

django-cid: Correlation id in Django

Django Correlation ID

[image: _images/django-cid.png]
 [https://travis-ci.org/Polyconseil/django-cid]Logging is important. Anyone who has had a call at 3am to say the site
is down knows this. Without quality logging it is almost impossible to
work out what on earth is happening.

The more you log, the harder it is to track down exactly what the
effects of a particular request are. Enter Django Correlation ID.
Incoming requests are assigned a unique identifier. This can either
happen in your public facing web server (e.g. nginx) or be applied
by Django itself.

This correlation id (also known as request id) is then available
through the Django request/response cycle and may be automatically
included in all log messages. That way, you can easily link all log
messages that relate to the same request:

2018-10-01T08:18:39.86+00:00 correlation_id=2433d5d4-27a3-4889-b14b-107a131368a3 Call to plug from cpoint=1
2018-10-01T08:18:39.90+00:00 correlation_id=72fbd7dd-a0ba-4f92-9ed0-0db358338e86 Call to state by cpoint=2 with {'state': {'B': 'idle', 'A': 'on_charge'}}
2018-10-01T08:18:39.92+00:00 correlation_id=2433d5d4-27a3-4889-b14b-107a131368a3 Ended rental=7 customer="John Smith" on plug

In this example, we can see that the first and the third log messages
are tied to the same request, while the second message relates to a
distinct request.

In addition to these logs, django-cid can include the correlation
id:

	in all SQL queries (as a comment);

	in rendered templates;

	as a header in the HTTP response generated by Django;

	and possibly anywhere by using the API of django-cid, for
example as an HTTP header on a request to another internal system of
yours, which is especially useful in service-oriented architecture.

Documentation can be found at: https://django-correlation-id.readthedocs.org/

Sources are on GitHub: https://github.com/Polyconseil/django-cid

Supported versions

We currently support Python >= 3.6 and Django >= 2.2.

Other versions may work but are not supported.

Topics

	Installation and configuration
	Installation

	Configuration

	API

	Contributing
	Types of contributions

	Get started!

	Sandbox project

	Pull request guidelines

	Releasing a new version

	Credits

	History
	2.4 (unreleased)

	2.3 (2022-06-13)

	2.2 (2021-03-15)

	2.1 (2020-06-22)

	2.0 (2019-09-27)

	1.3 (2018-10-09)

	1.2 (2018-10-08)

	1.1 (2018-10-01)

	1.0 (2018-10-01)

	0.2.0 (2016-12-06)

	0.1.2 (2016-12-01)

	0.1.0 (2014-08-05)

Installation and configuration

Installation

At the command line:

$ pip install django-cid

Configuration

You need to add cid.apps.CidAppConfig to your list of installed apps.

INSTALLED_APPS = (
 # some apps
 'cid.apps.CidAppConfig',
 # some other apps
)

Generation of the correlation id

The correlation id may be generated by django-cid itself or come
from upstream through an incoming HTTP header.

To let django-cid generate an id, set CID_GENERATE to true in
the settings:

CID_GENERATE = True

By default, django-cid uses str(uuid.uuid4()) to generate the
correlation id but you can customize this generation to suit your
needs in the settings:

CID_GENERATOR = lambda: f'{time.time()}-{random.random()}'

Letting django-cid generate a new correlation id is perfectly
acceptable but does suffer one drawback. If you host your Django
application behind another web server such as nginx, then nginx logs
won’t contain the correlation id.
django-cid can handle this by extracting a correlation id created
in nginx and passed through as a header in the HTTP request. For this
to work, you must enable a middleware in the settings, like this:

MIDDLEWARE = (
 'cid.middleware.CidMiddleware',
 # other middlewares
)

The middleware takes care of getting the correlation from the HTTP
request header. By default it looks for a header named
X_CORRELATION_ID, but you can change this with the CID_HEADER
setting:

CID_HEADER = 'X_MY_CID_HEADER'

Note

Most WSGI implementations sanitize HTTP headers by appending an
HTTP_ prefix and replacing - by _. For example, an
incoming X-Correlation-Id header would be available as
HTTP_X_CORRELATION_ID in Django. When using such a WSGI server
in front of Django, the latter, sanitized value should be used in
the settings.

