

 Copyright and other protections apply.
Please see the accompanying LICENSE and CREDITS file(s) for rights and restrictions governing use of this software.
All rights not expressly waived or licensed are reserved.
If those files are missing or appear to be modified from their originals, then please contact the author before viewing or using this software in any capacity.

django-emojiwatch

django-emojiwatch is a bare bones Slack app for posting custom emoji updates to a designated channel.
It is licensed under the MIT License [https://opensource.org/licenses/MIT].
See the LICENSE file for details.

Contents

	Introduction
	License

	Installation
	Django

	Slack App and Watcher Setup

	Requirements

	Contributing to django-emojiwatch
	Filing Issues

	Submission Guidelines

	LICENSE
	The MIT License (MIT)

	CREDITS
	Contributors

Copyright and other protections apply.
Please see the accompanying LICENSE and CREDITS file(s) for rights and restrictions governing use of this software.
All rights not expressly waived or licensed are reserved.
If those files are missing or appear to be modified from their originals, then please contact the author before viewing or using this software in any capacity.

Introduction

django-emojiwatch is a bare bones Slack app for posting custom emoji updates to a designated channel.
It is implemented as a Django app.
It was loosely inspired by Khan Academy’s emojiwatch [https://github.com/Khan/emojiwatch], which provides similar functionality, but for hosting on on Google App Engine.

License

django-emojiwatch is licensed under the MIT License [https://opensource.org/licenses/MIT].
See the LICENSE file for details.
Source code is available on GitHub [https://github.com/posita/django-emojiwatch].

Installation

Django

Installation can be performed via pip (which will download and install the latest release [https://pypi.python.org/pypi/django-emojiwatch/]):

% pip install django-emojiwatch
...

Alternately, you can download the sources (e.g., from GitHub [https://github.com/posita/django-emojiwatch]) and run setup.py:

% git clone https://github.com/posita/django-emojiwatch
...
% cd django-emojiwatch
% python setup.py install
...

Now you can add it to your DJANGO_SETTINGS_MODULE:

INSTALLED_APPS = (
 # ...
 'emojiwatch',
)

EMOJIWATCH = {
 'slack_verification_token': '...',
}

And add it to your site-wide URLs:

from django.conf.urls import include, url

urlpatterns = (
 # ...
 url(
 r'^emojiwatch/', # or werever you want
 include('emojiwatch.urls'),
),
 # ...
)

If you haven’t already, you’ll also need to enable the admin site [https://docs.djangoproject.com/en/2.0/ref/contrib/admin/#overview] for your Django installation.

Configuring Token Encryption in Django’s Database

Auth tokens and notes associated with a watcher are encrypted in the Django database using django-fernet-fields [https://django-fernet-fields.readthedocs.io/].
By default, the encryption key is derived from the SECRET_KEY Django setting.
To override this, use the FERNET_KEYS and FERNET_USE_HKDF settings.
See the docs [http://django-fernet-fields.readthedocs.io/en/latest/#keys] for details.

Slack App and Watcher Setup

	Create a new Slack app [https://api.slack.com/apps?new_app_token=1] or a legacy Slack app [https://api.slack.com/apps?new_app=1].

	Once created, navigate to the Basic Information settings section and copy the Verification Token (e.g., NS3PYxg1QR1l7s2G0fRDZ8uK):

[image: Slack app verification Token]
This is what you’ll use as the EMOJIWATCH['slack_verification_token'] Django setting.

	Add the emoji:read and chat:write (or chat:write:bot for legacy Slack apps) scopes to your app:

[image: Slack app OAuth scopes]

	Navigate to the OAuth & Permission features section.
If necessary, click Install App to Workspace:

[image: Slack app installation]
You’ll be asked to authorize your new app in your workspace:

[image: Slack app authorization]
Click Authorize.

	Copy the OAuth Access Token (e.g., xoxp-3168...db0b5):

[image: Slack app OAuth token]
This is what you’ll use when creating the Slack Workspace Emoji Watcher below.

	If you haven’t already, install emojiwatch into your Django project.
(See the Django [https://www.djangoproject.com/] installation section above.)
Navigate to your Django project’s admin interface and add a new Slack Workspace Emoji Watcher with your Slack team ID, your OAuth access token, and the Slack channel ID to which you’d like Emojiwatch to post messages:

[image: Add a watcher]
Your Slack team ID can be determined by navigating to any channel within your workspace, and looking at boot_data.team_id in your browser’s JavaScript console:

>> boot_data.team_id
"T4P09SCHKT"

Your Slack channel ID can be found in the URL when navigating to that channel:

https://<workspace-name>.slack.com/messages/C8VSYSEQ22/details/
 ^^^^^^^^^^

	Once your Slack Workspace Emoji Watcher is saved, you should be able to test your configuration by faking a minimalist emoji_changed event via curl:

curl --verbose --data '{
 "token": "NS3PYxg1QR1l7s2G0fRDZ8uK",
 "team_id": "T4P09SCHKT",
 "type": "event_callback",
 "event": {
 "type": "emoji_changed",
 "subtype": "add",
 "name": "faked-new-emoji",
 "value": "<some-img-url>"
 }
}' https://<django-project-base>/emojiwatch/event_hook

<django-project-base> is your domain, and optionally any path to your top-level Django project.
If your Django project provides your root path, this will just be a domain name.
Assuming everything has been set up correctly so far, this should result in a post to your Slack channel (e.g., C8VSYSEQ22):

[image: An Emojiwatch post to Slack]
If not, examine the output from your curl call for any clues as to what went wrong.
See the Troubleshooting section below for additional suggestions.

