

    
      
          
            
  
Django Deployments: A Field Guide

Moving from Django’s runserver management command on your laptop to a live
webserver can be one of the trickiest steps for newcomers to Django. And not
just newbies. There is no one right way to deploy your application, and the
rest of the community benefits from learning about better practices.

What follows is an attempt to collect and distill some of these practices in a
digestible and applicable way.

This guide is primarily for people deploying to their own servers. Much of the
material will apply if you are deploying to a platform as a service, but this
is not primarily a PaaS deployment guide. It also assumes you are deploying to
a Linux or otherwise Unix like system (unless someone wants to contribute to a
Windows guide of course!). This guide should provide both a roadmap to people
getting started and a reference for more experienced developers.


Proposed outline


Getting started



	From runserver to N-tier architectures

	WSGI servers

	Web servers

	Django Settings management

	Platform as a Service







Going live


	Process management


	Releases


	Python dependencies


	Static assets






Taking control


	Logging & exceptions


	Backing services


	Securing your Django deployment






Advanced deployment options


	Configuration management


	Packaging your application


	Application containers






Deployment recipes

Sample configurations, from Nginx configuration, gunicorn conf files, Fabric
scripts, etc.




License

The content of this guide is licensed for use, sharing, and modification under
the Creative Commons license. You may reuse this content and modify it provided
that you supply attribution and that it is for non-commercial purposes. You may
not use this material in any way whatsoever for any commercial purposes.



Contributing

Contributions are welcome, whether new content, technical corrections, or just
typo fixes. Just as an open source coding project benefits from a consistent
coding style, so does the guide benefit from a consistent writing style and
voice.



Indices and tables


	Index


	Search Page








          

      

      

    

  

    
      
          
            
  
From runserver to N-tier architectures

This guide aims to address two questions:


	How do you serve a Django app in production?


	How do you get updates from your computer to your server




There are lots of related topics and advanced methods, and while this guide
will cover some and mention many, the primary goal is to give people a solid
footing just answering these two primary questions.


A production server

You might have noticed this in the Django docs with regard to the runserver [https://docs.djangoproject.com/en/dev/ref/django-admin/#runserver-port-or-address-port]
management command:


DO NOT USE THIS SERVER IN A PRODUCTION SETTING




It can be confusing at first, but what’s really meant is this:


DO NOT USE THIS SERVER IN A PRODUCTION SETTING




It usually makes more sense the second time around. This is an unoptimized,
minimally tested tool available solely for making your application available in
development.

In production what you want is a dedicated WSGI [http://www.python.org/dev/peps/pep-0333/] server, one designed and
configurable for a production environment and controlled by some kind of
process manager.



Moving code to production

You’ll need to move your code from your computer, from your repository, to the
production server. More, you’ll want to do this periodically as you fix bugs,
release new features, etc. You could certainly use FTP to move code from one
place to another, but this has some serious downsides. You can’t distinguish
between releases.  There’s way too much manual intervation required.

What you really want is a way to smoothly move code, run deployment tasks, and
ensure the server uses your new code. You can do better than FTP.





          

      

      

    

  

    
      
          
            
  
WSGI servers

For each:


	overview


	pros/cons, benefits/drawbacks


	recipes for using


	add’l references





mod_wsgi



gunicorn



uwsgi



Twisted





          

      

      

    

  

    
      
          
            
  
Web servers


Apache



Nginx





          

      

      

    

  

    
      
          
            
  
Django Settings management


What not to include

Passwords, auth keys, etc.



Multiple settings files

Per environment/host settings files



Using the system environment

A distinct or compatible option





          

      

      

    

  

    
      
          
            
  
Platform as a Service


Heroku



dotCloud



Gondor





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Django Deployments: A Field Guide

Moving from Django’s runserver management command on your laptop to a live
webserver can be one of the trickiest steps for newcomers to Django. And not
just newbies. There is no one right way to deploy your application, and the
rest of the community benefits from learning about better practices.

What follows is an attempt to collect and distill some of these practices in a
digestible and applicable way.

This guide is primarily for people deploying to their own servers. Much of the
material will apply if you are deploying to a platform as a service, but this
is not primarily a PaaS deployment guide. It also assumes you are deploying to
a Linux or otherwise Unix like system (unless someone wants to contribute to a
Windows guide of course!). This guide should provide both a roadmap to people
getting started and a reference for more experienced developers.


