

Django EL(Endless) Pagination

This application provides Twitter- and Digg-style pagination, with multiple
and lazy pagination and optional Ajax support. It is devoted to implementing
web pagination in very few steps.

The source code for this app is hosted at
https://github.com/shtalinberg/django-el-pagination.

Getting started is easy!

Contents:

	Changelog
	Version 3.2.4

	Version 3.2.3

	Version 3.2.2

	Version 3.2.0

	Version 3.1.0

	Version 3.0.0

	Version 2.1.1

	Version 2.1.0

	Version 2.0

	Version 1.1

	Getting started
	Requirements

	Installation

	Settings

	Quickstart

	Twitter-style Pagination
	Split the template

	A shortcut for ajaxed views

	Paginating objects

	Pagination on scroll

	On scroll pagination using chunks

	Specifying where the content will be inserted

	Before version 2.0

	Digg-style pagination
	Page by page

	Showing indexes

	Number of pages

	Adding Ajax

	Multiple paginations in the same page
	Adding Ajax for multiple pagination

	Manually selecting what to bind

	Lazy pagination

	Different number of items on the first page

	Getting the current page number
	In the template

	In the view

	Templatetags reference
	paginate

	lazy_paginate

	show_more

	get_pages

	show_pages

	show_current_number

	JavaScript reference
	Activating Ajax support

	Pagination on scroll

	Attaching callbacks

	Manually selecting what to bind

	Customize each pagination

	Selectors

	On scroll pagination using chunks

	Migrate from version 1.1 to 2.1

	Generic views
	AjaxListView reference

	Generic view example

	Customization
	Settings

	Templates and CSS

	Contributing
	Creating a development environment

	Testing the application

	Debugging

	Source code and contacts
	Repository and bugs

	Contacts

	Thanks

Changelog

Version 3.2.4

Fix: compatible with jQuery 3.x

Version 3.2.3

Bug-fix release

Fix: cycle in show_pages with django 2.0
fix tests for PageList.get_rendered()

Version 3.2.2

Bug-fix release

Fix: fix UnicodeEncodeError with translate in templates

Version 3.2.0

	New feature: Django 2.0.x support.

	Django EL(Endless) Pagination now supports Django from 1.8.x to 2.0.x

	New feature: settings.USE_NEXT_PREVIOUS_LINKS: default=False

	if True:
Add is_previous & is_next flags for previous and next pages
Add next_link.html & previous_link.html templates

	New feature: __unicode__ is removed from class ELPage

	It’s Fix Causes Fatal Python error with django-debug-toolbar
In templates:
- {{ page }} now use as {{ page.render_link }}
- {{ pages }} now use as {{ pages.get_rendered }}

	Template changes:

	show_pages.html:
page|default_if_none replaced page.render_link|default

Cleanup:
utils.UnicodeMixin
utils.text

Version 3.1.0

	Template changes:

	link attribute rel=”{{ querystring_key }}” replaced by data-el-querystring-key=”{{ querystring_key }}”

New feature: Django 1.11 support.

	New feature:

	added view for maintaining original functionality on page index out of range, but setting response code to 404
PAGE_OUT_OF_RANGE_404 default False If True on page out of range, throw a 404 exception, otherwise display the first page

	Documentation: render_to_response deprecated in django 1.10

	replaced to return render(request, template, context)

Version 3.0.0

New feature: Django 1.10 support.
New app Django EL(Endless) Pagination now supports Django from 1.8.x to 1.10

New feature: Travic CI support
add tox and Travic CI config

Documentation: general clean up.

Version 2.1.1

Bug-fix release

Fix: page_template decorator doesn’t change template of ajax call

Fix: Fix syntax error in declaring variable in javascript

Version 2.1.0

New name app: django-el-pagination

New feature: Django 1.8 and 1.9 support.
New app Django EL(Endless) Pagination now supports Django from 1.4.x to 1.9

new jQuery plugin that can be found in
static/el-pagination/js/el-pagination.js.

Support get the numbers of objects are normally display in per page

Usage:

{{ pages.per_page_number }}

add a class on chunk complete

Each time a chunk size is complete, the class endless_chunk_complete is added to the show more link,

Version 2.0

New feature: Python 3 support.

Django Endless Pagination now supports both Python 2 and Python 3. Dropped
support for Python 2.5. See Getting started for the new list of requirements.

New feature: the JavaScript refactoring.

This version introduces a re-designed Ajax support for pagination. Ajax can
now be enabled using a brand new jQuery plugin that can be found in
static/el-pagination/js/el-pagination.js.

Usage:

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>$.endlessPaginate();</script>
{% endblock %}

The last line in the block above enables Ajax requests to retrieve new
pages for each pagination in the page. That’s basically the same as the old
approach of loading the file endless.js. The new approach, however,
is more jQuery-idiomatic, increases the flexibility of how objects can be
paginated, implements some new features and also contains
some bug fixes.

For backward compatibility, the application still includes the two JavaScript
endless.js and endless_on_scroll.js files. However, please consider
migrating as soon as possible: the old JavaScript
files are deprecated, are no longer maintained, and don’t provide the new
JavaScript features. Also note that the old Javascript files will not work if
jQuery >= 1.9 is used.

New features include ability to paginate different objects with different
options, precisely selecting what to bind, ability to register
callbacks, support for pagination in chunks and much more.

Please refer to the JavaScript reference for a detailed overview of the new
features and for instructions on how to migrate from
the old JavaScript files to the new one.

New feature: the page_templates decorator
also accepts a sequence of (template, key) pairs, functioning as a dict
mapping templates and keys (still present), e.g.:

from endless_pagination.decorators import page_templates

@page_templates((
 ('myapp/entries_page.html', None),
 ('myapp/other_entries_page.html', 'other_entries_page'),
))
def entry_index():
 ...

This also supports serving different paginated objects with the same template.

New feature: ability to provide nested context variables in the
paginate and lazy_paginate template
tags, e.g.:

{% paginate entries.all as myentries %}

The code above is basically equivalent to:

{% with entries.all as myentries %}
 {% paginate myentries %}
{% endwith %}

In this case, and only in this case, the as argument is mandatory, and a
TemplateSyntaxError will be raised if the variable name is missing.

New feature: the page list object returned by the
get_pages template tag has been improved adding the
following new methods:

{# whether the page list contains more than one page #}
{{ pages.paginated }}

{# the 1-based index of the first item on the current page #}
{{ pages.current_start_index }}

{# the 1-based index of the last item on the current page #}
{{ pages.current_end_index }}

{# the total number of objects, across all pages #}
{{ pages.total_count }}

{# the first page represented as an arrow #}
{{ pages.first_as_arrow }}

{# the last page represented as an arrow #}
{{ pages.last_as_arrow }}

In the arrow representation, the page label defaults to << for the first
page and to >> for the last one. As a consequence, the labels of the
previous and next pages are now single brackets, respectively < and >.
First and last pages’ labels can be customized using
settings.ENDLESS_PAGINATION_FIRST_LABEL and
settings.ENDLESS_PAGINATION_LAST_LABEL: see Customization.

New feature: The sequence returned by the callable
settings.ENDLESS_PAGINATION_PAGE_LIST_CALLABLE can now contain two new
values:

	‘first’: will display the first page as an arrow;

	‘last’: will display the last page as an arrow.

