
Django Extra Views Documentation
Release 0.14.0

Andrew Ingram

Jan 07, 2022

Contents

1 Features 3

2 Table of Contents 5
2.1 Getting Started . 5
2.2 Formset Views . 7
2.3 Formset Customization Examples . 11
2.4 List Views . 14

3 Reference 17
3.1 Change History . 17

i

ii

Django Extra Views Documentation, Release 0.14.0

Django Extra Views provides a number of additional class-based generic views to complement those provide by
Django itself. These mimic some of the functionality available through the standard admin interface, including Model,
Inline and Generic Formsets.

Contents 1

Django Extra Views Documentation, Release 0.14.0

2 Contents

CHAPTER 1

Features

• FormSet and ModelFormSet views - The formset equivalents of FormView and ModelFormView.

• InlineFormSetView - Lets you edit a formset related to a model (using Django’s
inlineformset_factory).

• CreateWithInlinesView and UpdateWithInlinesView - Lets you edit a model and multiple inline
formsets all in one view.

• GenericInlineFormSetView, the equivalent of InlineFormSetView but for
GenericForeignKeys.

• Support for generic inlines in CreateWithInlinesView and UpdateWithInlinesView.

• Support for naming each inline or formset in the template context with NamedFormsetsMixin.

• SortableListMixin - Generic mixin for sorting functionality in your views.

• SearchableListMixin - Generic mixin for search functionality in your views.

• SuccessMessageMixin and FormSetSuccessMessageMixin - Generic mixins to display success
messages after form submission.

3

Django Extra Views Documentation, Release 0.14.0

4 Chapter 1. Features

CHAPTER 2

Table of Contents

2.1 Getting Started

2.1.1 Installation

Install the stable release from pypi (using pip):

pip install django-extra-views

Or install the current master branch from github:

pip install -e git://github.com/AndrewIngram/django-extra-views.git#egg=django-extra-
→˓views

Then add 'extra_views' to your INSTALLED_APPS:

INSTALLED_APPS = [
...
'extra_views',
...

]

2.1.2 Quick Examples

FormSetView

Define a FormSetView, a view which creates a single formset from django.forms.formset_factory and
adds it to the context.

from extra_views import FormSetView
from my_forms import AddressForm

(continues on next page)

5

Django Extra Views Documentation, Release 0.14.0

(continued from previous page)

class AddressFormSet(FormSetView):
form_class = AddressForm
template_name = 'address_formset.html'

Then within address_formset.html, render the formset like this:

<form method="post">
...
{{ formset }}
...
<input type="submit" value="Submit" />

</form>

ModelFormSetView

Define a ModelFormSetView, a view which works as FormSetView but instead renders a model formset using
django.forms.modelformset_factory.

from extra_views import ModelFormSetView

class ItemFormSetView(ModelFormSetView):
model = Item
fields = ['name', 'sku']
template_name = 'item_formset.html'

CreateWithInlinesView or UpdateWithInlinesView

Define CreateWithInlinesView and UpdateWithInlinesView, views which render a form to cre-
ate/update a model instance and its related inline formsets. Each of the InlineFormSetFactory classes use
similar class definitions as the ModelFormSetView.

from extra_views import CreateWithInlinesView, UpdateWithInlinesView,
→˓InlineFormSetFactory

class ItemInline(InlineFormSetFactory):
model = Item
fields = ['sku', 'price', 'name']

class ContactInline(InlineFormSetFactory):
model = Contact
fields = ['name', 'email']

class CreateOrderView(CreateWithInlinesView):
model = Order
inlines = [ItemInline, ContactInline]
fields = ['customer', 'name']
template_name = 'order_and_items.html'

(continues on next page)

6 Chapter 2. Table of Contents

Django Extra Views Documentation, Release 0.14.0

(continued from previous page)

class UpdateOrderView(UpdateWithInlinesView):
model = Order
inlines = [ItemInline, ContactInline]
fields = ['customer', 'name']
template_name = 'order_and_items.html'

Then within order_and_items.html, render the formset like this:

<form method="post">
...
{{ form }}

{% for formset in inlines %}
{{ formset }}

{% endfor %}
...
<input type="submit" value="Submit" />

</form>

2.2 Formset Views

For all of these views we’ve tried to mimic the API of Django’s existing class-based views as closely as possible, so
they should feel natural to anyone who’s already familiar with Django’s views.

