

    
      Navigation

      
        	
          index

        	
          next |

        	django-dbbackup 2.4.1 documentation 
 
      

    


    
      
          
            
  
Django Database Backup

This Django application provides management commands to help backup and
restore your project database to AmazonS3, Dropbox or Local Disk.


	Keep your important data secure and offsite.

	Use Crontab or Celery to setup automated backups.

	Great to keep your development database up to date.



Contents:



	Installation

	Configuration

	Database settings

	Encrypting your backups

	Remote storage

	Contributing guide






Warning

django-dbbackup is currently under heavy refactoring, stay tuned for
new versions and a final 2.0 release.




Compatibility

Django Database Backup supports PyPy, Python 2.7, 3.2 to 3.4 and Django greater than
1.6.




Management Commands


dbbackup

Backup your database to the specified storage. By default this
will backup all databases specified in your settings.py file and will not
delete any old backups. You can optionally specify a server name to be included
in the backup filename.

dbbackup [-s <servername>] [-d <database>] [--clean] [--compress] [--encrypt] [--backup-extension <file-extension>]








dbrestore

Restore your database from the specified storage. By default
this will lookup the latest backup and restore from that. You may optionally
specify a servername if you you want to backup a database image that was
created from a different server. You may also specify an explicit local file to
backup from.

dbrestore [-d <database>] [-s <servername>] [-f <localfile>] [--uncompress] [--backup-extension <file-extension>]








mediabackup

Backup media files. Default this will backup the files in
the MEDIA_ROOT. Optionally you can set the DBBACKUP_MEDIA_PATH setting.

mediabackup [--encrypt] [--clean] [--servername <servername>]










Examples

If you run dbbackup out of the box, it will be able to create and restore from a
local file dump of your database as configured in your Django project’s setup.

Here’s how we create a simple dump of the database:

$ python manage.py dbbackup

Backing Up Database: /home/user/django-project/db.sqlite3
  Reading: /home/user/django-project/db.sqlite3
  Backup tempfile created: 38.0 KB
  Writing file to Filesystem: /home/user/django-project/, filename: default.backup





...and here’s how we load that dump again (WARNING! Doing that of course overwrites the
entire existing database)

$ python manage.py dbrestore

Restoring backup for database: /home/user/django-project/db.sqlite3
  Finding latest backup
  Restoring: /home/user/django-project/default.backup
  Restore tempfile created: 38.0 KB
Are you sure you want to continue? [Y/n]y
  Writing: /home/user/django-project/db.sqlite3





Now, databases are not the only thing you should remember to backup. Your
settings.MEDIA_ROOT is where user contributed uploads reside, and it
should also be backed up.

$ python manage.py mediabackup

Backing up media files
  Backup tempfile created: None (233.0 B)
  Writing file to Filesystem: /home/user/django-project/








MongoDB backup example (BETA)

You can backup a mongodb database defined in your DATABASES settings.

DATABASES['my_mongo'] = {
    'USER': 'dumper_user',
    'PASSWORD': '******',
    'ENGINE': 'django_mongodb_engine',
    'NAME': 'db_to_dump',
    'HOST': 'localhost',
    'PORT': '27017',
}





$ python manage.py dbbackup -d my_mongo

Backing Up Database: db_to_dump
 Running: mongodump --username=dumper_user --password=****** --host=localhost --port=27017 -db db_to_dump -o /tmp/tmpxf8P7M
 Running: tar -C /tmp/tmpxf8P7M -cf - .
 Backup tempfile created: 10.0 KB
 Writing file to  Filesystem: /home/user/django-project/, filename: db_to_dump-2015-07-05-150629.tar





You can then restore the backup using the opposite command. (backup_extension currently have to be given)

$ python manage.py dbrestore -d my_mongo

Restoring backup for database: db_to_dump
  Finding latest backup
  Restoring: /home/user/django-project/db_to_dump-2015-07-05-150629.tar
  Restore tempfile created: 10.0 KB
Are you sure you want to continue? [Y/n]Y
  Running: tar -C /tmp/tmpiaeb0O -x
  Running: mongorestore --username=dumper_user --password=****** --authenticationDatabase db_to_dump --host=localhost --port=27017 --objcheck --drop /tmp/tmpiaeb0O










Other Resources

Source code here:

https://github.com/django-dbbackup/django-dbbackup

PyPi project:

https://pypi.python.org/pypi/django-dbbackup/




Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2014, Michael Shepanski.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	django-dbbackup 2.4.1 documentation 
 
      

    


    
      
          
            
  
Installation


Installing on your system


Getting the latest stable release

pip install django-dbbackup








Getting the latest release from trunk

In general, you should not be downloading and installing stuff
directly off repositories – especially not if you are backing
up sensitive data.