The show_pages template tag documentation describes how to
customize Digg-style pagination defining your own page list callable.

When using the default Digg-style pagination (i.e. when
settings.ENDLESS_PAGINATION_PAGE_LIST_CALLABLE is set to None), it is
possible to enable first / last page arrows by setting the new flag
settings.ENDLESS_PAGINATION_DEFAULT_CALLABLE_ARROWS to True.

New feature: settings.ENDLESS_PAGINATION_PAGE_LIST_CALLABLE can now be
either a callable or a dotted path to a callable, e.g.:

ENDLESS_PAGINATION_PAGE_LIST_CALLABLE = 'path.to.callable'

In addition to the default, endless_pagination.utils.get_page_numbers, an
alternative implementation is now available:
endless_pagination.utils.get_elastic_page_numbers. It adapts its output
to the number of pages, making it arguably more usable when there are many
of them. To enable it, add the following line to your settings.py:

ENDLESS_PAGINATION_PAGE_LIST_CALLABLE = (
 'endless_pagination.utils.get_elastic_page_numbers')

New feature: ability to create a development and testing environment
(see Contributing).

New feature: in addition to the ability to provide a customized pagination
URL as a context variable, the paginate and
lazy_paginate tags now support hardcoded pagination URL
endpoints, e.g.:

{% paginate 20 entries with "/mypage/" %}

New feature: ability to specify negative indexes as values for the
starting from page argument of the paginate template
tag.

When changing the default page, it is now possible to reference the last page
(or the second last page, and so on) by using negative indexes, e.g:

{% paginate entries starting from page -1 %}

See Templatetags reference.

Documentation: general clean up.

Documentation: added a Contributing page. Have a look!

Documentation: included a comprehensive JavaScript reference.

Fix: endless_pagination.views.AjaxListView no longer subclasses
django.views.generic.list.ListView. Instead, the base objects and
mixins composing the final view are now defined by this app.

This change eliminates the ambiguity of having two separate pagination
machineries in place: the Django Endless Pagination one and the built-in
Django ListView one.

Fix: the using argument of paginate and
lazy_paginate template tags now correctly handles
querystring keys containing dashes, e.g.:

{% lazy_paginate entries using "entries-page" %}

Fix: replaced namespace endless_pagination.paginator with
endless_pagination.paginators: the module contains more than one
paginator classes.

Fix: in some corner cases, loading endless_pagination.models raised
an ImproperlyConfigured error while trying to pre-load the templates.

Fix: replaced doctests with proper unittests. Improved the code coverage
as a consequence. Also introduced integration tests exercising JavaScript,
based on Selenium.

Fix: overall code lint and clean up.

Version 1.1

New feature: now it is possible to set the bottom margin used for
pagination on scroll (default is 1 pixel).

For example, if you want the pagination on scroll to be activated when
20 pixels remain until the end of the page:

<script src="http://code.jquery.com/jquery-latest.js"></script>
<script src="{{ STATIC_URL }}endless_pagination/js/endless.js"></script>
<script src="{{ STATIC_URL }}endless_pagination/js/endless_on_scroll.js"></script>

{# add the lines below #}
<script type="text/javascript" charset="utf-8">
 var endless_on_scroll_margin = 20;
</script>

New feature: added ability to avoid Ajax requests when multiple pagination
is used.

A template for multiple pagination with Ajax support may look like this
(see Multiple paginations in the same page):

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}endless_pagination/js/endless.js"></script>
{% endblock %}

<h2>Entries:</h2>
<div class="endless_page_template">
 {% include "myapp/entries_page.html" %}
</div>

<h2>Other entries:</h2>
<div class="endless_page_template">
 {% include "myapp/other_entries_page.html" %}
</div>

But what if you need Ajax pagination for entries but not for other entries?
You will only have to add a class named endless_page_skip to the
page container element, e.g.:

<h2>Other entries:</h2>
<div class="endless_page_template endless_page_skip">
 {% include "myapp/other_entries_page.html" %}
</div>

New feature: implemented a class-based generic view allowing
Ajax pagination of a list of objects (usually a queryset).

Intended as a substitution of django.views.generic.ListView, it recreates
the behaviour of the page_template decorator.

For a complete explanation, see Generic views.

Fix: the page_template and page_templates decorators no longer
hide the original view name and docstring (update_wrapper).

Fix: pagination on scroll now works on Firefox >= 4.

Fix: tests are now compatible with Django 1.3.

Getting started

Requirements

	Python

	>= 2.7 (or Python 3)

	Django

	>= 1.8

	jQuery

	>= 1.7

Installation

The Git repository can be cloned with this command:

git clone https://github.com/shtalinberg/django-el-pagination.git

The el_pagination package, included in the distribution, should be
placed on the PYTHONPATH.

Otherwise you can just easy_install -Z django-el-pagination
or pip install django-el-pagination.

Settings

Add the request context processor to your settings.py, e.g.:

from django.conf.global_settings import TEMPLATES

TEMPLATES[0]['OPTIONS']['context_processors'].insert(0, 'django.core.context_processors.request')

or just adding it to the context_processors manually like so:

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [os.path.join(BASE_DIR, 'templates'),],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 '...',
 '...',
 '...',
 '...',
 'django.template.context_processors.request', ## For EL-pagination
],
 },
 },
]

Add 'el_pagination' to the INSTALLED_APPS to your settings.py.

See the Customization section for other settings.

Quickstart

Given a template like this:

{% for entry in entries %}
 {# your code to show the entry #}
{% endfor %}

you can use Digg-style pagination to display objects just by adding:

{% load el_pagination_tags %}

{% paginate entries %}
{% for entry in entries %}
 {# your code to show the entry #}
{% endfor %}
{% show_pages %}

Done.

This is just a basic example. To continue exploring all the Django Endless
Pagination features, have a look at Twitter-style Pagination or
Digg-style pagination.

Twitter-style Pagination

Assuming the developer wants Twitter-style pagination of
entries of a blog post, in views.py we have class-based:

from el_pagination.views import AjaxListView

class EntryListView(AjaxListView):
 context_object_name = "entry_list"
 template_name = "myapp/entry_list.html"

 def get_queryset(self):
 return Entry.objects.all()

or fuction-based:

def entry_index(request, template='myapp/entry_list.html'):
 context = {
 'entry_list': Entry.objects.all(),
 }
 return render(request, template, context)

In myapp/entry_list.html:

<h2>Entries:</h2>
{% for entry in entry_list %}
 {# your code to show the entry #}
{% endfor %}

Split the template

The response to an Ajax request should not return the entire template,
but only the portion of the page to be updated or added.
So it is convenient to extract from the template the part containing the
entries, and use it to render the context if the request is Ajax.
The main template will include the extracted part, so it is convenient
to put the page template name in the context.

views.py class-based becomes:

from el_pagination.views import AjaxListView

class EntryListView(AjaxListView):
 context_object_name = "entry_list"
 template_name = "myapp/entry_list.html"
 page_template='myapp/entry_list_page.html'

 def get_queryset(self):
 return Entry.objects.all()

or fuction-based:

def entry_list(request,
 template='myapp/entry_list.html',
 page_template='myapp/entry_list_page.html'):
 context = {
 'entry_list': Entry.objects.all(),
 'page_template': page_template,
 }
 if request.is_ajax():
 template = page_template
 return render(request, template, context)

See below how to obtain the same result
just decorating the view.