2.2.1 FormSetView

This is the formset equivalent of Django’s FormView. Use it when you want to display a single (non-model) formset
on a page.

A simple formset:

from extra_views import FormSetView
from my_app.forms import AddressForm

class AddressFormSetView(FormSetView):
template_name = 'address_formset.html'
form_class = AddressForm
success_url = 'success/'

def get_initial(self):
return whatever you'd normally use as the initial data for your formset.

return data

def formset_valid(self, formset):
do whatever you'd like to do with the valid formset
return super(AddressFormSetView, self).formset_valid(formset)

and in address_formset.html:

<form method="post">
...

(continues on next page)

2.2. Formset Views 7

Django Extra Views Documentation, Release 0.14.0

(continued from previous page)

{{ formset }}
...
<input type="submit" value="Submit" />

</form>

This view will render the template address_formset.html with a context variable formset representing the
AddressFormSet. Once POSTed and successfully validated, formset_valid will be called (which is where
your handling logic goes), then the view will redirect to success_url.

Formset constructor and factory kwargs

FormSetView exposes all the parameters you’d normally be able to pass to the django.forms.BaseFormSet
constructor and django.forms.formset_factory(). This can be done by setting the respective attribute on
the class, or formset_kwargs and factory_kwargs at the class level.

Below is an exhaustive list of all formset-related attributes which can be set at the class level for FormSetView:

...
from my_app.forms import AddressForm, BaseAddressFormSet

class AddressFormSetView(FormSetView):
template_name = 'address_formset.html'
form_class = AddressForm
formset_class = BaseAddressFormSet
initial = [{'type': 'home'}, {'type': 'work'}]
prefix = 'address-form'
success_url = 'success/'
factory_kwargs = {'extra': 2, 'max_num': None,

'can_order': False, 'can_delete': False}
formset_kwargs = {'auto_id': 'my_id_%s'}

In the above example, BaseAddressFormSet would be a subclass of django.forms.BaseFormSet.

2.2.2 ModelFormSetView

ModelFormSetView makes use of django.forms.modelformset_factory(), using the declarative syntax
used in FormSetView as well as Django’s own class-based views. So as you’d expect, the simplest usage is as
follows:

from extra_views import ModelFormSetView
from my_app.models import Item

class ItemFormSetView(ModelFormSetView):
model = Item
fields = ['name', 'sku', 'price']
template_name = 'item_formset.html'

Rather than setting fields, exclude can be defined at the class level as a list of fields to be excluded.

It is not necessary to define fields or exclude if a form_class is defined at the class level:

8 Chapter 2. Table of Contents

Django Extra Views Documentation, Release 0.14.0

...
from django.forms import ModelForm

class ItemForm(ModelForm):
Custom form definition goes here
fields = ['name', 'sku', 'price']

class ItemFormSetView(ModelFormSetView):
model = Item
form_class = ItemForm
template_name = 'item_formset.html'

Like FormSetView, the formset variable is made available in the template context. By default this will populate
the formset with all the instances of Item in the database. You can control this by overriding get_queryset on
the class, which could filter on a URL kwarg (self.kwargs), for example:

class ItemFormSetView(ModelFormSetView):
model = Item
template_name = 'item_formset.html'

def get_queryset(self):
sku = self.kwargs['sku']
return super(ItemFormSetView, self).get_queryset().filter(sku=sku)

2.2.3 InlineFormSetView

When you want to edit instances of a particular model related to a parent model (using a ForeignKey), you’ll want to
use InlineFormSetView. An example use case would be editing addresses associated with a particular contact.

from extra_views import InlineFormSetView

class EditContactAddresses(InlineFormSetView):
model = Contact
inline_model = Address

...

Aside from the use of model and inline_model, InlineFormSetView works more-or-less in the same way
as ModelFormSetView, instead calling django.forms.inlineformset_factory().