Proposed outline


Getting started


	From runserver to N-tier architectures


	WSGI (application) servers


	Web servers


	Settings management


	PaaS deployment, overview of an alternative






Going live


	Process management


	Releases


	Python dependencies


	Static assets






Taking control


	Logging & exceptions


	Backing services


	Securing your Django deployment






Advanced deployment options


	Configuration management


	Packaging your application


	Application containers






Deployment recipes

Sample configurations, from Nginx configuration, gunicorn conf files, Fabric
scripts, etc.




License

The content of this guide is licensed for use, sharing, and modification under
the Creative Commons license. You may reuse this content and modify it provided
that you supply attribution and that it is for non-commercial purposes. You may
not use this material in any way whatsoever for any commercial purposes.

[image: Creative Commons Attribution-NonCommercial 3.0 Unported]
 [http://creativecommons.org/licenses/by-nc/3.0/deed.en_US]

Contributing

Contributions are welcome, whether new content, technical corrections, or just
typo fixes. Just as an open source coding project benefits from a consistent
coding style, so does the guide benefit from a consistent writing style and
voice.





          

      

      

    

  

    
      
          
            
  
Keeping the web server going

Avoid daemonizing the command itself. Don’t attach it to a tmux session.


init.d



Supervisor



upstart





          

      

      

    

  

    
      
          
            
  
Python dependencies


Virtualenv



pip



PyPI

Mirrors and alternatives



Private package index





          

      

      

    

  

    
      
          
            
  
Deploying a new release


Process



Tools


Fabric



Ansible



Salt



Other


	Capistrano


	Shell scripts?









          

      

      

    

  

    
      
          
            
  
Gunicorn on Upstart with a Bash script

This recipe is from Alexis Bellido’s Django Gunicorn Fabfile sample [https://github.com/alexisbellido/The-Django-gunicorn-fabfile-project]. It
consists of an Upstart script for executing a controlling script and the
controlling Bash script.


Files

/etc/init/project.conf

	1
2
3
4
5
6

	description "Django Project"
start on runlevel [2345]
stop on runlevel [06]
respawn
respawn limit 10 5
exec /home/user/django-project/run-project.sh







/home/user/django-project/run-project.sh

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	#!/bin/bash -e

LOGFILE=/home/user/logs/django-project-gunicorn.log
LOGDIR=$(dirname $LOGFILE)
LOGLEVEL=debug

NUM_WORKERS=3
BIND_ADDRESS=127.0.0.1:8000

USER=user
GROUP=user

PROJECTDIR=/home/user/django-project
PROJECTENV=/home/user/.virtualenvs/django-project

source $PROJECTENV/bin/activate
cd $PROJECTDIR
test -d $LOGDIR || mkdir -p $LOGDIR
exec python manage.py run_gunicorn --workers=$NUM_WORKERS --user=$USER --group=$GROUP \
        --bind=$BIND_ADDRESS --log-level=$LOGLEVEL --log-file=$LOGFILE 2>>$LOGFILE









Line by line

Let’s step through this! While the Upstart script is pretty short it definitely
demands some attention.


Upstart script

	1
2
3
4
5
6

	description "Django Project"
start on runlevel [2345]
stop on runlevel [06]
respawn
respawn limit 10 5
exec /home/user/django-project/run-project.sh







This is just a human readable description of the script.

	1
2
3
4
5
6

	description "Django Project"
start on runlevel [2345]
stop on runlevel [06]
respawn
respawn limit 10 5
exec /home/user/django-project/run-project.sh







This service should be started if the system starts up in a normal mode.

	1
2
3
4
5
6

	description "Django Project"
start on runlevel [2345]
stop on runlevel [06]
respawn
respawn limit 10 5
exec /home/user/django-project/run-project.sh







This service should be stopped if the system is halted or if it is rebooted.

	1
2
3
4
5
6

	description "Django Project"
start on runlevel [2345]
stop on runlevel [06]
respawn
respawn limit 10 5
exec /home/user/django-project/run-project.sh







This is a flag saying that if the service is ended unexpectedetly that it
should be restarted.

	1
2
3
4
5
6

	description "Django Project"
start on runlevel [2345]
stop on runlevel [06]
respawn
respawn limit 10 5
exec /home/user/django-project/run-project.sh







This line sets a limit to the previous line. It says that if the service is
unexpectedly ended more than 10 times within a period of 5 seconds that the
service should not be restarted. The stanza terms here are count and
timeout (for the values provided as 10 and 5, respectively, in this example).

