request. Both signals receive a form argument is given which is
the FormForForm instance, a ModelForm for the FormEntry model. The form_valid signal also receives a
entry argument, which is the FormEntry model instance created.

Some examples of using the signals would be to monitor how users are causing validation errors with the form, or a
pipeline of events to occur on successful form submissions. Suppose we wanted to store a logged in user’s username
against each form when submitted, given a form containing a field with the label Username with its field_type set to
Hidden:

from django.dispatch import receiver
from forms_builder.forms.signals import form_valid

@receiver(form_valid)
def set_username(sender=None, form=None, entry=None, **kwargs):

request = sender
if request.user.is_authenticated():

field = entry.form.fields.get(label="Username")
field_entry, _ = entry.fields.get_or_create(field_id=field.id)
field_entry.value = request.user.username
field_entry.save()
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CHAPTER 9

Dynamic Field Defaults

As of version 0.6, you can use Django template code for default field values. For example you could enter {{
request.user.username }} and the field will be pre-populated with a user’s username if they’re authenticated.
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CHAPTER 10

XLS Export

By default, django-forms-builder provides export of form entries via CSV file. You can also enable export via XLS
file (Microsoft Excel) by installing the xlwt package:

$ pip install xlwt
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