2.2.4 CreateWithInlinesView and UpdateWithInlinesView

These are the most powerful views in the library, they are effectively replacements for Django’s own CreateView
and UpdateView. The key difference is that they let you include any number of inline formsets (as well as the parent
model’s form). This provides functionality much like the Django Admin change forms. The API should be fairly
familiar as well. The list of the inlines will be passed to the template as context variable inlines.

Here is a simple example that demonstrates the use of each view with normal inline relationships:

2.2. Formset Views 9

Django Extra Views Documentation, Release 0.14.0

from extra_views import CreateWithInlinesView, UpdateWithInlinesView,
→˓InlineFormSetFactory

class ItemInline(InlineFormSetFactory):
model = Item
fields = ['sku', 'price', 'name']

class ContactInline(InlineFormSetFactory):
model = Contact
fields = ['name', 'email']

class CreateOrderView(CreateWithInlinesView):
model = Order
inlines = [ItemInline, ContactInline]
fields = ['customer', 'name']
template_name = 'order_and_items.html'

def get_success_url(self):
return self.object.get_absolute_url()

class UpdateOrderView(UpdateWithInlinesView):
model = Order
inlines = [ItemInline, ContactInline]
fields = ['customer', 'name']
template_name = 'order_and_items.html'

def get_success_url(self):
return self.object.get_absolute_url()

and in the html template:

<form method="post">
...
{{ form }}

{% for formset in inlines %}
{{ formset }}

{% endfor %}
...
<input type="submit" value="Submit" />

</form>

InlineFormSetFactory

This class represents all the configuration necessary to generate an inline formset from django.
inlineformset_factory(). Each class within in CreateWithInlines.inlines and
UpdateWithInlines.inlines should be a subclass of InlineFormSetFactory. All the same methods
and attributes as InlineFormSetView are available, with the exception of any view-related attributes and
methods, such as success_url or formset_valid():

from my_app.forms import ItemForm, BaseItemFormSet
from extra_views import InlineFormSetFactory

(continues on next page)

10 Chapter 2. Table of Contents

Django Extra Views Documentation, Release 0.14.0

(continued from previous page)

class ItemInline(InlineFormSetFactory):
model = Item
form_class = ItemForm
formset_class = BaseItemFormSet
initial = [{'name': 'example1'}, {'name', 'example2'}]
prefix = 'item-form'
factory_kwargs = {'extra': 2, 'max_num': None,

'can_order': False, 'can_delete': False}
formset_kwargs = {'auto_id': 'my_id_%s'}

IMPORTANT: Note that when using InlineFormSetFactory, model should be the inline model and not the
parent model.

2.2.5 GenericInlineFormSetView

In the specific case when you would usually use Django’s django.contrib.contenttypes.forms.
generic_inlineformset_factory(), you should use GenericInlineFormSetView. The kwargs
ct_field and fk_field should be set in factory_kwargs if they need to be changed from their default
values:

from extra_views.generic import GenericInlineFormSetView

class EditOrderTags(GenericInlineFormSetView):
model = Order
inline_model = Tag
factory_kwargs = {'ct_field': 'content_type', 'fk_field': 'object_id',

'max_num': 1}
formset_kwargs = {'save_as_new': True}

...

There is a GenericInlineFormSetFactory which is analogous to InlineFormSetFactory for use with
generic inline formsets.

GenericInlineFormSetFactory can be used in CreateWithInlines.inlines and
UpdateWithInlines.inlines in the obvious way.

2.3 Formset Customization Examples

2.3.1 Overriding formset_kwargs and factory_kwargs at run time

If the values in formset_kwargs and factory_kwargs need to be modified at run time, they can be set by over-
loading the get_formset_kwargs() and get_factory_kwargs() methods on any formset view (model,
inline or generic) and the InlineFormSetFactory classes:

class AddressFormSetView(FormSetView):
...

def get_formset_kwargs(self):

(continues on next page)

2.3. Formset Customization Examples 11

Django Extra Views Documentation, Release 0.14.0

(continued from previous page)

kwargs = super(AddressFormSetView, self).get_formset_kwargs()
modify kwargs here
return kwargs

def get_factory_kwargs(self):
kwargs = super(AddressFormSetView, self).get_factory_kwargs()
modify kwargs here
return kwargs

2.3.2 Overriding the the base formset class

The formset_class option should be used if you intend to override the formset methods of a view or a subclass
of InlineFormSetFactory.