	Now you’re ready to start receiving events.
Navigate to your Slack app’s Event Subscriptions features section.
Turn events on and add your Django project’s publicly-visible HTTPS URL.
(This is the same URL you used with your curl command above.)
Slack will attempt to post to that URL to verify its accessibility.
Once verified, subscribe to the emoji:read event and click Save Changes.

[image: Slack app event subscriptions]

	That’s it!
You should now get notices to your designated channel whenever you add or remove custom Emojis to your workspace.

Troubleshooting

If your curl command is succeeding, but you’re still unable to see a post to your Slack channel, try turning on logging output via your Django settings.
Here’s a minimalist configuration if you don’t already have one:

import logging
LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'formatters': {
 'standard': {
 'format': '%(asctime)s\t%(levelname)s\t%(name)s\t%(filename)s:%(lineno)d\t%(message)s',
 },
 },
 'handlers': {
 'default': {
 'class': 'logging.StreamHandler',
 'level': 'DEBUG',
 'formatter': 'standard',
 },
 },
 'loggers': {
 '': {
 'handlers': ['default'],
 'level': 'DEBUG',
 'propagate': False,
 },
 'django': {
 'level': 'INFO',
 'propagate': True,
 },
 },
}

Try your curl command again.
The Django console log should provide some clue as to what’s wrong.

Some common causes are:

	Not properly adding or configuring the emojiwatch app in your Django project.

	Omitting or using an incorrect value for your EMOJIWATCH['slack_verification_token'] Django setting.

	Using an incorrect URL for your Django project instance or the django-emojiwatch event handler.
(Note: Slack requires event handlers to support HTTPS.)

	Not creating (or neglecting to save) your Slack Workspace Emoji Watcher object via your Django project’s admin interface.

	Using incorrect values for your team ID, access token, or channel ID.

	Failing to properly format a faked emoji_changed event when invoking curl.

Requirements

You’ll need a Slack account (and admin approval) for setting up your Slack app.
A modern version of Python is required:

	cPython [https://www.python.org/] (2.7 or 3.4+)

	PyPy [http://pypy.org/] (Python 2.7 or 3.4+ compatible)

django-emojiwatch has the following dependencies (which will be installed automatically):

	Django [https://www.djangoproject.com/] (1.8 or higher)

	django-fernet-fields [https://django-fernet-fields.readthedocs.io/]

	future [http://python-future.org/]

	slacker [https://github.com/os/slacker]

Copyright and other protections apply.
Please see the accompanying LICENSE and CREDITS file(s) for rights and restrictions governing use of this software.
All rights not expressly waived or licensed are reserved.
If those files are missing or appear to be modified from their originals, then please contact the author before viewing or using this software in any capacity.

Contributing to django-emojiwatch

There are several ways you can contribute.

Filing Issues

You can file new issues [https://github.com/posita/django-emojiwatch/issues] as you find them.
Please avoid duplicating issues.
“Writing Effective Bug Reports” by Elisabeth Hendrickson [http://testobsessed.com/wp-content/uploads/2011/07/webr.pdf] (PDF) may be helpful.

Submission Guidelines

If you’re willing and able, consider submitting a pull request [https://github.com/posita/django-emojiwatch/pulls] (PR) with a fix.
There are only a few guidelines:

	If it isn’t already there, please add your name (and optionally your GitHub username, email, website address, or other contact information) to the CREDITS file:

...
* `Gordon the Turtle <https://github.com/GordonTheTurtle>`_
...

	Try to follow the source conventions as you observe them.
(Note: I have purposely avoided aspects of PEP8 [https://www.python.org/dev/peps/pep-0008/], in part because I have adopted conventions developed from my experiences with other languages, but mostly because I’m growing older and more stubborn.)

	Provide tests where feasible and appropriate.
At the very least, existing tests should not fail.
(There are exceptions, but if there is any doubt, they probably don’t apply.)

Unit tests live in ./tests.
Tests can be run with tox [-e TOX_ENV] (requires Tox [https://tox.readthedocs.org/en/latest/]) or "${PYTHON:-python}" setup.py test.

There are two helper scripts that may be of interest.
To set up a virtual environment (via virtualenv) for development and to run unit tests using Tox [https://tox.readthedocs.org/en/latest/] from that virtual environment, you can do the following:

(. ./helpers/venvsetup.sh && ./helpers/runtests.sh [-e TOX_ENV])

	If you need me, mention me (@posita [https://github.com/posita]) in your comment, and describe specifically how I can help.