If a correlation id is provided upstream (e.g. “1234”), it is possible
to concatenate it with a newly generated one. The cid will then look
like 1234, 1aa38e4e-89c6-4655-9b8e-38ca349da017. To do so, use the
following settings:

CID_GENERATE = True
CID_CONCATENATE_IDS = True

This is useful when you use a service-oriented architecture and want
to be able to follow a request amongst all systems (by looking at logs
that have the first correlation id that was set upstream), and also on
a particular system (by looking at logs that have the id added by the
system itself).

Inclusion of the correlation id in the response

By default django-cid sets an HTTP header in the HTTP response
with the same name as configured in CID_HEADER. You may customize
it with CID_RESPONSE_HEADER in the settings:

CID_RESPONSE_HEADER = 'X-Something-Completely-Different'

Note

As indicated in the note above, if Django is behind a WSGI server
that sanitizes HTTP headers, you need to customize
CID_RESPONSE_HEADER if you want the same header name in the
response as in the request.

Nginx sets ``X-Correlation-Id`` but it is sanitized by the WSGI server.
CID_HEADER = 'HTTP_X_CORRELATION_ID'
Don't use the default value (equal to CID_HEADER) for the response header.
CID_RESPONSE_HEADER = 'X-Correlation-Id'

If you don’t want the header to appear in the HTTP response, you must
explicitly set CID_RESPONSE_HEADER to None.

Don't include the header in the HTTP response.
CID_RESPONSE_HEADER = None

Inclusion of the correlation id in logs

The most useful feature of django-cid is to include the
correlation id in logs. For this you need to add the
cid.log.CidContextFilter log filter in your log settings, apply it
to each logger, and customize the formatter(s) to include the cid
variable.

Here is what it looks like on the the default logging configuration
provided by Django’s startproject. Changed lines are highlighted.

LOGGING = {
 'version': 1,
 'formatters': {
 'verbose': {
 'format': '[cid: %(cid)s] %(levelname)s %(asctime)s %(module)s %(message)s'
 },
 'simple': {
 'format': '[cid: %(cid)s] %(levelname)s %(message)s'
 },
 },
 'handlers': {
 'console': {
 'level': 'INFO',
 'class': 'logging.StreamHandler',
 'formatter': 'verbose',
 'filters': ['correlation'],
 },
 },
 'filters': {
 'correlation': {
 '()': 'cid.log.CidContextFilter'
 },
 },
 'loggers': {
 'testapp': {
 'handlers': ['console'],
 'filters': ['correlation'],
 'propagate': True,
 },
 },
}

You can then use your loggers as you normally do, safe in the
knowledge that you can tie them all back to the correlation id.

If you want to include the correlation id in all logs, you need to
tweak the “root” key like this:

LOGGING = {
 # ...
 'root': {
 'level': 'INFO',
 'handlers': ['console'],
 'filters': ['correlation'],
 },
 # ...
}

Inclusion of the correlation id in SQL queries

django-cid can add the correlation id as a comment before the SQL
query so that the correlation id appears in your database logs like
this:

/* cid: 1234567-68e8-45fc-85c1-e025e5dffd1e */
SELECT col FROM table

For this you need to change your database backend to one that is
provided by django-cid. For example, for sqlite3 you need to use
the following:

DATABASES = {
 'default': {
 'ENGINE': 'cid.backends.sqlite3',
 'NAME': location('db.sqlite3'),
 }
}

django-cid has a wrapper for all backends that are currently
supported by Django. Here is the full list:

	mysql

	cid.backends.mysql

	oracle

	cid.backends.oracle

	postgis

	cid.backends.postgis

	postgresql

	cid.backends.postgresql

	sqlite3

	cid.backends.sqlite3

By default, the correlation id appears as shown in the example above.
You may change that by defining a CID_SQL_COMMENT_TEMPLATE that is
a string with a cid format parameter:

CID_SQL_COMMENT_TEMPLATE = 'correlation={cid}'

Inclusion of the correlation id in templates

django-cid provides a template context processor that adds the
correlation id to the template context if it is available. To enable
it, you need to add it in the list of TEMPLATE_CONTEXT_PROCESSORS
in the settings:

TEMPLATE_CONTEXT_PROCESSORS = (
 # other template processors
 'cid.context_processors.cid_context_processor',
)

It will add a context variable correlation_id if a correlation id
is available. You may include it in your template with the follwing
snippet:

{% if correlation_id %}
 <meta name="correlation_id" content="{{ correlation_id }}">
{% endif %}

API

	
cid.locals.generate_new_cid(upstream_cid=None)

	Generate a new correlation id, possibly based on the given one.

	
cid.locals.set_cid(cid)

	Set the correlation id on the context.

	
cid.locals.get_cid()

	Return the currently set correlation id (if any).

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of contributions

Report bugs

Report bugs at https://github.com/Polyconseil/django-cid/issues.

If you are reporting a bug, please include:

	the versions of django-cid, Django and Python;

	any details about your local setup that might be helpful in troubleshooting;

	detailed steps to reproduce the bug.

Write documentation

django-cid could always use more documentation. Don’t hesitate to
report typos or grammar correction.

Submit feedback

The best way to send feedback is to file an issue at
https://github.com/Polyconseil/django-cid/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome. :)

Get started!

Ready to contribute? Here’s how to set up django-cid for local development.

	Fork the django-cid repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/django-cid.git

	Set up a virtual environment and install the dependencies:

$ pip install -e .
$ pip install -r requirements/tests.txt

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	Test your changes locally by running make test.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Sandbox project

The repository has a sandbox directory that contains a Django
project that showcases features and may help in testing and
debugging. It does not replace automated tests, though.

Install django-cid and you can run the server:

$ cd sandbox
$./manage.py runserver
[...]
Starting development server at http://127.0.0.1:8000/

The home page at http://127.0.0.1:8000/ is self-documented.

Pull request guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated.

	The pull request should work for all supported versions of Python and Django.
Check https://travis-ci.org/Polyconseil/django-cid/pull_requests
and make sure that the tests pass for all supported Python versions.

Releasing a new version

We use the excellent zest.releaser [https://zestreleaser.readthedocs.io/en/latest/] tool to make new releases. There
is a Makefile rule that does a bit more cleaning beforehand. Just
type:

make release

And then follow the instructions.

We try to use semantic versioning [https://semver.org/], i.e. use MAJOR.MINOR.PATCH
version numbers with:

	MAJOR version when we make incompatible API changes;

	MINOR version when we add functionality in a backwards-compatible manner;

	PATCH version when we make backwards-compatible bug fixes.

Although the distinction between MINOR and PATCH has not always been
followed, the changelog should be clear enough.

Credits

Original author: Jonathan Moss <jonathan.moss@snowballone.com.au>.

Current maintainers: the (mostly) nice people at Polyconseil [https://opensource.polyconseil.fr].

Contributors:

	Francis Reyes <francis.reyes@snowballone.com.au>

History

2.4 (unreleased)

	Nothing changed yet.

2.3 (2022-06-13)

	Under Python 3.7 and later, use context variables (with the contextvars module)
instead of a thread-local variable to avoid state bleeding in concurrent code.

2.2 (2021-03-15)

	Add support of Django 3.1.

	Remove support of Python 3.5.