For example, imagine you’d like to add your custom clean method for an inline formset view. Then, define a custom
formset class, a subclass of Django’s BaseInlineFormSet, like this:

from django.forms.models import BaseInlineFormSet

class ItemInlineFormSet(BaseInlineFormSet):

def clean(self):
...
Your custom clean logic goes here

Now, in your InlineFormSetView sub-class, use your formset class via formset_class setting, like this:

from extra_views import InlineFormSetView
from my_app.models import Item
from my_app.forms import ItemForm

class ItemInlineView(InlineFormSetView):
model = Item
form_class = ItemForm
formset_class = ItemInlineFormSet # enables our custom inline

This will enable clean method being executed on the formset used by ItemInlineView.

2.3.3 Initial data for ModelFormSet and InlineFormSet

Passing initial data into ModelFormSet and InlineFormSet works slightly differently to a regular FormSet. The
data passed in from initial will be inserted into the extra forms of the formset. Only the data from
get_queryset() will be inserted into the initial rows:

from extra_views import ModelFormSetView
from my_app.models import Item

class ItemFormSetView(ModelFormSetView):
template_name = 'item_formset.html'
model = Item
factory_kwargs = {'extra': 10}
initial = [{'name': 'example1'}, {'name': 'example2'}]

12 Chapter 2. Table of Contents

Django Extra Views Documentation, Release 0.14.0

The above will result in a formset containing a form for each instance of Item in the database, followed by 2 forms
containing the extra initial data, followed by 8 empty forms.

Altenatively, initial data can be determined at run time and passed in by overloading get_initial():

...
class ItemFormSetView(ModelFormSetView):

model = Item
template_name = 'item_formset.html'
...

def get_initial(self):
Get a list of initial values for the formset here
initial = [...]
return initial

2.3.4 Passing arguments to the form constructor

In order to change the arguments which are passed into each form within the formset, this can be done by the
‘form_kwargs’ argument passed in to the FormSet constructor. For example, to give every form an initial value of
‘example’ in the ‘name’ field:

from extra_views import InlineFormSetFactory

class ItemInline(InlineFormSetFactory):
model = Item
formset_kwargs = {'form_kwargs': {'initial': {'name': 'example'}}}

If these need to be modified at run time, it can be done by get_formset_kwargs():

from extra_views import InlineFormSetFactory

class ItemInline(InlineFormSetFactory):
model = Item

def get_formset_kwargs(self):
kwargs = super(ItemInline, self).get_formset_kwargs()
initial = get_some_initial_values()
kwargs['form_kwargs'].update({'initial': initial})
return kwargs

2.3.5 Named formsets

If you want more control over the names of your formsets (as opposed to iterating over inlines), you can use
NamedFormsetsMixin:

from extra_views import NamedFormsetsMixin

class CreateOrderView(NamedFormsetsMixin, CreateWithInlinesView):
model = Order
inlines = [ItemInline, TagInline]
inlines_names = ['Items', 'Tags']
fields = '__all__'

Then use the appropriate names to render them in the html template:

2.3. Formset Customization Examples 13

Django Extra Views Documentation, Release 0.14.0

...
{{ Tags }}
...
{{ Items }}
...