myapp/entry_list.html becomes:

<h2>Entries:</h2>
{% include page_template %}

myapp/entry_list_page.html becomes:

{% for entry in entry_list %}
 {# your code to show the entry #}
{% endfor %}

A shortcut for ajaxed views

A good practice in writing views is to allow other developers to inject
the template name and extra data, so that they are added to the context.
This allows the view to be easily reused. Let’s resume the original view
with extra context injection:

views.py:

def entry_index(request,
 template='myapp/entry_list.html', extra_context=None):
 context = {
 'entry_list': Entry.objects.all(),
 }
 if extra_context is not None:
 context.update(extra_context)
 return render(request, template, context)

Splitting templates and putting the Ajax template name in the context
is easily achievable by using an included decorator.

views.py becomes:

from el_pagination.decorators import page_template

@page_template('myapp/entry_list_page.html') # just add this decorator
def entry_list(request,
 template='myapp/entry_list.html', extra_context=None):
 context = {
 'entry_list': Entry.objects.all(),
 }
 if extra_context is not None:
 context.update(extra_context)
 return render(request, template, context)

Paginating objects

All that’s left is changing the page template and loading the
endless templatetags, the jQuery library and the
jQuery plugin el-pagination.js included in the distribution under
/static/el-pagination/js/.

myapp/entry_list.html becomes:

<h2>Entries:</h2>
{% include page_template %}

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>$.endlessPaginate();</script>
{% endblock %}

myapp/entry_list_page.html becomes:

{% load el_pagination_tags %}

{% paginate entry_list %}
{% for entry in entry_list %}
 {# your code to show the entry #}
{% endfor %}
{% show_more %}

The paginate template tag takes care of customizing the
given queryset and the current template context. In the context of a
Twitter-style pagination the paginate tag is often replaced
by the lazy_paginate one, which offers, more or less, the
same functionalities and allows for reducing database access: see
Lazy pagination.

The show_more one displays the link to navigate to the next
page.

You might want to glance at the JavaScript reference for a detailed explanation of
how to integrate JavaScript and Ajax features in Django Endless Pagination.

Pagination on scroll

If you want new items to load when the user scroll down the browser page,
you can use the pagination on scroll
feature: just set the paginateOnScroll option of $.endlessPaginate() to
true, e.g.:

<h2>Entries:</h2>
{% include page_template %}

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>$.endlessPaginate({paginateOnScroll: true});</script>
{% endblock %}

That’s all. See the Templatetags reference to improve the use of
included templatetags.

It is possible to set the bottom margin used for
pagination on scroll (default is 1
pixel). For example, if you want the pagination on scroll to be activated when
20 pixels remain to the end of the page:

<h2>Entries:</h2>
{% include page_template %}

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>
 $.endlessPaginate({
 paginateOnScroll: true,
 paginateOnScrollMargin: 20
 });
 </script>
{% endblock %}

Again, see the JavaScript reference.

On scroll pagination using chunks

Sometimes, when using on scroll pagination, you may want to still display
the show more link after each N pages. In Django Endless Pagination this is
called chunk size. For instance, a chunk size of 5 means that a show more
link is displayed after page 5 is loaded, then after page 10, then after page
15 and so on. Activating chunks is straightforward,
just use the paginateOnScrollChunkSize option:

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>
 $.endlessPaginate({
 paginateOnScroll: true,
 paginateOnScrollChunkSize: 5
 });
 </script>
{% endblock %}

Specifying where the content will be inserted

If you are paginating a table, you may want to include the show_more link
after the table itself, but the loaded content should be placed inside the
table.

For any case like this, you may specify the contentSelector option that
points to the element that will wrap the cumulative data:

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>
 $.endlessPaginate({
 contentSelector: '.endless_content_wrapper'
 });
 </script>
{% endblock %}

Note

By default, the contentSelector is null, making each new page be inserted
before the show_more link container.

When using this approach, you should take 2 more actions.

At first, the page template must be splitted a little different. You must do
the pagination in the main template and only apply pagination in the page
template if under ajax:

myapp/entry_list.html becomes:

<h2>Entries:</h2>
{% paginate entry_list %}

 {% include page_template %}

{% show_more %}

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>$.endlessPaginate();</script>
{% endblock %}

myapp/entry_list_page.html becomes:

{% load el_pagination_tags %}

{% if request.is_ajax %}{% paginate entry_list %}{% endif %}
{% for entry in entry_list %}
 {# your code to show the entry #}
{% endfor %}

This is needed because the show_more button now is taken off the
page_template and depends of the paginate template tag. To avoid apply
pagination twice, we avoid run it a first time in the page_template.

You may also set the EL_PAGINATION_PAGE_OUT_OF_RANGE_404 to True, so a blank
page wouldn’t render the first page (the default behavior). When a blank page
is loaded and propagates the 404 error, the show_more link is removed.

Before version 2.0

Django Endless Pagination v2.0 introduces a redesigned Ajax support for
pagination. As seen above, Ajax can now be enabled using a brand new jQuery
plugin that can be found in
static/el-pagination/js/el-pagination.js.

Old code was removed:

<script src="http://code.jquery.com/jquery-latest.js"></script>
{# new jQuery plugin #}
<script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
{# Removed. #}
<script src="{{ STATIC_URL }}el-pagination/js/el-pagination-endless.js"></script>
<script src="{{ STATIC_URL }}el-pagination/js/el-pagination_on_scroll.js"></script>

However, please consider migrating as soon as
possible: the old JavaScript files are removed.

Please refer to the JavaScript reference for a detailed overview of the new
features and for instructions on how to migrate from
the old JavaScript files to the new one.

Digg-style pagination

Digg-style pagination of queryset objects is really easy to implement. If Ajax
pagination is not needed, all you have to do is modifying the template, e.g.:

{% load el_pagination_tags %}

{% paginate entries %}
{% for entry in entries %}
 {# your code to show the entry #}
{% endfor %}
{% show_pages %}

That’s it! As seen, the paginate template tag takes care of
customizing the given queryset and the current template context. The
show_pages one displays the page links allowing for
navigation to other pages.

Page by page

If you only want to display previous and next links (in a page-by-page
pagination) you have to use the lower level get_pages
template tag, e.g.:

{% load el_pagination_tags %}

{% paginate entries %}
{% for entry in entries %}
 {# your code to show the entry #}
{% endfor %}
{% get_pages %}
{{ pages.previous }} {{ pages.next }}

Customization explains how to customize the arrows that go to previous
and next pages.

Showing indexes

The get_pages template tag adds to the current template
context a pages variable containing several methods that can be used to
fully customize how the page links are displayed. For example, assume you want
to show the indexes of the entries in the current page, followed by the total
number of entries:

{% load el_pagination_tags %}

{% paginate entries %}{% get_pages %}
{% for entry in entries %}
 {# your code to show the entry #}
{% endfor %}

Showing entries
{{ pages.current_start_index }}-{{ pages.current_end_index }} of
{{ pages.total_count }}.
{# Just print pages to render the Digg-style pagination. #}
{{ pages.get_rendered }}

Number of pages

You can use {{ pages|length }} to retrieve and display the pages count.
A common use case is to change the layout or display additional info based
on whether the page list contains more than one page. This can be achieved
checking {% if pages|length > 1 %}, or, in a more convenient way, using
{{ pages.paginated }}. For example, assume you want to change the layout,
or display some info, only if the page list contains more than one page, i.e.
the results are actually paginated:

{% load el_pagination_tags %}

{% paginate entries %}
{% for entry in entries %}
 {# your code to show the entry #}
{% endfor %}
{% get_pages %}
{% if pages.paginated %}
 Some info/layout to display only if the available
 objects span multiple pages...
 {{ pages.get_rendered }}
{% endif %}

Again, for a full overview of the get_pages and all the
other template tags, see the Templatetags reference.