	Under Python 3.7 and later, use context variables (with the contextvars module) instead of a thread-local variable to avoid state bleeding in concurrent code. Version 2.2 had a bug that caused context variables to never be used. Thread-local variables were always used.

2.1 (2020-06-22)

	Add support of Django 3.0

	backward incompatible Drop support of Django 2.1.

2.0 (2019-09-27)

	backward incompatible Drop support of Python 3.4.

	backward incompatible Drop support of Django 1.11 and Django 2.0.

	Add CID_GENERATOR setting to allow the customization of the
correlation id.

1.3 (2018-10-09)

	bugfix: Fix packaging bug (introduced in version 1.2) that
caused two extra packages tests and sandbox to be installed.

1.2 (2018-10-08)

	bugfix: Fix bug (introduced in version 1.0) that caused the
correlation id to be reused across all requests that were processed
by the same thread.

1.1 (2018-10-01)

	Allow to concatenate an upstream correlation id with a
locally-generated one, with a new CID_CONCATENATE_IDS setting.

1.0 (2018-10-01)

Warning: this release includes changes that are not backward
compatible. Be sure to read the details below to know if and how you
can migrate.

	backward incompatible Drop support of Django 1.10 and earlier.

	backward incompatible Drop support of Python 2.

	Add support of Django 2. Version 0.x could already be used with
Django 2 but tests were not run against it. They now are.

	Generate cid outside of the middleware when GENERATE_CID is
enabled, so that it’s available even if the middleware is not used.

	Fix support of Django 1.11 in database backends.

	Add PostGIS database backend.

	Add CID_SQL_COMMENT_TEMPLATE to customize how the cid is
included as comments in SQL queries.

	backward incompatible Change the app name to be used in
INSTALLED_APPS.

Migration from version 0.x: if you had cid in INSTALLED_APPS,
replace it by cid.apps.CidAppConfig. If you did not, add the
latter.

	backward incompatible Drop compatibility with
MIDDLEWARE_CLASSES. You should use the MIDDLEWARE
setting. If you already did, no change is necessary.

If you really must use the old MIDDLEWARE_CLASSES setting,
include CidOldStyleMiddleware instead of CidMiddleware.

0.2.0 (2016-12-06)

	Added support for Django 1.10 middleware (thanks @qbey)

0.1.2 (2016-12-01)

	Made CID repsonse header configurable, and optional (thanks @dbaty)

0.1.0 (2014-08-05)

	First release on PyPI.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cid	

 	
 	
 cid.locals	

Index

 C
 | G
 | S

C

 	
 	cid.locals (module)

G

 	
 	generate_new_cid() (in module cid.locals)

 	
 	get_cid() (in module cid.locals)

S

 	
 	set_cid() (in module cid.locals)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/django-cid.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 django-cid: Correlation id in Django

 		
 Installation and configuration

 		
 Installation

 		
 Configuration

 		
 Generation of the correlation id

 		
 Inclusion of the correlation id in the response

 		
 Inclusion of the correlation id in logs

 		
 Inclusion of the correlation id in SQL queries

 		
 Inclusion of the correlation id in templates

 		
 API

 		
 Contributing

 		
 Types of contributions

 		
 Report bugs

 		
 Write documentation

 		
 Submit feedback

 		
 Get started!

 		
 Sandbox project

 		
 Pull request guidelines

 		
 Releasing a new version

 		
 Credits

 		
 History

 		
 2.4 (unreleased)

 		
 2.3 (2022-06-13)

 		
 2.2 (2021-03-15)

 		
 2.1 (2020-06-22)

 		
 2.0 (2019-09-27)

 		
 1.3 (2018-10-09)

 		
 1.2 (2018-10-08)

 		
 1.1 (2018-10-01)

 		
 1.0 (2018-10-01)

 		
 0.2.0 (2016-12-06)

 		
 0.1.2 (2016-12-01)

 		
 0.1.0 (2014-08-05)

_static/up.png

_static/up-pressed.png