2.3.6 Success messages

When using Django’s messages framework, mixins are available to send success messages in a similar way
to django.contrib.messages.views.SuccessMessageMixin. Ensure that 'django.contrib.
messages.middleware.MessageMiddleware' is included in the MIDDLEWARE section of settings.py.

extra_views.SuccessMessageMixin is for use with views with multiple inline formsets. It is used in an iden-
tical manner to Django’s SuccessMessageMixin, making form.cleaned_data available for string interpolation
using the %(field_name)s syntax:

from extra_views import CreateWithInlinesView, SuccessMessageMixin
...

class CreateOrderView(SuccessMessageMixin, CreateWithInlinesView):
model = Order
inlines = [ItemInline, ContactInline]
success_message = 'Order %(name)s successfully created!'
...

or instead, set at runtime:
def get_success_message(self, cleaned_data, inlines):

return 'Order with id {} successfully created'.format(self.object.pk)

Note that the success message mixins should be placed ahead of the main view in order of class inheritance.

extra_views.FormSetSuccessMessageMixin is for use with views which handle a single formset. In order
to parse any data from the formset, you should override the get_success_message method as below:

from extra_views import FormSetView, FormSetSuccessMessageMixin
from my_app.forms import AddressForm

class AddressFormSetView(FormSetView):
form_class = AddressForm
success_url = 'success/'
...
success_message = 'Addresses Updated!'

or instead, set at runtime
def get_success_message(self, formset)

Here you can use the formset in the message if required
return '{} addresses were updated.'.format(len(formset.forms))

2.4 List Views

2.4.1 Searchable List Views

You can add search functionality to your ListViews by adding SearchableListMixin and by setting search_fields:

14 Chapter 2. Table of Contents

https://docs.djangoproject.com/en/dev/ref/contrib/messages/#django.contrib.messages.views.SuccessMessageMixin

Django Extra Views Documentation, Release 0.14.0

from django.views.generic import ListView
from extra_views import SearchableListMixin

class SearchableItemListView(SearchableListMixin, ListView):
template_name = 'extra_views/item_list.html'
search_fields = ['name', 'sku']
model = Item

In this case object_list will be filtered if the ‘q’ query string is provided (like /searchable/?q=query), or you can
manually override get_search_query method, to define your own search functionality.

Also you can define some items in search_fields as tuple (e.g. [('name', 'iexact',), 'sku']) to
provide custom lookups for searching. Default lookup is icontains. We strongly recommend to use only string
lookups, when number fields will convert to strings before comparison to prevent converting errors. This controlled
by check_lookups setting of SearchableMixin.

2.4.2 Sortable List View

from django.views.generic import ListView
from extra_views import SortableListMixin

class SortableItemListView(SortableListMixin, ListView):
sort_fields_aliases = [('name', 'by_name'), ('id', 'by_id'),]
model = Item

You can hide real field names in query string by define sort_fields_aliases attribute (see example) or show they
as is by define sort_fields. SortableListMixin adds sort_helper variable of SortHelper class, then in tem-
plate you can use helper functions: {{ sort_helper.get_sort_query_by_FOO }}, {{ sort_helper.
get_sort_query_by_FOO_asc }}, {{ sort_helper.get_sort_query_by_FOO_desc }} and {{
sort_helper.is_sorted_by_FOO }}

2.4. List Views 15

Django Extra Views Documentation, Release 0.14.0

16 Chapter 2. Table of Contents

CHAPTER 3

Reference

3.1 Change History

3.1.1 0.14.0 (2021-06-08)

Changes:

Supported Versions:

Python Django
3.5 2.1–2.2
3.6-3.7 2.1–3.1
3.8 2.2–3.1

• Removed support for Python 2.7.

• Added support for Python 3.8 and Django 3.1.

• Removed the following classes (use the class in parentheses instead):

– BaseFormSetMixin (use BaseFormSetFactory).

– BaseInlineFormSetMixin (use BaseInlineFormSetFactory).

– InlineFormSet (use InlineFormSetFactory).

– BaseGenericInlineFormSetMixin (use BaseGenericInlineFormSetFactory).

– GenericInlineFormSet (use GenericInlineFormSetFactory).

3.1.2 0.13.0 (2019-12-20)

17

Django Extra Views Documentation, Release 0.14.0

Changes:

Supported Versions:

Python Django
2.7 1.11
3.5 1.11–2.2
3.6-3.7 1.11–3.0

• Added SuccessMessageMixin and FormSetSuccessMessageMixin.

• CreateWithInlinesView and UpdateWithInlinesView now call self.form_valid method
within self.forms_valid.