Security is important, bypassing PyPi repositories is a bad habbit,
because it will bypass the fragile key signatures authentication
that are at least present when using PyPi repositories.

pip install -e git+https://github.com/mjs7231/django-dbbackup.git#egg=django-dbbackup










Add it in your project

In your settings.py, make sure you have the following things:

INSTALLED_APPS = (
    ...
    'dbbackup',  # django-dbbackup
)

DBBACKUP_STORAGE = 'dbbackup.storage.filesystem_storage'
DBBACKUP_STORAGE_OPTIONS = {'location': '/var/backups'}





This configuration uses filesystem storage, but you can use any storage
supported by Django API. See storage for more information about it.




Testing that everything worked

Now, you should be able to create your first backup by running:

$ python manage.py dbbackup





If your database was called default which is the normal Django behaviour
of a single-database project, you should now see a new file in your backup
directory.







          

      

      

    


    
         Copyright 2014, Michael Shepanski.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	django-dbbackup 2.4.1 documentation 
 
      

    


    
      
          
            
  
Configuration


General settings


DBBACKUP_DATABASES

List of key entries for settings.DATABASES which shall be used to
connect and create database backups.

Default: list(settings.DATABASES.keys()) (keys of all entries listed)




DBBACKUP_BACKUP_DIRECTORY

Where to store backups. String pointing to django-dbbackup
location module to use when performing a backup.

Default: os.getcwd() (Current working directory)




DBBACKUP_TMP_DIR

Directory to be used for temporary files.

Default: tempfile.gettempdir()




DBBACKUP_TMP_FILE_MAX_SIZE

Maximum size in bytes for file handling in memory before write a temporary
file on DBBACKUP_TMP_DIR.

Default: 10*1024*1024




DBBACKUP_CLEANUP_KEEP and DBBACKUP_CLEANUP_KEEP_MEDIA

When issueing dbbackup and mediabackup, old backup files are
looked for and removed.

Default: 10 (days)




DBBACKUP_MEDIA_PATH

Default: settings.MEDIA_ROOT




DBBACKUP_DATE_FORMAT

Date format to use for naming files. It must contain only alphanumerical
characters, '_', '-' or '%'.

Default: '%Y-%m-%d-%H%M%S'




DBBACKUP_FILENAME_TEMPLATE

The template to use when generating the backup filename. By default this is
'{databasename}-{servername}-{datetime}.{extension}'. This setting can
also be made a function which takes the following keyword arguments:

def backup_filename(databasename, servername, datetime, extension):
    pass

DBBACKUP_FILENAME_TEMPLATE = backup_filename





This allows you to modify the entire format of the filename, for example, if
you want to take advantage of Amazon S3’s automatic expiry feature, you need
to prefix your backups differently based on when you want them to expire.

{datetime} is rendered with DBBACKUP_DATE_FORMAT.




DBBACKUP_MEDIA_FILENAME_TEMPLATE

Same as DBBACKUP_FILENAME_TEMPLATE but for media files backups.




DBBACKUP_MYSQL_EXTENSION

The file name extension used for MySQL backups.

Default: 'mysql'




DBBACKUP_POSTGRESQL_EXTENSION

The file name extension used for Postgres and PostGIS backups.

Default: 'psql'




DBBACKUP_SQLITE_EXTENSION

The file name extension used for SQLite backups.

Default: 'sqlite'




DBBACKUP_SEND_EMAIL

Controls whether or not django-dbbackup sends an error email when an uncaught
exception is received.

Default: True




DBBACKUP_HOSTNAME

Hostname needed by django-dbbackup’s uncaught exception email sender for
well described error reporting. If you are using ALLOWED_HOSTS you should
set DBBACKUP_HOSTNAME to any host from ALLOWED_HOSTS setting. Otherwise
django-dbbackup can not send email to the SERVER_EMAIL.

