
django-extensions Documentation
Release 1.7.4

Michael Trier, Bas van Oostveen, and contributors

September 15, 2016

Contents

1 Quickstart 3

2 Compatibility with versions of Python and Django 5

3 Contents 7
3.1 shell_plus . 7

3.1.1 Interactive Python Shells . 7
3.1.2 Configuration . 7
3.1.3 Additional Imports . 9
3.1.4 Database application signature . 9
3.1.5 SQL queries . 9

i

ii

django-extensions Documentation, Release 1.7.4

Django Extensions Shell is the shell_plus command extracted from the excellent Django Extensions project into its
own project. In most projects I’ve been only using the shell_plus command and to me it feels much better to only
introduce a dependency on this specific code in projects then to depend on the whole Django Extensions project.

Contents 1

django-extensions Documentation, Release 1.7.4

2 Contents

CHAPTER 1

Quickstart

You can get Django Extensions Shell by using pip or easy_install:

$ pip install django-extensions-shell
or
$ easy_install django-extensions-shell

If you want to install it from source, grab the git repository and run setup.py:

$ git clone git://github.com/shanx/django-extensions-shell.git
$ cd django-extensions-shell
$ python setup.py install

Now you will need to add the django_extensions_shell application to the INSTALLED_APPS setting of your Django
project settings.py file.:

INSTALLED_APPS = (
...
'django_extensions_shell',

)

For more detailed instructions check out our installation_instructions. Enjoy.

3

django-extensions Documentation, Release 1.7.4

4 Chapter 1. Quickstart

CHAPTER 2

Compatibility with versions of Python and Django

This command will periodically follow updates done within Django Extensions so please check at: the Django Exten-
sions page

5

https://django-extensions.readthedocs.io/en/latest/#compatibility-with-versions-of-python-and-django
https://django-extensions.readthedocs.io/en/latest/#compatibility-with-versions-of-python-and-django

django-extensions Documentation, Release 1.7.4

6 Chapter 2. Compatibility with versions of Python and Django

CHAPTER 3

Contents

3.1 shell_plus

synopsis Django shell with autoloading of the apps database models

3.1.1 Interactive Python Shells

There is support for three different types of interactive python shells.

IPython:

$./manage.py shell_plus --ipython

BPython:

$./manage.py shell_plus --bpython

Python:

$./manage.py shell_plus --plain

The default resolution order is: bpython, ipython, python.

You can also set the configuration option SHELL_PLUS to explicitly specify which version you want.

Always use IPython for shell_plus
SHELL_PLUS = "ipython"

It is also possible to use IPython Notebook, an interactive Python shell which uses a web browser as its user interface,
as an alternative shell:

$./manage.py shell_plus --notebook

In addition to being savable, IPython Notebooks can be updated (while running) to reflect changes in a Django appli-
cation’s code with the menu command Kernel > Restart.

3.1.2 Configuration

Sometimes, models from your own apps and other people’s apps have colliding names, or you may want to completely
skip loading an app’s models. Here are some examples of how to do that.

Note: These settings are only used inside shell_plus and will not affect your environment.

7

http://ipython.org/ipython-doc/dev/interactive/htmlnotebook.html

django-extensions Documentation, Release 1.7.4

Rename the automatic loaded module Messages in the app blog to blog_messages.
SHELL_PLUS_MODEL_ALIASES = {'blog': {'Messages': 'blog_messages'},}
}

Prefix all automatically loaded models in the app blog with myblog.
SHELL_PLUS_APP_PREFIXES = {'blog': 'myblog',}
}

Dont load the 'sites' app, and skip the model 'pictures' in the app 'blog'
SHELL_PLUS_DONT_LOAD = ['sites', 'blog.pictures']
}

You can also combine model_aliases and dont_load.

It is possible to ignore autoloaded modules when using manage.py, like:

$./manage.py shell_plus --dont-load app1 --dont-load app2.module1

Commandline parameters and settings in the configuration file are merged, so you can safely append modules to ignore
from the commandline for one-time usage.

There are two settings that you can use to pass your custom options to the IPython Notebook in your Django settings.

The first one is NOTEBOOK_ARGUMENTS that can be used to hold those options that available via:

$ ipython notebook -h

For example:

NOTEBOOK_ARGUMENTS = [
'--ip=x.x.x.x',
'--port=xx',

]

Another one is IPYTHON_ARGUMENTS that for those options that available via:

$ ipython -h

The Django settings module and database models are auto-loaded into the interactive shell’s global namespace also
for IPython Notebook.

Auto-loading is done by a custom IPython extension which is activated by default by passing the --ext
django_extensions.management.notebook_extension argument to the Notebook. If you need to pass
custom options to the IPython Notebook, you can override the default options in your Django settings using the
IPYTHON_ARGUMENTS setting. For example:

IPYTHON_ARGUMENTS = [
'--ext', 'django_extensions.management.notebook_extension',
'--ext', 'myproject.notebook_extension',
'--debug',

]

To activate auto-loading, remember to either include the django-extensions’ default notebook extension or copy its
auto-loading code into your own extension.

Note that the IPython Notebook feature doesn’t currently honor the --dont-load option.

8 Chapter 3. Contents

django-extensions Documentation, Release 1.7.4

3.1.3 Additional Imports

In addition to importing the models you can specify other items to import by default. These are specified in
SHELL_PLUS_PRE_IMPORTS and SHELL_PLUS_POST_IMPORTS. The former is imported before any other im-
ports (such as the default models import) and the latter is imported after any other imports. Both have similar syntax.
So in your settings.py file:

SHELL_PLUS_PRE_IMPORTS = (
('module.submodule1', ('class1', 'function2')),
('module.submodule2', 'function3'),
('module.submodule3', '*'),
'module.submodule4'

)

The above example would directly translate to the following python code which would be executed before the auto-
matic imports:

from module.submodule1 import class1, function2
from module.submodule2 import function3
from module.submodule3 import *
import module.submodule4

These symbols will be available as soon as the shell starts.

3.1.4 Database application signature

If using PostgreSQL the application_name is set by default to django_shell to help identify queries made
under shell_plus.

3.1.5 SQL queries

It is possible to print SQL queries as they’re executed in shell_plus like:

$./manage.py shell_plus --print-sql

You can also set the configuration option SHELL_PLUS_PRINT_SQL to omit the above command line option.

print SQL queries in shell_plus
SHELL_PLUS_PRINT_SQL = True

3.1. shell_plus 9

	Quickstart
	Compatibility with versions of Python and Django
	Contents
	shell_plus
	Interactive Python Shells
	Configuration
	Additional Imports
	Database application signature
	SQL queries