Adding Ajax

The view is exactly the same as the one used in
Twitter-style Pagination:

from el_pagination.decorators import page_template

@page_template('myapp/entry_index_page.html') # just add this decorator
def entry_index(
 request, template='myapp/entry_index.html', extra_context=None):
 context = {
 'entries': Entry.objects.all(),
 }
 if extra_context is not None:
 context.update(extra_context)
 return render(request, template, context)

As seen before in Twitter-style Pagination, you have to
split the templates, separating the main one from
the fragment representing the single page. However, this time a container for
the page template is also required and, by default, must be an element having a
class named endless_page_template.

myapp/entry_index.html becomes:

<h2>Entries:</h2>
<div class="endless_page_template">
 {% include page_template %}
</div>

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>$.endlessPaginate();</script>
{% endblock %}

myapp/entry_index_page.html becomes:

{% load el_pagination_tags %}

{% paginate entries %}
{% for entry in entries %}
 {# your code to show the entry #}
{% endfor %}
{% show_pages %}

Done.

It is possible to manually
override the container selector used by
$.endlessPaginate() to update the page contents. This can be easily achieved
by customizing the pageSelector option of $.endlessPaginate(), e.g.:

<h2>Entries:</h2>
<div id="entries">
 {% include page_template %}
</div>

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>$.endlessPaginate({pageSelector: 'div#entries'});</script>
{% endblock %}

See the JavaScript reference for a detailed explanation of how to integrate
JavaScript and Ajax features in Django Endless Pagination.

Multiple paginations in the same page

Sometimes it is necessary to show different types of paginated objects in the
same page. In this case we have to associate a different querystring key
to every pagination.

Normally, the key used is the one specified in
settings.ENDLESS_PAGINATION_PAGE_LABEL (see Customization),
but in the case of multiple pagination the application provides a simple way to
override the settings.

If you do not need Ajax, the only file you need to edit is the template.
Here is an example with 2 different paginations (entries and other_entries)
in the same page, but there is no limit to the number of different paginations
in a page:

{% load el_pagination_tags %}

{% paginate entries %}
{% for entry in entries %}
 {# your code to show the entry #}
{% endfor %}
{% show_pages %}

{# "other_entries_page" is the new querystring key #}
{% paginate other_entries using "other_entries_page" %}
{% for entry in other_entries %}
 {# your code to show the entry #}
{% endfor %}
{% show_pages %}

The using argument of the paginate template tag allows
you to choose the name of the querystring key used to track the page number.
If not specified the system falls back to
settings.EL_PAGINATION_PAGE_LABEL.

In the example above, the url http://example.com?page=2&other_entries_page=3
requests the second page of entries and the third page of other_entries.

The name of the querystring key can also be dinamically passed in the template
context, e.g.:

{# page_variable is not surrounded by quotes #}
{% paginate other_entries using page_variable %}

You can use any style of pagination: show_pages,
get_pages, show_more etc…
(see Templatetags reference).

Adding Ajax for multiple pagination

Obviously each pagination needs a template for the page contents. Remember to
box each page in a div with a class called endless_page_template, or to
specify the container selector passing an option to $.endlessPaginate() as
seen in Digg-style pagination and Ajax.

myapp/entry_index.html:

<h2>Entries:</h2>
<div class="endless_page_template">
 {% include "myapp/entries_page.html" %}
</div>

<h2>Other entries:</h2>
<div class="endless_page_template">
 {% include "myapp/other_entries_page.html" %}
</div>

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>$.endlessPaginate();</script>
{% endblock %}

See the JavaScript reference for further details on how to use the included
jQuery plugin.

myapp/entries_page.html:

{% load el_pagination_tags %}

{% paginate entries %}
{% for entry in entries %}
 {# your code to show the entry #}
{% endfor %}
{% show_pages %}

myapp/other_entries_page.html:

{% load el_pagination_tags %}

{% paginate other_entries using other_entries_page %}
{% for entry in other_entries %}
 {# your code to show the entry #}
{% endfor %}
{% show_pages %}

As seen before, the decorator page_template
simplifies the management of Ajax requests in views. You must, however, map
different paginations to different page templates.

You can chain decorator calls relating a template to the associated
querystring key, e.g.:

from endless_pagination.decorators import page_template

@page_template('myapp/entries_page.html')
@page_template('myapp/other_entries_page.html', key='other_entries_page')
def entry_index(
 request, template='myapp/entry_index.html', extra_context=None):
 context = {
 'entries': Entry.objects.all(),
 'other_entries': OtherEntry.objects.all(),
 }
 if extra_context is not None:
 context.update(extra_context)
 return render_to_response(
 template, context, context_instance=RequestContext(request))

As seen in previous examples, if you do not specify the key kwarg in the
decorator, then the page template is associated to the querystring key
defined in the settings.

You can use the page_templates (note the trailing s) decorator in
substitution of a decorator chain when you need multiple Ajax paginations.
The previous example can be written as:

from endless_pagination.decorators import page_templates

@page_templates({
 'myapp/entries_page.html': None,
 'myapp/other_entries_page.html': 'other_entries_page',
})
def entry_index():
 ...

As seen, a dict object is passed to the page_templates decorator, mapping
templates to querystring keys. Alternatively, you can also pass a sequence
of (template, key) pairs, e.g.:

from endless_pagination.decorators import page_templates

@page_templates((
 ('myapp/entries_page.html', None),
 ('myapp/other_entries_page.html', 'other_entries_page'),
))
def entry_index():
 ...

This also supports serving different paginated objects with the same template.

Manually selecting what to bind

What if you need Ajax pagination only for entries and not for
other entries? You can do this in a straightforward way using jQuery
selectors, e.g.:

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>$('#entries').endlessPaginate();</script>
{% endblock %}

The call to $(‘#entries’).endlessPaginate() applies Ajax pagination starting
from the DOM node with id entries and to all sub-nodes. This means that
other entries are left intact. Of course you can use any selector supported
by jQuery.

Refer to the JavaScript reference for an explanation of other features like
calling $.endlessPaginate() multiple times in order to customize the behavior
of each pagination in a multiple pagination view.

Lazy pagination

Usually pagination requires hitting the database to get the total number of
items to display. Lazy pagination avoids this select count query and results
in a faster page load, with a disadvantage: you won’t know the total number of
pages in advance.

For this reason it is better to use lazy pagination in conjunction with
Twitter-style Pagination (e.g. using the show_more
template tag).

In order to switch to lazy pagination you have to use the
lazy_paginate template tag instead of the
paginate one, e.g.:

{% load el_pagination_tags %}

{% lazy_paginate entries %}
{% for entry in entries %}
 {# your code to show the entry #}
{% endfor %}
{% show_more %}

The lazy_paginate tag can take all the args of the
paginate one, with one exception: negative indexes can not
be passed to the starting from page argument.