Default: socket.gethostname()


Note

Previously DBBACKUP_FAKE_HOST was used for this setting.



DBBACKUP_CLEANUP_KEEP (optional) - The number of backups to keep
when specifying the –clean flag. Defaults to keeping 10 + the first
backup of each month.








Database settings

The following databases are supported by this application. You can
customize the commands used for backup and the resulting filenames with
the following settings.

NOTE: The {adminuser} settings below will first check for the variable
ADMINUSER specified on the database, then fall back to USER. This allows
you supplying a different user to perform the admin commands dropdb,
createdb as a different user from the one django uses to connect. If you
need more fine grain control you might consider fully customizing the
admin commands.


Postgresql


DBBACKUP_POSTGRESQL_RESTORE_SINGLE_TRANSACTION

When doing a restore with postgres, wrap everything in a single transaction
so that errors cause a rollback.

Default: True




DBBACKUP_POSTGIS_SPACIAL_REF

When on Postgis, using this setting currently disables
CREATE EXTENSION POSTGIS;. Ideally, it should run the good old Postgis
templates for version 1.5 of Postgis.








Encrypting your backups

Considering that you might be putting secured data on external servers and
perhaps untrusted servers where it gets forgotten over time, it’s always a
good idea to encrypt backups.

Just remember to keep the encryption keys safe, too!


PGP

You can encrypt a backup with the --encrypt option. The backup is done
using gpg.

python manage.py dbbackup --encrypt





...or when restoring from an encrypted backup:

python manage.py dbrestore --decrypt





Requirements:


	Install the python package python-gnupg:
pip install python-gnupg.

	You need gpg key.

	Set the setting ‘DBBACKUP_GPG_RECIPIENT’ to the name of the gpg
key.



DBBACKUP_GPG_ALWAYS_TRUST (optional) - The encryption of the
backup file fails if gpg does not trust the public encryption key. The
solution is to set the option ‘trust-model’ to ‘always’. By default this
value is False. Set this to True to enable this option.

DBBACKUP_GPG_RECIPIENT (optional) - The name of the key that is
used for encryption. This setting is only used when making a backup with
the --encrypt or --decrypt option.







          

      

      

    


    
         Copyright 2014, Michael Shepanski.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	django-dbbackup 2.4.1 documentation 
 
      

    


    
      
          
            
  
Remote storage

django-dbbackup comes with a variety of remote storage options and it can deal
with Django Storage API for extend its possibilities.

You can choose your storage backend by set settings.DBBACKUP_STORAGE,
it must point to module containing the chosen Storage class. For example:
dbbackup.storage.filesystem_storage for use file system storage.
Below, we’ll list some of the available solutions and their options.

Storage’s option are gathered in settings.DBBACKUP_STORAGE_OPTIONS which
is a dictionary of keywords representing how to configure it.


Note

A lot of changes has been made for use Django Storage API as primary source of
backends and due to this task, some settings has been deprecated but always
functionnal until removing. Please take care of notes and warnings in this
documentation and at your project’s launching.




Warning

Do not configure backup storage with the same configuration than your media
files, you’ll risk to share backups inside public directories.




Local disk

Dbbackup uses built-in file system storage [https://docs.djangoproject.com/en/1.8/ref/files/storage/#the-filesystemstorage-class] to manage files on a local
directory.


Note

Storing backups to local disk may also be useful for Dropbox if you
already have the offical Dropbox client installed on your system.




Setup

To store your backups on the local file system, simply setup the
required settings below.

DBBACKUP_STORAGE = 'dbbackup.storage.filesystem_storage'
DBBACKUP_STORAGE_OPTIONS = {'location': '/my/backup/dir/'}








Available Settings

location - Default: Current working directory (os.getcwd)

Absolute path to the directory that will hold the files.


Warning

settings.DBBACKUP_BACKUP_DIRECTORY was used before but is deprecated.
Backup location must no be in settings.MEDIA_ROOT, it will raise an
StorageError if settings.DEBUG is False else a warning.



file_permissions_mode - Default: settings.FILE_UPLOAD_PERMISSIONS

The file system permissions that the file will receive when it is saved.