	1
2
3
4
5
6

	description "Django Project"
start on runlevel [2345]
stop on runlevel [06]
respawn
respawn limit 10 5
exec /home/user/django-project/run-project.sh







This is what actually gets run by the Upstart job. In this case it executes the
Bash script.



Bash script

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	#!/bin/bash -e

LOGFILE=/home/user/logs/django-project-gunicorn.log
LOGDIR=$(dirname $LOGFILE)
LOGLEVEL=debug

NUM_WORKERS=3
BIND_ADDRESS=127.0.0.1:8000

USER=user
GROUP=user

PROJECTDIR=/home/user/django-project
PROJECTENV=/home/user/.virtualenvs/django-project

source $PROJECTENV/bin/activate
cd $PROJECTDIR
test -d $LOGDIR || mkdir -p $LOGDIR
exec python manage.py run_gunicorn --workers=$NUM_WORKERS --user=$USER --group=$GROUP \
        --bind=$BIND_ADDRESS --log-level=$LOGLEVEL --log-file=$LOGFILE 2>>$LOGFILE







Declares the location for the Gunicorn log and the logging level (e.g. info,
debug, warning, error, critical). The logging directory is set here to ensure
that it can be created (line 18) if it is absent.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	#!/bin/bash -e

LOGFILE=/home/user/logs/django-project-gunicorn.log
LOGDIR=$(dirname $LOGFILE)
LOGLEVEL=debug

NUM_WORKERS=3
BIND_ADDRESS=127.0.0.1:8000

USER=user
GROUP=user

PROJECTDIR=/home/user/django-project
PROJECTENV=/home/user/.virtualenvs/django-project

source $PROJECTENV/bin/activate
cd $PROJECTDIR
test -d $LOGDIR || mkdir -p $LOGDIR
exec python manage.py run_gunicorn --workers=$NUM_WORKERS --user=$USER --group=$GROUP \
        --bind=$BIND_ADDRESS --log-level=$LOGLEVEL --log-file=$LOGFILE 2>>$LOGFILE







The number of workers the Gunicorn process should spawn to serve requests.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	#!/bin/bash -e

LOGFILE=/home/user/logs/django-project-gunicorn.log
LOGDIR=$(dirname $LOGFILE)
LOGLEVEL=debug

NUM_WORKERS=3
BIND_ADDRESS=127.0.0.1:8000

USER=user
GROUP=user

PROJECTDIR=/home/user/django-project
PROJECTENV=/home/user/.virtualenvs/django-project

source $PROJECTENV/bin/activate
cd $PROJECTDIR
test -d $LOGDIR || mkdir -p $LOGDIR
exec python manage.py run_gunicorn --workers=$NUM_WORKERS --user=$USER --group=$GROUP \
        --bind=$BIND_ADDRESS --log-level=$LOGLEVEL --log-file=$LOGFILE 2>>$LOGFILE







Declares the address and port to which the Gunicorn process should be bound.
This is important to match against either upstream servers (like a web server)
or open ports.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	#!/bin/bash -e

LOGFILE=/home/user/logs/django-project-gunicorn.log
LOGDIR=$(dirname $LOGFILE)
LOGLEVEL=debug

NUM_WORKERS=3
BIND_ADDRESS=127.0.0.1:8000

USER=user
GROUP=user

PROJECTDIR=/home/user/django-project
PROJECTENV=/home/user/.virtualenvs/django-project

source $PROJECTENV/bin/activate
cd $PROJECTDIR
test -d $LOGDIR || mkdir -p $LOGDIR
exec python manage.py run_gunicorn --workers=$NUM_WORKERS --user=$USER --group=$GROUP \
        --bind=$BIND_ADDRESS --log-level=$LOGLEVEL --log-file=$LOGFILE 2>>$LOGFILE







Declares what user and user group the Gunicorn process should be run as.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	#!/bin/bash -e

LOGFILE=/home/user/logs/django-project-gunicorn.log
LOGDIR=$(dirname $LOGFILE)
LOGLEVEL=debug