• Revert view.object back to it’s original value from the GET request if validation fails for the inline formsets
in CreateWithInlinesView and UpdateWithInlinesview.

• Added support for Django 3.0.

3.1.3 0.12.0 (2018-10-21)

Supported Versions:

Python Django
2.7 1.11
3.4 1.11–2.0
3.5-3.7 1.11–2.1

Changes:

• Removed setting of BaseInlineFormSetMixin.formset_class and
GenericInlineFormSetMixin.formset_class so that formset can be set in factory_kwargs
instead.

• Removed ModelFormSetMixin.get_context_data and BaseInlineFormSetMixin.
get_context_data as this code was duplicated from Django’s MultipleObjectMixin and
SingleObjectMixin respectively.

• Renamed BaseFormSetMixin to BaseFormSetFactory.

• Renamed BaseInlineFormSetMixin to BaseInlineFormSetFactory.

• Renamed InlineFormSet to InlineFormSetFactory.

• Renamed BaseGenericInlineFormSetMixin to BaseGenericInlineFormSetFactory.

• Renamed GenericInlineFormSet to GenericInlineFormSetFactory.

All renamed classes will be removed in a future release.

3.1.4 0.11.0 (2018-04-24)

Supported Versions:

18 Chapter 3. Reference

Django Extra Views Documentation, Release 0.14.0

Python Django
2.7 1.11
3.4–3.6 1.11–2.0

Backwards-incompatible changes

• Dropped support for Django 1.7–1.10.

• Removed support for factory kwargs extra, max_num, can_order, can_delete, ct_field,
formfield_callback, fk_name, widgets, ct_fk_field being set on BaseFormSetMixin and
its subclasses. Use BaseFormSetMixin.factory_kwargs instead.

• Removed support for formset_kwarg save_as_new being set on BaseInlineFormSetMixin and its
subclasses. Use BaseInlineFormSetMixin.formset_kwargs instead.

• Removed support for get_extra_form_kwargs. This can be set in the dictionary key form_kwargs in
BaseFormSetMixin.formset_kwargs instead.

3.1.5 0.10.0 (2018-02-28)

New features:

• Added SuccessMessageWithInlinesMixin (#151)

• Allow the formset prefix to be overridden (#154)

Bug fixes:

• SearchableMixin: Fix reduce() of empty sequence error (#149)

• Add fields attributes (Issue #144, PR #150)

• Fix Django 1.11 AttributeError: This QueryDict instance is immutable (#156)

3.1.6 0.9.0 (2017-03-08)

This version supports Django 1.7, 1.8, 1.9, 1.10 (latest minor versions), and Python 2.7, 3.4, 3.5 (latest minor versions).

• Added Django 1.10 support

• Dropped Django 1.6 support

3.1.7 0.8 (2016-06-14)

This version supports Django 1.6, 1.7, 1.8, 1.9 (latest minor versions), and Python 2.7, 3.4, 3.5 (latest minor versions).

• Added widgets attribute setting; allow to change form widgets in the ModelFormSetView.

• Added Django 1.9 support.

• Fixed get_context_data() usage of *args, **kwargs.

• Fixed silent overwriting of ModelForm fields to __all__.

3.1. Change History 19

Django Extra Views Documentation, Release 0.14.0

Backwards-incompatible changes

• Dropped support for Django <= 1.5 and Python 3.3.

• Removed the extra_views.multi module as it had neither documentation nor test coverage and was bro-
ken for some of the supported Django/Python versions.

• This package no longer implicitly set fields = '__all__'. If you face ImproperlyConfigured
exceptions, you should have a look at the Django 1.6 release notes and set the fields or exclude attributes
on your ModelForm or extra-views views.

3.1.8 0.7.1 (2015-06-15)

Beginning of this changelog.

20 Chapter 3. Reference

https://docs.djangoproject.com/en/stable/releases/1.6/#modelform-without-fields-or-exclude

	Features
	Table of Contents
	Getting Started
	Formset Views
	Formset Customization Examples
	List Views

	Reference
	Change History

