

django-elements

django-elements is a reusable application for Django [http://djangoproject.com/] projects that seeks to
provide a way to make publishing rich-text content on the web easy for the
end-user. Instead of requiring the user to write in HTML (or worse, use a
WYSIWYG [http://en.wikipedia.org/wiki/WYSIWYG/] editor), django-elements uses a superset of the human-friendly
Markdown [http://daringfireball.net/projects/markdown/] syntax. The standard Markdown syntax has been extended with a
powerful macro system (similar to the macro syntax used in Trac [http://trac.edgewall.org/wiki/WikiMacros/]) via
markdown-macros [http://github.com/wnielson/markdown-macros/]. Since a picture is worth 1000 words, here is an example of a
document written with django-elements:

[image: _images/screen_1.png]
Contents:

	Installation
	Optional Steps

	Configuration
	Admin Integration

	Settings

	Usage

Indices and tables

	Index

	Module Index

	Search Page

Installation

The first step is to add elements to your INSTALLED_APPS
setting inside settings.py:

INSTALLED_APPS = (
 ...
 'elements',
)

Then run syncdb:

python manange.py syncdb

That’s it for the required steps.

Optional Steps

If you want to make editing in the admin easier, then you’ll probably want to
install django-markitup:

pip install django-markitup==tip

django-elements ships with an extended Markdown syntax set for the
javascript-based MarkItUp editor provided in django-markitup. To enable
it, add the following to your settings.py:

MARKITUP_FILTER = ('elements.markup.convert', {})
MARKITUP_SET = 'elements/markitup/markdown'

Then run collectstatic:

python manage.py collectstatic

Configuration

Admin Integration

If you installed django-markitup [http://bitbucket.org/carljm/django-markitup/], and you’d like to have the MarkItUp
editor enabled for text areas in the admin, then you need to create special
templates. For example, let’s say you’d like to add the editor to Django’s
flatpages application. In your templates directory, create the following
file: admin/flatpages/flatpage/change_form.html, and add the following
content:

{% extends "admin/change_form.html" %}

{% load markitup_tags %}

{% block extrahead %}
 {{ block.super }}
 {% markitup_media %}
{% endblock %}

{% block content %}
 {{ block.super }}
 {% markitup_editor "id_content" %}
{% endblock %}

You can repeat this for any other text area you’d like to add the editor to.

Settings

There are a few settings that let you control the behavior of
django-elements.

ELEMENTS_MARKDOWN_EXT

The ELEMENTS_MARKDOWN_EXT directive allows you to define extra
python-markdown [http://freewisdom.org/projects/python-markdown/] extensions to use in the Markdown rendering. The default
is:

ELEMENTS_MARKDOWN_EXT = (
 'toc',
 'tables',
 'abbr',
 'footnotes',
 'def_list',
 'headerid',
 'meta',
 'codehilite'
)

For a complete list of available extenstions, see this page [http://freewisdom.org/projects/python-markdown/Available_Extensions]. Additionally,
if you’d like to take advantage of the codehilite extension, you’ll need to
install pygments [http://pygments.org/]:

pip install pygments

ELEMENTS_MARKDOWN_EXT_CONFIGS

This directive allows you to pass extra extension-specific config options to
to Markdown processor. The default is:

ELEMENTS_MARKDOWN_EXT_CONFIGS = {}

Usage

To convert a Markdown document with Elements contained within, you need to
first load the template tags:

{% load elements_markup %}

Currently there is both a tag and a filter that you can use to render the
Markdown content as HTML. The more powerful option is the template tag and
its usage is best explained with an example. Let’s pretend we’ve created a
FlatPage who’s content contains text written in Markdown with elements
contained within. We can render the page as HTML, assuming the FlatPage
object is referenced as flatpage, like so:

{% markup_elements flatpage content %}

This template tag is more powerful than the filter described below, because
each element contained within this FlatPage is “aware” of the context in
which is is being rendered. Again, this concept is more easily explained with
and example.

Let’s consider a very simple application, which we’ll call media, that has
a very simple model:

from django.db import models

class MediaItem(models.Model):
 title = models.CharField(max_length=255)
 file = models.FileField()
 caption = models.TextField(blank=True)

Now let’s also pretend that we’ve created an ElementType for this model,
titled “Image”. This means that we can now add an “Image” into a
FlatPage like so, assuming we’ve uploaded an image with pk=1:

Here is some flatpage content. Let's go ahead an insert an image:

[[El('Image', id=1)]]

To recap what we’ve got currently:

	A FlatPage with pk=2 and content shown above

	An ElementType titled “Image”

	An MediaItem with pk=1 from the media application

Now we can control how the Image above is actually rendered into HTML
by defining various templates. Here is the order in which templates will
be searched:

	elements/flatpages/flatpage/2/media_mediaitem_1.html

	elements/flatpages/flatpage/2/media_mediaitem-image.html

	elements/flatpages/flatpage/2/media_mediaitem.html

	elements/flatpages/flatpage/2/media-image.html

	elements/flatpages/flatpage/2/media.html

	elements/flatpages/flatpage/2/default.html

	elements/flatpages/flatpage/media_mediaitem_1.html

	elements/flatpages/flatpage/media_mediaitem-image.html

	elements/flatpages/flatpage/media_mediaitem.html

	elements/flatpages/flatpage/media-image.html

	elements/flatpages/flatpage/media.html

	elements/flatpages/flatpage/default.html

	elements/flatpages/media_mediaitem_1.html

	elements/flatpages/media_mediaitem-image.html

	elements/flatpages/media_mediaitem.html

	elements/flatpages/media-image.html

	elements/flatpages/media.html

	elements/media_mediaitem-image.html

	elements/media_mediaitem.html

	elements/default.html

This means we can define a template that will dictate how this “Image” element
will render for this FlatPage (and only this particular FlatPage) via
the elements/flatpages/flatpage/2/media_mediaitem_1.html, or we can
simply define a more generic template that will define how to render any
“Image” for any FlatPage via the
elements/flatpages/flatpage/media_mediaitem-image.html.

Index

 nav.xhtml

 Table of Contents

 		django-elements

 		Installation

 		Optional Steps

 		Configuration

 		Admin Integration

 		Settings

 		Usage

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/comment-close.png

_static/up.png

_images/screen_1.png
Body:
mmmmmsEs | BI | ZE He £ | v@

Type: | Image (media_tree: filenode) 4 Object: 3 Q add

django-elements

Writing rich-text content with 'djsnge-slements’ is very easy. Since it is powsred by [Markdows)

[, any standsrd Markdown document will work out of the box with ‘djsngo-clements'. However, 2
powerful macro system has besn built-in, which provides the sbility to add mew compenents, of

elements, into your documents. For example, including images from another application, say

(django-media_tree], is a piece of cake. Here is a an example of an Element
[[E1(*Inage’, id='3")))|

[Markdown] : http:
(4jango-media_tree]: https://github.con/philomat/django-media-tree

/daringtizeball.net/projects/markdoun/

django-elements

Writing rich-text content with django-elements is very easy. Since it is powered by Markdown, any
standard Markdown document will work out of the box with django-elenents . However, a powerful
macro system has been bult-in, which provides the ability to add new components, or elements, into your
documents. For example, including images from another application, say django-media_tree, is 2 piece of
cake. Hereis a an example of an Elenent :

e s e B L

Type: | image (medavee: lenode) ¢ Object Q s

e —

_static/minus.png