Amazon S3

Our S3 backend uses Django Storage Redux which uses boto [http://docs.pythonboto.org/en/latest/#].


Setup

In order to backup to Amazon S3, you’ll first need to create an Amazon
Webservices Account and setup your Amazon S3 bucket. Once that is
complete, you can follow the required setup below.

pip install boto django-storages-redux





Add the following to your project’s settings:

DBBACKUP_STORAGE = 'dbbackup.storage.s3_storage'
DBBACKUP_STORAGE_OPTIONS = {
    'access_key': 'my_id',
    'secret_key': 'my_secret',
    'bucket_name': 'my_bucket_name'
}








Available Settings


Note

More settings are available but without clear official documentation about
it, you can refer to source code [https://github.com/jschneier/django-storages/blob/master/storages/backends/s3boto.py#L204] and look at S3BotoStorage‘s
attributes.



access_key - Required

Your AWS access key as string. This can be found on your Amazon Account
Security Credentials page [https://console.aws.amazon.com/iam/home#security_credential].


Note

settings.DBBACKUP_S3_ACCESS_KEY was used before but is deprecated.



secret_key - Required

Your Amazon Web Services secret access key, as a string.


Note

settings.DBBACKUP_S3_SECRET_KEY was used before but is deprecated.



bucket_name - Required

Your Amazon Web Services storage bucket name, as a string. This directory must
exist before attempting to create your first backup.


Note

settings.DBBACKUP_S3_BUCKET was used before but is deprecated.



host - Default: 's3.amazonaws.com' (boto.s3.connection.S3Connection.DefaultHost)

Specify the Amazon domain to use when transferring the generated backup files.
For example, this can be set to 's3-eu-west-1.amazonaws.com'.


Note

settings.DBBACKUP_S3_DOMAIN was used before but is deprecated.



use_ssl - Default: True


Note

settings.DBBACKUP_S3_IS_SECURE was used before but is deprecated.



default_acl - Required

If bucket doesn’t exist, it will be created with the given ACL.


Warning

The default ACL is ‘public-read’, please take care of this possible
security issue.








Dropbox

In order to backup to Dropbox, you’ll first need to create a Dropbox
Account and set it up to communicate with the Django-DBBackup
application. Don’t worry, all instructions are below.


Setup Your Dropbox Account


	Login to Dropbox and navigate to Developers » MyApps.
https://www.dropbox.com/developers/start/setup#python

	Click the button to create a new app and name it whatever you like.
For reference, I named mine ‘Website Backups’.

	After your app is created, note the options button and more
importantly the ‘App Key’ and ‘App Secret’ values inside. You’ll need
those later.






Setup Your Django Project

pip install dropbox





...And make sure you have the following required project settings:

DBBACKUP_STORAGE = 'dbbackup.storage.dropbox_storage'
DBBACKUP_TOKENS_FILEPATH = '<local_tokens_filepath>'
DBBACKUP_DROPBOX_APP_KEY = '<dropbox_app_key>'
DBBACKUP_DROPBOX_APP_SECRET = '<dropbox_app_secret>'










FTP

To store your database backups on the remote filesystem via FTP, simply
setup the required settings below.


Setup Your Django Project


Note

This storage will be updated for use Django Storage’s one.




Warning

This storage doesn’t use private connection for communcation, don’t use it
if you’re not sure about the link between client and server.



Using FTP does not require any external libraries to be installed, simply
use the below project settings:

DBBACKUP_STORAGE = 'dbbackup.storage.ftp_storage'
DBBACKUP_FTP_HOST = 'ftp.host'
DBBACKUP_FTP_USER = 'user, blank if anonymous'
DBBACKUP_FTP_PASSWORD = 'password, can be blank'
DBBACKUP_FTP_PATH = 'path, blank for default'








Available Settings

DBBACKUP_FTP_HOST -  Required

Hostname for the server you wish to save your backups.

DBBACKUP_FTP_USER - Default: None

Authentication login, do not use if anonymous.

DBBACKUP_FTP_PASSWORD - Default: None

Authentication password, do not use if there’s no password.

DBBACKUP_FTP_PATH - Default: '.'