Different number of items on the first page

Sometimes you might want to show on the first page a different number of
items than on subsequent pages (e.g. in a movie detail page you want to show
4 images of the movie as a reminder, making the user click to see the next 20
images). To achieve this, use the paginate or
lazy_paginate tags with comma separated first page and
per page arguments, e.g.:

{% load el_pagination_tags %}

{% lazy_paginate 4,20 entries %}
{% for entry in entries %}
 {# your code to show the entry #}
{% endfor %}
{% show_more %}

This code will display 4 entries on the first page and 20 entries on the other
pages.

Of course the first page and per page arguments can be passed
as template variables, e.g.:

{% lazy_paginate first_page,per_page entries %}

Getting the current page number

In the template

You can get and display the current page number in the template using
the show_current_number template tag, e.g.:

{% show_current_number %}

This call will display the current page number, but you can also
insert the value in the context as a template variable:

{% show_current_number as page_number %}
{{ page_number }}

See the show_current_number refrence for more information
on accepted arguments.

In the view

If you need to get the current page number in the view, you can use an utility
function called get_page_number_from_request, e.g.:

from el_pagination import utils

page = utils.get_page_number_from_request(request)

If you are using multiple pagination, or you have
changed the default querystring for pagination, you can pass the querystring
key as an optional argument:

page = utils.get_page_number_from_request(request, querystring_key=mykey)

If the page number is not present in the request, by default 1 is returned.
You can change this behaviour using:

page = utils.get_page_number_from_request(request, default=3)

Templatetags reference

paginate

Usage:

{% paginate entries %}

After this call, the entries variable in the template context is replaced
by only the entries of the current page.

You can also keep your entries original variable (usually a queryset)
and add to the context another name that refers to entries of the current page,
e.g.:

{% paginate entries as page_entries %}

The as argument is also useful when a nested context variable is provided
as queryset. In this case, and only in this case, the resulting variable
name is mandatory, e.g.:

{% paginate entries.all as entries %}

The number of paginated entries is taken from settings, but you can
override the default locally, e.g.:

{% paginate 20 entries %}

Of course you can mix it all:

{% paginate 20 entries as paginated_entries %}

By default, the first page is displayed the first time you load the page,
but you can change this, e.g.:

{% paginate entries starting from page 3 %}

When changing the default page, it is also possible to reference the last
page (or the second last page, and so on) by using negative indexes, e.g:

{% paginate entries starting from page -1 %}

This can be also achieved using a template variable that was passed to the
context, e.g.:

{% paginate entries starting from page page_number %}

If the passed page number does not exist, the first page is displayed.
Note that negative indexes are specific to the {% paginate %} tag: this
feature cannot be used when contents are lazy paginated (see lazy_paginate
below).

If you have multiple paginations in the same page, you can change the
querydict key for the single pagination, e.g.:

{% paginate entries using article_page %}

In this case article_page is intended to be a context variable, but you can
hardcode the key using quotes, e.g.:

{% paginate entries using 'articles_at_page' %}

Again, you can mix it all (the order of arguments is important):

{% paginate 20 entries starting from page 3 using page_key as paginated_entries %}

Additionally you can pass a path to be used for the pagination:

{% paginate 20 entries using page_key with pagination_url as paginated_entries %}

This way you can easily create views acting as API endpoints, and point your
Ajax calls to that API. In this case pagination_url is considered a
context variable, but it is also possible to hardcode the URL, e.g.:

{% paginate 20 entries with "/mypage/" %}

If you want the first page to contain a different number of items than
subsequent pages, you can separate the two values with a comma, e.g. if
you want 3 items on the first page and 10 on other pages:

{% paginate 3,10 entries %}

You must use this tag before calling the show_more, get_pages or
show_pages ones.

lazy_paginate

Paginate objects without hitting the database with a select count query.
Usually pagination requires hitting the database to get the total number of
items to display. Lazy pagination avoids this select count query and results
in a faster page load, with a disadvantage: you won’t know the total number of
pages in advance.

Use this in the same way as paginate tag when you are not interested in the
total number of pages.

The lazy_paginate tag can take all the args of the paginate one, with
one exception: negative indexes can not be passed to the starting from page
argument.

show_more

Show the link to get the next page in a Twitter-style Pagination. Usage:

{% show_more %}

Alternatively you can override the label passed to the default template:

{% show_more "even more" %}

You can override the loading text too:

{% show_more "even more" "working" %}

Must be called after paginate or lazy_paginate.

get_pages

Usage:

{% get_pages %}

This is mostly used for Digg-style pagination.

This call inserts in the template context a pages variable, as a sequence
of page links. You can use pages in different ways:

	just print pages and you will get Digg-style pagination displayed:

{{ pages.get_rendered }}

	display pages count:

{{ pages|length }}

	display numbers of objects in per page:

{{ pages.per_page_number }}

	check if the page list contains more than one page:

{{ pages.paginated }}
{# the following is equivalent #}
{{ pages|length > 1 }}

	get a specific page:

{# the current selected page #}
{{ pages.current }}

{# the first page #}
{{ pages.first }}

{# the last page #}
{{ pages.last }}

{# the previous page (or nothing if you are on first page) #}
{{ pages.previous }}

{# the next page (or nothing if you are in last page) #}
{{ pages.next }}

{# the third page #}
{{ pages.3 }}
{# this means page.1 is the same as page.first #}

{# the 1-based index of the first item on the current page #}
{{ pages.current_start_index }}

{# the 1-based index of the last item on the current page #}
{{ pages.current_end_index }}

{# the total number of objects, across all pages #}
{{ pages.total_count }}

{# the first page represented as an arrow #}
{{ pages.first_as_arrow }}

{# the last page represented as an arrow #}
{{ pages.last_as_arrow }}

	iterate over pages to get all pages:

{% for page in pages %}
 {# display page link #}
 {{ page.render_link }}

 {# the page url (beginning with "?") #}
 {{ page.url }}

 {# the page path #}
 {{ page.path }}

 {# the page number #}
 {{ page.number }}

 {# a string representing the page (commonly the page number) #}
 {{ page.label }}

 {# check if the page is the current one #}
 {{ page.is_current }}

 {# check if the page is the first one #}
 {{ page.is_first }}

 {# check if the page is the last one #}
 {{ page.is_last }}

 {### next two example work only with settings.EL_PAGINATION_USE_NEXT_PREVIOUS_LINKS = True ###}

 {# check if the page is previous #}
 {{ page.is_previous }}

 {# check if the page is_next #}
 {{ page.is_next }}

{% endfor %}

You can change the variable name, e.g.:

{% get_pages as page_links %}
{{ page_links.get_rendered }}
{# the current selected page #}
{{ page_links.current }}

This must be called after paginate or lazy_paginate.

show_pages

Show page links. Usage:

{% show_pages %}

It is just a shortcut for:

{% get_pages %}
{{ pages.get_rendered }}

You can set EL_PAGINATION_PAGE_LIST_CALLABLE in your settings.py to
a callable used to customize the pages that are displayed.
EL_PAGINATION_PAGE_LIST_CALLABLE can also be a dotted path
representing a callable, e.g.:

EL_PAGINATION_PAGE_LIST_CALLABLE = 'path.to.callable'

The callable takes the current page number and the total number of pages,
and must return a sequence of page numbers that will be displayed.