	If you want feedback on a work-in-progress (WIP), create a PR and prefix its title with something like, “NEED FEEDBACK -“.

	If your PR is still in progress, but you aren’t blocked on anything, prefix the title with something like, “WIP -“.

	Once you’re ready for a merge, resolve any merge conflicts, squash your commits, and provide a useful commit message.
(This [https://robots.thoughtbot.com/git-interactive-rebase-squash-amend-rewriting-history] and this [http://gitready.com/advanced/2009/02/10/squashing-commits-with-rebase.html] may be helpful.)
Then prefix the PR’s title to something like, “READY FOR MERGE -“.
I’ll try to get to it as soon as I can.

LICENSE

The MIT License (MIT)

Copyright © 2015-2018 Matt Bogosian (@posita [https://github.com/posita]).

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

CREDITS

Contributors

The following individuals or entities have contributed to this software.

By adding your name to this list, you grant a nonexclusive, perpetual
license to your contributions to this software under the same terms as
its LICENSE. Further, you warrant that your
contributions to this software are exclusively your own creations and no
one else has any superior right or claim to them. Finally, you agree to
indemnify and hold harmless this software’s owner against any colorable
claim of infringement by a third party for this software’s owner’s
otherwise lawful use of your contribution, whether or not such use was
contemplated by you at the time you made it.

Index

 _images/slack_app_verification_token.png
App Credentials

These credentials allow your app to access the Slack API. They are secret. Please don't share your
app credentials with anyone, include them in public code repositories, or store them in insecure
ways.

Client ID

Client Secret

®0ccccccoe Show Regenerate

You'll need to send this secret along with your client ID when making your oauth.access request.

q—-ﬂﬂ Regenerate

For interactive messages and events, use this token to verify that requests are actually coming from Slack.
Slash commands and interactive messages will both use this verification token.

Verification Token

{NS3PYxg1QR11752GOfRDZ8UK '

_images/slack_event_message.png
£ Emojiwatch APP 2:52 PM

w added :faked_new_emoji:
(66 kB) ~

_images/slack_app_oauth_scopes.png
Scopes

Scopes define the APl methods this app is allowed to call, and thus which infomation and
capabilities are available on a workspace it's installed on. Many scopes are restricted to specific
resources like channels or files.

If your app is submitted to the Slack App Directory, we'll review your reasons for requesting each
scope. After your app is listed in the Directory, it will only be able to use permission scopes Slack
has approved.

Select Permission Scopes

CHAT

Send messages as Emojiwatch &
chat:write:bot

EMOJI

Access the workspace’s emoji
emoji:read b

Save Changes

_images/slack_app_oauth_token.png
OAuth Tokens & Redirect URLs

Tokens for Your Workspace

These tokens were automatically generated when you installed the app to your team. You can
use these to authenticate your app. Learn more.

OAuth Access Token

‘ xoxp-316869823831-315935200709-320645037508-255f839cd856bS&%ﬁ*7
Reinstall App

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_images/slack_app_authorize.png
Access your workspace’s emoji v

Emojiwatch will be able to access the names and images of

custom emoji on posita.

Send messages as Emojiwatch v

Emojiwatch will be able to send messages to posita.

_images/slack_app_events.png
Enable Events *“““b ‘mg

Your app can subscribe to be notified of events in Slack (for example, when a user adds a
reaction or creates a file) at a URL you choose. Learn more.

Request URL Verified v

bas/jiwtch

Q-nw Change

We'll send HTTP POST requests to this URL when events occur. As soon as you enter a URL, we'll send a

request with a challenge parameter, and your endpoint must respond with the challenge value. Learn

: hts:<ja-jct-

more.

Subscribe to Workspace Events

To subscribe to an event, your app must have access to the related OAuth permission scope.

Event Name Description Required Scope
emoji_changed A custom emoji has been added 4 ‘ emoji:réad ; o
changed

i Add Workspace Event ;
Discard Changes { Save Changes ;

_images/django_add_watcher.png
Add Slack Workspace Emoji Watcher

Team ID: T4PO9SCHKT
Access Token: xoxp-316869823831-315935200709-32064!
Channel ID: C8VSYSEQ22

Icon Emoji: ‘robot_face:

_images/slack_app_install.png
OAuth Tokens & Redirect URLs

These OAuth Tokens will be automatically generated when you finish connecting the app to your
workspace. You'll use these tokens to authenticate your app.

Install App to Workspace

_static/down.png

nav.xhtml

 Table of Contents

 		
 django-emojiwatch

 		
 Introduction

 		
 License

 		
 Installation

 		
 Django

 		
 Slack App and Watcher Setup

 		
 Requirements

 		
 Contributing to django-emojiwatch

 		
 Filing Issues

 		
 Submission Guidelines

 		
 LICENSE

 		
 The MIT License (MIT)

 		
 CREDITS

 		
 Contributors

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