The directory on remote FTP server you wish to save your backups.


Note

As other updated storages, this settings will be deprecated in favor of
dictionary settings.DBBACKUP_STORAGE_OPTIONS.








Django built-in storage API

Django has its own storage API for managing media files. Dbbackup allows
you to use (third-part) Django storage backends. The default backend is
FileSystemStorage, which is integrated in Django but we invite you
to take a look at django-storages-redux [https://github.com/jschneier/django-storages] which has a great collection of
storage backends.


Setup using built-in storage API

To use Django’s built-in FileSystemStorage [https://docs.djangoproject.com/en/1.8/ref/files/storage/#the-filesystemstorage-class], add the following lines to
your settings.py:

DBBACKUP_STORAGE = 'dbbackup.storage.builtin_django'
# Default
# DBBACKUP_DJANGO_STORAGE = 'django.core.file.storages.FileSystemStorage'
DBBACKUP_STORAGE_OPTIONS = {'location': '/mybackupdir/'}





'dbbackup.storage.builtin_django' is a wrapper for use the Django storage
defined in DBBACKUP_DJANGO_STORAGE with the options defined in
DBBACKUP_STORAGE_OPTIONS.




Used settings

DBBACKUP_DJANGO_STORAGE - Default: 'django.core.file.storages.FileSystemStorage'

Path to a Django Storage class (in Python dot style).


Warning

Do not use a Django storage backend without configuring its options,
otherwise you will risk mixing media files (with public access) and
backups (strictly private).



DBBACKUP_STORAGE_OPTIONS - Default: {}

Dictionary used to instantiate a Django Storage class. For example, the
location key customizes the directory for FileSystemStorage.






Write your custom storage

If you wish to build your own, extend dbbackup.storage.base.BaseStorage
and point your settings.DBBACKUP_STORAGE to
'my_storage.backend.ClassName'.







          

      

      

    


    
         Copyright 2014, Michael Shepanski.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	django-dbbackup 2.4.1 documentation 
 
      

    


    
      
          
            
  
Contributing guide

Dbbackup is a free license software where all help are welcomed. This
documentation aims to help users or developers to bring their contributions
to this project.


Submit a bug, issue or enhancement

All communication are made with GitHub issues [https://github.com/django-dbbackup/django-dbbackup/issues]. Do not hesitate to open a
issue if:


	You have an improvement idea

	You found a bug

	You’ve got a question

	More generaly something seems wrong for you






Make a patch

We use GitHub pull requests [https://github.com/django-dbbackup/django-dbbackup/pulls] for manage all patches. For a better handling
of requests we advise you to:


	Fork the project and make a new branch

	Make your changes with tests if possible and documentation if needed

	Push changes to your fork repository and test it with Travis

	If succeed, open a pull request

	Upset us until we give you an answer




Test code

You can test your code in local machine with the runtests.py script:

cd tests
python runtests.py





We advise you to launch it with Python 2 & 3 before push and try it in Travis.






Online CI

We use Travis [https://travis-ci.org/django-dbbackup/django-dbbackup] for tests Dbbackup with a matrix of components’ version: Several version of Django and several versions of Python including 2, 3 and PyPy.


 [https://travis-ci.org/django-dbbackup/django-dbbackup]Code coverage is ensured with Coveralls [https://coveralls.io/github/django-dbbackup/django-dbbackup] and has not yet minimum coverage limit.

[image: https://coveralls.io/repos/django-dbbackup/django-dbbackup/badge.svg?branch=master&service=github]
 [https://coveralls.io/github/django-dbbackup/django-dbbackup?branch=master]





          

      

      

    


    
         Copyright 2014, Michael Shepanski.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	django-dbbackup 2.4.1 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2014, Michael Shepanski.
      Created using Sphinx 1.3.5.
    

  _static/up-pressed.png





search.html


    
      Navigation


      
        		
          index


        		django-dbbackup 2.4.1 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2014, Michael Shepanski.
      Created using Sphinx 1.3.5.
    

  

_static/comment.png





_static/minus.png





_static/ajax-loader.gif





_static/down-pressed.png





_static/file.png





_static/plus.png





_static/down.png





_static/up.png





_static/comment-close.png





_static/comment-bright.png