The sequence can contain other values:

	‘previous’: will display the previous page in that position;

	‘next’: will display the next page in that position;

	‘first’: will display the first page as an arrow;

	‘last’: will display the last page as an arrow;

	None: a separator will be displayed in that position.

Here is an example of a custom callable that displays the previous page, then
the first page, then a separator, then the current page, and finally the last
page:

def get_page_numbers(current_page, num_pages):
 return ('previous', 1, None, current_page, 'last')

If EL_PAGINATION_PAGE_LIST_CALLABLE is None the internal callable
endless_pagination.utils.get_page_numbers is used, generating a Digg-style
pagination.

An alternative implementation is available:
endless_pagination.utils.get_elastic_page_numbers: it adapts its output
to the number of pages, making it arguably more usable when there are many
of them.

This must be called after paginate or lazy_paginate.

show_current_number

Show the current page number, or insert it in the context.

This tag can for example be useful to change the page title according to
the current page number.

To just show current page number:

{% show_current_number %}

If you use multiple paginations in the same page, you can get the page
number for a specific pagination using the querystring key, e.g.:

{% show_current_number using mykey %}

The default page when no querystring is specified is 1. If you changed it
in the paginate template tag, you have to call show_current_number
according to your choice, e.g.:

{% show_current_number starting from page 3 %}

This can be also achieved using a template variable you passed to the
context, e.g.:

{% show_current_number starting from page page_number %}

You can of course mix it all (the order of arguments is important):

{% show_current_number starting from page 3 using mykey %}

If you want to insert the current page number in the context, without
actually displaying it in the template, use the as argument, i.e.:

{% show_current_number as page_number %}
{% show_current_number starting from page 3 using mykey as page_number %}

JavaScript reference

For each type of pagination it is possible to enable Ajax so that the requested
page is loaded using an asynchronous request to the server. This is especially
important for Twitter-style Pagination and
endless pagination on scroll, but
Digg-style pagination can also take advantage of this technique.

Activating Ajax support

Ajax support is activated linking jQuery and the el-pagination.js file
included in this app. It is then possible to use the $.endlessPaginate()
jQuery plugin to enable Ajax pagination, e.g.:

<h2>Entries:</h2>
<div class="endless_page_template">
 {% include page_template %}
</div>

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>$.endlessPaginate();</script>
{% endblock %}

This example assumes that you
separated the fragment containing the single
page (page_tempate) from the main template (the code snipper above). More on
this in Twitter-style Pagination and Digg-style pagination.

The $.endlessPaginate() call activates Ajax for each pagination present in
the page.

Pagination on scroll

If you want new items to load when the user scrolls down the browser page,
you can use the pagination on scroll feature: just set the
paginateOnScroll option of $.endlessPaginate() to true, e.g.:

<h2>Entries:</h2>
<div class="endless_page_template">
 {% include page_template %}
</div>

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>$.endlessPaginate({paginateOnScroll: true});</script>
{% endblock %}

That’s all. See the Templatetags reference page to improve usage of
the included templatetags.

It is possible to set the bottom margin used for pagination on scroll
(default is 1 pixel). For example, if you want the pagination on scroll
to be activated when 20 pixels remain to the end of the page:

<h2>Entries:</h2>
<div class="endless_page_template">
 {% include page_template %}
</div>

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>
 $.endlessPaginate({
 paginateOnScroll: true,
 paginateOnScrollMargin: 200
 });
 </script>
{% endblock %}

Attaching callbacks

It is possible to customize the behavior of JavaScript pagination by attaching
callbacks to $.endlessPaginate(), called when the following events are fired:

	onClick: the user clicks on a page link;

	onCompleted: the new page is fully loaded and inserted in the DOM.

The context of both callbacks is the clicked link fragment: in other words,
inside the callbacks, this will be the HTML fragment representing the clicked
link, e.g.:

<h2>Entries:</h2>
<div class="endless_page_template">
 {% include page_template %}
</div>

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>
 $.endlessPaginate({
 onClick: function() {
 console.log('Label:', $(this).text());
 }
 });
 </script>
{% endblock %}

Both callbacks also receive a context argument containing information about
the requested page:

	context.url: the requested URL;

	context.key: the querystring key used to retrieve the requested contents.

If the onClick callback returns false, the pagination process is stopped,
the Ajax request is not performed and the onCompleted callback never called.

The onCompleted callbacks also receives a second argument: the data returned
by the server. Basically this is the HTML fragment representing the new
requested page.

To wrap it up, here is an example showing the callbacks’ signatures:

<h2>Entries:</h2>
<div class="endless_page_template">
 {% include page_template %}
</div>

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>
 $.endlessPaginate({
 onClick: function(context) {
 console.log('Label:', $(this).text());
 console.log('URL:', context.url);
 console.log('Querystring key:', context.key);
 if (forbidden) { // to be defined...
 return false;
 }
 },
 onCompleted: function(context, fragment) {
 console.log('Label:', $(this).text());
 console.log('URL:', context.url);
 console.log('Querystring key:', context.key);
 console.log('Fragment:', fragment);
 }
 });
 </script>
{% endblock %}

Manually selecting what to bind

As seen above, $.endlessPaginate() enables Ajax support for each pagination
in the page. But assuming you are using Multiple paginations in the same page, e.g.:

<h2>Entries:</h2>
<div id="entries" class="endless_page_template">
 {% include "myapp/entries_page.html" %}
</div>

<h2>Other entries:</h2>
<div id="other-entries" class="endless_page_template">
 {% include "myapp/other_entries_page.html" %}
</div>

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>$.endlessPaginate();</script>
{% endblock %}

What if you need Ajax pagination only for entries and not for
other entries? You can do this in a straightforward way using jQuery
selectors, e.g.:

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>$('#entries').endlessPaginate();</script>
{% endblock %}

The call to $(‘#entries’).endlessPaginate() applies Ajax pagination starting
from the DOM node with id entries and to all sub-nodes. This means that
other entries are left intact. Of course you can use any selector supported
by jQuery.

At this point, you might have already guessed that $.endlessPaginate()
is just an alias for $(‘body’).endlessPaginate().

Customize each pagination

You can also call $.endlessPaginate() multiple times if you want to customize
the behavior of each pagination. E.g. if you need to register a callback for
entries but not for other entries:

<h2>Entries:</h2>
<div id="entries" class="endless_page_template">
 {% include "myapp/entries_page.html" %}
</div>

<h2>Other entries:</h2>
<div id="other-entries" class="endless_page_template">
 {% include "myapp/other_entries_page.html" %}
</div>

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>
 $('#entries').endlessPaginate({
 onCompleted: function(data) {
 console.log('New entries loaded.');
 }
 });
 $('#other-entries').endlessPaginate();
 </script>
{% endblock %}

Selectors

Each time $.endlessPaginate() is used, several JavaScript selectors are used
to select DOM nodes. Here is a list of them all:

	containerSelector: ‘.endless_container’
(Twitter-style pagination container selector);

	loadingSelector: ‘.endless_loading’ -
(Twitter-style pagination loading selector);

	moreSelector: ‘a.endless_more’ -
(Twitter-style pagination link selector);

	contentSelector: null -
(Twitter-style pagination content wrapper);

	pageSelector: ‘.endless_page_template’
(Digg-style pagination page template selector);

	pagesSelector: ‘a.endless_page_link’
(Digg-style pagination link selector).

