
django-elements Documentation
Release 0.1.0

Weston Nielson

Aug 22, 2017

Contents

1 Installation 3
1.1 Optional Steps . 3

2 Configuration 5
2.1 Admin Integration . 5
2.2 Settings . 5

3 Usage 7

4 Indices and tables 9

i

ii

django-elements Documentation, Release 0.1.0

django-elements is a reusable application for Django projects that seeks to provide a way to make publish-
ing rich-text content on the web easy for the end-user. Instead of requiring the user to write in HTML (or worse,
use a WYSIWYG editor), django-elements uses a superset of the human-friendly Markdown syntax. The
standard Markdown syntax has been extended with a powerful macro system (similar to the macro syntax used in
Trac) via markdown-macros. Since a picture is worth 1000 words, here is an example of a document written with
django-elements:

Contents:

Contents 1

http://djangoproject.com/
http://en.wikipedia.org/wiki/WYSIWYG/
http://daringfireball.net/projects/markdown/
http://trac.edgewall.org/wiki/WikiMacros/
http://github.com/wnielson/markdown-macros/

django-elements Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Installation

The first step is to add elements to your INSTALLED_APPS setting inside settings.py:

INSTALLED_APPS = (
...
'elements',

)

Then run syncdb:

python manange.py syncdb

That’s it for the required steps.

Optional Steps

If you want to make editing in the admin easier, then you’ll probably want to install django-markitup:

pip install django-markitup==tip

django-elements ships with an extended Markdown syntax set for the javascript-based MarkItUp editor pro-
vided in django-markitup. To enable it, add the following to your settings.py:

MARKITUP_FILTER = ('elements.markup.convert', {})
MARKITUP_SET = 'elements/markitup/markdown'

Then run collectstatic:

python manage.py collectstatic

3

django-elements Documentation, Release 0.1.0

4 Chapter 1. Installation

CHAPTER 2

Configuration

Admin Integration

If you installed django-markitup, and you’d like to have the MarkItUp editor enabled for text areas in the admin, then
you need to create special templates. For example, let’s say you’d like to add the editor to Django’s flatpages appli-
cation. In your templates directory, create the following file: admin/flatpages/flatpage/change_form.
html, and add the following content:

{% extends "admin/change_form.html" %}

{% load markitup_tags %}

{% block extrahead %}
{{ block.super }}
{% markitup_media %}

{% endblock %}

{% block content %}
{{ block.super }}
{% markitup_editor "id_content" %}

{% endblock %}

You can repeat this for any other text area you’d like to add the editor to.

Settings

There are a few settings that let you control the behavior of django-elements.

ELEMENTS_MARKDOWN_EXT

The ELEMENTS_MARKDOWN_EXT directive allows you to define extra python-markdown extensions to use in the
Markdown rendering. The default is:

5

http://bitbucket.org/carljm/django-markitup/
http://freewisdom.org/projects/python-markdown/

django-elements Documentation, Release 0.1.0

ELEMENTS_MARKDOWN_EXT = (
'toc',
'tables',
'abbr',
'footnotes',
'def_list',
'headerid',
'meta',
'codehilite'

)

For a complete list of available extenstions, see this page. Additionally, if you’d like to take advantage of the
codehilite extension, you’ll need to install pygments:

pip install pygments

ELEMENTS_MARKDOWN_EXT_CONFIGS

This directive allows you to pass extra extension-specific config options to to Markdown processor. The default is:

ELEMENTS_MARKDOWN_EXT_CONFIGS = {}

6 Chapter 2. Configuration

http://freewisdom.org/projects/python-markdown/Available_Extensions
http://pygments.org/

CHAPTER 3

Usage

To convert a Markdown document with Elements contained within, you need to first load the template tags:

{% load elements_markup %}

Currently there is both a tag and a filter that you can use to render the Markdown content as HTML. The more powerful
option is the template tag and its usage is best explained with an example. Let’s pretend we’ve created a FlatPage
who’s content contains text written in Markdown with elements contained within. We can render the page as
HTML, assuming the FlatPage object is referenced as flatpage, like so:

{% markup_elements flatpage content %}

This template tag is more powerful than the filter described below, because each element contained within this
FlatPage is “aware” of the context in which is is being rendered. Again, this concept is more easily explained
with and example.

Let’s consider a very simple application, which we’ll call media, that has a very simple model:

from django.db import models

class MediaItem(models.Model):
title = models.CharField(max_length=255)
file = models.FileField()
caption = models.TextField(blank=True)

Now let’s also pretend that we’ve created an ElementType for this model, titled “Image”. This means that we can
now add an “Image” into a FlatPage like so, assuming we’ve uploaded an image with pk=1:

Here is some flatpage content. Let's go ahead an insert an image:

[[El('Image', id=1)]]

To recap what we’ve got currently:

• A FlatPage with pk=2 and content shown above

7

django-elements Documentation, Release 0.1.0

• An ElementType titled “Image”

• An MediaItem with pk=1 from the media application

Now we can control how the Image above is actually rendered into HTML by defining various templates. Here is the
order in which templates will be searched:

• elements/flatpages/flatpage/2/media_mediaitem_1.html

• elements/flatpages/flatpage/2/media_mediaitem-image.html

• elements/flatpages/flatpage/2/media_mediaitem.html

• elements/flatpages/flatpage/2/media-image.html

• elements/flatpages/flatpage/2/media.html

• elements/flatpages/flatpage/2/default.html

• elements/flatpages/flatpage/media_mediaitem_1.html

• elements/flatpages/flatpage/media_mediaitem-image.html

• elements/flatpages/flatpage/media_mediaitem.html

• elements/flatpages/flatpage/media-image.html

• elements/flatpages/flatpage/media.html

• elements/flatpages/flatpage/default.html

• elements/flatpages/media_mediaitem_1.html

• elements/flatpages/media_mediaitem-image.html

• elements/flatpages/media_mediaitem.html

• elements/flatpages/media-image.html

• elements/flatpages/media.html

• elements/media_mediaitem-image.html

• elements/media_mediaitem.html

• elements/default.html

This means we can define a template that will dictate how this “Image” element will render for this FlatPage
(and only this particular FlatPage) via the elements/flatpages/flatpage/2/media_mediaitem_1.
html, or we can simply define a more generic template that will define how to render any “Image” for any FlatPage
via the elements/flatpages/flatpage/media_mediaitem-image.html.

8 Chapter 3. Usage

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

9

	Installation
	Optional Steps

	Configuration
	Admin Integration
	Settings

	Usage
	Indices and tables