NUM_WORKERS=3
BIND_ADDRESS=127.0.0.1:8000

USER=user
GROUP=user

PROJECTDIR=/home/user/django-project
PROJECTENV=/home/user/.virtualenvs/django-project

source $PROJECTENV/bin/activate
cd $PROJECTDIR
test -d $LOGDIR || mkdir -p $LOGDIR
exec python manage.py run_gunicorn --workers=$NUM_WORKERS --user=$USER --group=$GROUP \
        --bind=$BIND_ADDRESS --log-level=$LOGLEVEL --log-file=$LOGFILE 2>>$LOGFILE







Declare the directory paths.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	#!/bin/bash -e

LOGFILE=/home/user/logs/django-project-gunicorn.log
LOGDIR=$(dirname $LOGFILE)
LOGLEVEL=debug

NUM_WORKERS=3
BIND_ADDRESS=127.0.0.1:8000

USER=user
GROUP=user

PROJECTDIR=/home/user/django-project
PROJECTENV=/home/user/.virtualenvs/django-project

source $PROJECTENV/bin/activate
cd $PROJECTDIR
test -d $LOGDIR || mkdir -p $LOGDIR
exec python manage.py run_gunicorn --workers=$NUM_WORKERS --user=$USER --group=$GROUP \
        --bind=$BIND_ADDRESS --log-level=$LOGLEVEL --log-file=$LOGFILE 2>>$LOGFILE







Change the Python path by activating the specified virtual environment and
changes the working directory to the project directory (where the manage.py
file is located). If you’re not familiar with virtualenv [http://www.virtualenv.org/en/latest/], it is a tool for managing and
isolating Python environments. If you’re deploying to anything other than a
PaaS - and if you’re developing on anything other than a PaaS, like your laptop
- you should use it.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	#!/bin/bash -e

LOGFILE=/home/user/logs/django-project-gunicorn.log
LOGDIR=$(dirname $LOGFILE)
LOGLEVEL=debug

NUM_WORKERS=3
BIND_ADDRESS=127.0.0.1:8000

USER=user
GROUP=user

PROJECTDIR=/home/user/django-project
PROJECTENV=/home/user/.virtualenvs/django-project

source $PROJECTENV/bin/activate
cd $PROJECTDIR
test -d $LOGDIR || mkdir -p $LOGDIR
exec python manage.py run_gunicorn --workers=$NUM_WORKERS --user=$USER --group=$GROUP \
        --bind=$BIND_ADDRESS --log-level=$LOGLEVEL --log-file=$LOGFILE 2>>$LOGFILE







Create the logging directory if it’s not there.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	#!/bin/bash -e

LOGFILE=/home/user/logs/django-project-gunicorn.log
LOGDIR=$(dirname $LOGFILE)
LOGLEVEL=debug

NUM_WORKERS=3
BIND_ADDRESS=127.0.0.1:8000

USER=user
GROUP=user

PROJECTDIR=/home/user/django-project
PROJECTENV=/home/user/.virtualenvs/django-project

source $PROJECTENV/bin/activate
cd $PROJECTDIR
test -d $LOGDIR || mkdir -p $LOGDIR
exec python manage.py run_gunicorn --workers=$NUM_WORKERS --user=$USER --group=$GROUP \
        --bind=$BIND_ADDRESS --log-level=$LOGLEVEL --log-file=$LOGFILE 2>>$LOGFILE







This is the command to run the server. Note that this example assumes that you
are using Gunicorn’s run_gunicorn management command [http://docs.gunicorn.org/en/latest/run.html#django-manage-py] as opposed to
using Gunicorn with your Django project’s WSGI file.






          

      

      

    

  _static/ajax-loader.gif





_images/88x31.png





_static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/down.png





_static/file.png





nav.xhtml

    
      Table of Contents


      
        		
          Django Deployments: A Field Guide
        


        		
          From runserver to N-tier architectures
          
            		
              A production server
            


            		
              Moving code to production
            


          


        


        		
          WSGI servers
          
            		
              mod_wsgi
            


            		
              gunicorn
            


            		
              uwsgi
            


            		
              Twisted
            


          


        


        		
          Web servers
          
            		
              Apache
            


            		
              Nginx
            


          


        


        		
          Django Settings management
          
            		
              What not to include
            


            		
              Multiple settings files
            


            		
              Using the system environment
            


          


        


        		
          Platform as a Service
          
            		
              Heroku
            


            		
              dotCloud
            


            		
              Gondor
            


          


        


      


    
  

_static/up-pressed.png





_static/minus.png





_static/plus.png





_static/up.png