An example can better explain the meaning of the selectors above. Assume you
have a Digg-style pagination like the following:

<h2>Entries:</h2>
<div id="entries" class="endless_page_template">
 {% include "myapp/entries_page.html" %}
</div>

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>
 $('#entries').endlessPaginate();
 </script>
{% endblock %}

Here the #entries node is selected and Digg-style pagination is applied.
Digg-style needs to know which DOM node will be updated with new contents,
and in this case it’s the same node we selected, because we added the
endless_page_template class to that node, and .endless_page_template
is the selector used by default. However, the following example is equivalent
and does not involve adding another class to the container:

<h2>Entries:</h2>
<div id="entries">
 {% include "myapp/entries_page.html" %}
</div>

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>
 $('#entries').endlessPaginate({
 pageSelector: '#entries'
 });
 </script>
{% endblock %}

On scroll pagination using chunks

Sometimes, when using on scroll pagination, you may want to still display
the show more link after each N pages. In Django Endless Pagination this is
called chunk size. For instance, a chunk size of 5 means that a show more
link is displayed after page 5 is loaded, then after page 10, then after page
15 and so on. Activating this functionality is straightforward, just use the
paginateOnScrollChunkSize option:

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>
 $.endlessPaginate({
 paginateOnScroll: true,
 paginateOnScrollChunkSize: 5
 });
 </script>
{% endblock %}

Each time a chunk size is complete, the class endless_chunk_complete is added to the show more link,
so you still have a way to distinguish between the implicit
click done by the scroll event and a real click on the button.

Migrate from version 1.1 to 2.1

Django Endless Pagination v2.0 introduces changes in how Ajax pagination
is handled by JavaScript. These changes are discussed in this document and in
the Changelog.

The JavaScript code now lives in a file named el-pagination.js.
The two JavaScript files el-pagination-endless.js and el-pagination_on_scroll.js was removed.
However, please consider migrating: the old JavaScript files was removed, are
no longer maintained, and don’t provide the new JavaScript features.

Instructions on how to migrate from the old version to the new one follow.

Basic migration

Before:

<h2>Entries:</h2>
{% include page_template %}

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination-endless.js"></script>
{% endblock %}

Now:

<h2>Entries:</h2>
{% include page_template %}

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>$.endlessPaginate();</script>
{% endblock %}

Pagination on scroll

Before:

<h2>Entries:</h2>
{% include page_template %}

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination-endless.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination_on_scroll.js"></script>
{% endblock %}

Now:

<h2>Entries:</h2>
{% include page_template %}

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>
 $.endlessPaginate({paginateOnScroll: true});
 </script>
{% endblock %}

Pagination on scroll with customized bottom margin

Before:

<h2>Entries:</h2>
{% include page_template %}

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination-endless.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination_on_scroll.js"></script>
 <script>
 var endless_on_scroll_margin = 200;
 </script>
{% endblock %}

Now:

<h2>Entries:</h2>
{% include page_template %}

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>
 $.endlessPaginate({
 paginateOnScroll: true,
 paginateOnScrollMargin: 200
 });
 </script>
{% endblock %}

Avoid enabling Ajax on one or more paginations

Before:

<h2>Other entries:</h2>
<div class="endless_page_template endless_page_skip">
 {% include "myapp/other_entries_page.html" %}
</div>

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination-endless.js"></script>
{% endblock %}

Now:

<h2>Other entries:</h2>
<div class="endless_page_template endless_page_skip">
 {% include "myapp/other_entries_page.html" %}
</div>

{% block js %}
 {{ block.super }}
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <script src="{{ STATIC_URL }}el-pagination/js/el-pagination.js"></script>
 <script>$('not:(.endless_page_skip)').endlessPaginate();</script>
{% endblock %}

In this last example, activating Ajax just where you want might be preferred
over excluding nodes.

Generic views

This application provides a customized class-based view, similar to
django.views.generic.ListView, that allows Ajax pagination of a
list of objects (usually a queryset).

AjaxListView reference

	
class el_pagination.views.AjaxListView(django.views.generic.ListView)

	A class based view, similar to django.views.generic.ListView,
that allows Ajax pagination of a list of objects.

You can use this class based view in place of ListView in order to
recreate the behaviour of the page_template decorator.

For instance, assume you have this code (taken from Django docs):

from django.conf.urls import url
from django.views.generic import ListView
from books.models import Publisher

urlpatterns = [
 url(r'^publishers/$', ListView.as_view(model=Publisher)),
]

You want to Ajax paginate publishers, so, as seen, you need to switch
the template if the request is Ajax and put the page template
into the context as a variable named page_template.

This is straightforward, you only need to replace the view class, e.g.:

from django.conf.urls import *
from books.models import Publisher

from el_pagination.views import AjaxListView

urlpatterns = [
 url(r'^publishers/$', AjaxListView.as_view(model=Publisher)),
]

	
key

	the querystring key used for the current pagination
(default: settings.EL_PAGINATION_PAGE_LABEL)

	
page_template

	the template used for the paginated objects

	
page_template_suffix

	the template suffix used for autogenerated page_template name
(when not given, default=’_page’)

	
get_context_data(self, **kwargs)

	Adds the page_template variable in the context.

If the page_template is not given as a kwarg of the as_view
method then it is invented using app label, model name
(obviously if the list is a queryset), self.template_name_suffix
and self.page_template_suffix.

For instance, if the list is a queryset of blog.Entry,
the template will be myapp/publisher_list_page.html.

	
get_template_names(self)

	Switch the templates for Ajax requests.

	
get_page_template(self, **kwargs)

	Only called if page_template is not given as a kwarg of
self.as_view.

Generic view example

If the developer wants pagination of publishers, in views.py we have code class-based:

from django.views.generic import ListView

class EntryListView(ListView)
 model = Publisher
 template_name = "myapp/publisher_list.html"
 context_object_name = "publisher_list"

or fuction-based:

def entry_index(request, template='myapp/publisher_list.html'):
 context = {
 'publisher_list': Entry.objects.all(),
 }
 return render(request, template, context)

In myapp/publisher_list.html:

<h2>Entries:</h2>
{% for entry in publisher_list %}
 {# your code to show the entry #}
{% endfor %}

This is just a basic example. To continue exploring more AjaxListView examples,
have a look at Twitter-style Pagination

Customization

Settings

You can customize the application using settings.py.

	Name

	Default

	Description

	EL_PAGINATION_PER_PAGE

	10

	How many objects are normally displayed
in a page (overwriteable by templatetag).

	EL_PAGINATION_PAGE_LABEL

	‘page’

	The querystring key of the page number
(e.g. http://example.com?page=2).

	EL_PAGINATION_ORPHANS

	0

	See Django Paginator definition of orphans.

	EL_PAGINATION_LOADING

	‘loading’

	If you use the default show_more template,
here you can customize the content of the
loader hidden element. HTML is safe here,
e.g. you can show your pretty animated GIF
EL_PAGINATION_LOADING = """""".

	EL_PAGINATION_PREVIOUS_LABEL

	‘<’

	Default label for the previous page link.

	EL_PAGINATION_NEXT_LABEL

	‘>’

	Default label for the next page link.

	EL_PAGINATION_FIRST_LABEL

	‘<<’

	Default label for the first page link.

	EL_PAGINATION_LAST_LABEL

	‘>>’

	Default label for the last page link.

	EL_PAGINATION_ADD_NOFOLLOW

	False

	Set to True if your SEO alchemist
wants search engines not to follow
pagination links.

	EL_PAGINATION_PAGE_LIST_CALLABLE

	None

	Callable (or dotted path to a callable) that
returns pages to be displayed.
If None, a default callable is used;
that produces Digg-style pagination.
The applicationt provides also a callable
producing elastic pagination:
EL_pagination.utils.get_elastic_page_numbers.
It adapts its output to the number of pages,
making it arguably more usable when there are
many of them.
See Templatetags reference for
information about writing custom callables.

	EL_PAGINATION_DEFAULT_CALLABLE_EXTREMES

	3

	Default number of extremes displayed when
Digg-style pagination is used with the
default callable.

	EL_PAGINATION_DEFAULT_CALLABLE_AROUNDS

	2

	Default number of arounds displayed when
Digg-style pagination is used with the
default callable.

	EL_PAGINATION_DEFAULT_CALLABLE_ARROWS

	False

	Whether or not the first and last pages arrows
are displayed when Digg-style pagination is
used with the default callable.

	EL_PAGINATION_TEMPLATE_VARNAME

	‘template’

	Template variable name used by the
page_template decorator. You can change
this value if you are going to decorate
generic views using a different variable name
for the template (e.g. template_name).

	EL_PAGINATION_PAGE_OUT_OF_RANGE_404

	False

	If True on page out of range, throw a 404
exception, otherwise display the first page.
There is a view that maintains the original
functionality but sets the 404 status code
found in el_pagination\views.py

	EL_PAGINATION_USE_NEXT_PREVIOUS_LINKS

	False

	Add is_previous & is_next flags
for previous and next pages

Templates and CSS

You can override the default template for show_more templatetag following
some rules:

	more link is shown only if the variable querystring is not False;

	the container (most external html element) class is endless_container;

	the more link and the loader hidden element live inside the container;

	the more link class is endless_more;

	the more link data-el-querystring-key attribute is {{ querystring_key }};

	the loader hidden element class is endless_loading.

Contributing

Here are the steps needed to set up a development and testing environment.

WARNING

This app use git flow for branching strategy and release management.

Please, change code and submit all pull requests into branch develop

Creating a development environment

The development environment is created in a virtualenv. The environment
creation requires the make and virtualenv programs to be installed.

To install make under Debian/Ubuntu:

$ sudo apt-get install build-essential

Under Mac OS/X, make is available as part of XCode.

To install virtualenv:

$ sudo pip install virtualenv

At this point, from the root of this branch, run the command:

$ make

This command will create a .venv directory in the branch root, ignored
by DVCSes, containing the development virtual environment with all the
dependencies.

Testing the application

To install xvfb (for integration tests) under Debian/Ubuntu:

$ sudo apt-get install xvfb

If you are on CentOS and using yum, it’s:

$ yum install xorg-X11-server-Xvfb

Run the tests:

$ make test

The command above also runs all the available integration tests. They use
Selenium and require Firefox to be installed. To avoid executing integration
tests, define the environment variable SKIP_SELENIUM, e.g.:

$ make test SKIP_SELENIUM=1

Integration tests are excluded by default when using Python 3. The test suite
requires Python >= 2.6.1.

Run the tests and lint/pep8 checks:

$ make check

Again, to exclude integration tests:

$ make check SKIP_SELENIUM=1

Debugging

Run the Django shell (Python interpreter):

$ make shell

Run the Django development server for manual testing:

$ make server

After executing the command above, it is possible to navigate the testing
project going to <http://localhost:8000>.

See all the available make targets, including info on how to create a Python 3
development environment:

$ make help

Thanks for contributing, and have fun!

Source code and contacts

Repository and bugs

The source code for this app is hosted on
https://github.com/shtalinberg/django-el-pagination.

To file bugs and requests, please use
https://github.com/shtalinberg/django-el-pagination/issues.

Contacts

Oleksandr Shtalinberg

	Email: o.shtalinberg at gmail.com

Francesco Banconi

	Email: frankban at gmail.com

	IRC: frankban@freenode

Thanks

This application was initially inspired by the excellent tool
django-pagination (see https://github.com/ericflo/django-pagination).

Thanks to Francesco Banconi for improving previos version of this application
(django-endless-pagination)

Thanks to Jannis Leidel for improving the application with some new features,
and for contributing the German translation.

And thanks to Nicola ‘tekNico’ Larosa for reviewing the documentation and for
implementing the elastic pagination feature.

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 el_pagination	

 	
 	
 el_pagination.views	

Index

 A
 | E
 | G
 | K
 | P

A

 	
 	AjaxListView (class in el_pagination.views)

E

 	
 	el_pagination.views (module)

G

 	
 	get_context_data() (el_pagination.views.AjaxListView method)

 	
 	get_page_template() (el_pagination.views.AjaxListView method)

 	get_template_names() (el_pagination.views.AjaxListView method)

K

 	
 	key (el_pagination.views.AjaxListView attribute)

P

 	
 	page_template (el_pagination.views.AjaxListView attribute)

 	
 	page_template_suffix (el_pagination.views.AjaxListView attribute)

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Django EL(Endless) Pagination

 		
 Changelog

 		
 Version 3.2.4

 		
 Version 3.2.3

 		
 Version 3.2.2

 		
 Version 3.2.0

 		
 Version 3.1.0

 		
 Version 3.0.0

 		
 Version 2.1.1

 		
 Version 2.1.0

 		
 Version 2.0

 		
 Version 1.1

 		
 Getting started

 		
 Requirements

 		
 Installation

 		
 Settings

 		
 Quickstart

 		
 Twitter-style Pagination

 		
 Split the template

 		
 A shortcut for ajaxed views

 		
 Paginating objects

 		
 Pagination on scroll

 		
 On scroll pagination using chunks

 		
 Specifying where the content will be inserted

 		
 Before version 2.0

 		
 Digg-style pagination

 		
 Page by page

 		
 Showing indexes

 		
 Number of pages

 		
 Adding Ajax

 		
 Multiple paginations in the same page

 		
 Adding Ajax for multiple pagination

 		
 Manually selecting what to bind

 		
 Lazy pagination

 		
 Different number of items on the first page

 		
 Getting the current page number

 		
 In the template

 		
 In the view

 		
 Templatetags reference

 		
 paginate

 		
 lazy_paginate

 		
 show_more

 		
 get_pages

 		
 show_pages

 		
 show_current_number

 		
 JavaScript reference

 		
 Activating Ajax support

 		
 Pagination on scroll

 		
 Attaching callbacks

 		
 Manually selecting what to bind

 		
 Customize each pagination

 		
 Selectors

 		
 On scroll pagination using chunks

 		
 Migrate from version 1.1 to 2.1

 		
 Basic migration

 		
 Pagination on scroll

 		
 Pagination on scroll with customized bottom margin

 		
 Avoid enabling Ajax on one or more paginations

 		
 Generic views

 		
 AjaxListView reference

 		
 Generic view example

 		
 Customization

 		
 Settings

 		
 Templates and CSS

 		
 Contributing

 		
 Creating a development environment

 		
 Testing the application

 		
 Debugging

 		
 Source code and contacts

 		
 Repository and bugs

 		
 Contacts

 		
 Thanks

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

