
django-configurations Documentation
Release dev

Jannis Leidel

September 03, 2013

CONTENTS

i

ii

django-configurations Documentation, Release dev

django-configurations eases Django project configuration by relying on the composability of Python classes. It extends
the notion of Django’s module based settings loading with well established object oriented programming patterns.

CONTENTS 1

https://travis-ci.org/jezdez/django-configurations

django-configurations Documentation, Release dev

2 CONTENTS

CHAPTER

ONE

QUICKSTART

Install django-configurations:

pip install django-configurations

Then subclass the included configurations.Settings class in your project’s settings.py or any other module
you’re using to store the settings constants, e.g.:

mysite/settings.py

from configurations import Settings

class Dev(Settings):
DEBUG = True

Set the DJANGO_CONFIGURATION environment variable to the name of the class you just created, e.g. in bash:

export DJANGO_CONFIGURATION=Dev

and the DJANGO_SETTINGS_MODULE environment variable to the module import path as usual, e.g. in bash:

export DJANGO_SETTINGS_MODULE=mysite.settings

Alternatively supply the --configuration option when using Django management commands along the lines of
Django’s default --settings command line option, e.g.:

python manage.py runserver --settings=mysite.settings --configuration=Dev

To enable Django to use your configuration you now have to modify your manage.py or wsgi.py script to use django-
configurations’s versions of the appropriate starter functions, e.g. a typical manage.py using django-configurations
would look like this:

#!/usr/bin/env python

import os
import sys

if __name__ == "__main__":
os.environ.setdefault(’DJANGO_SETTINGS_MODULE’, ’mysite.settings’)
os.environ.setdefault(’DJANGO_CONFIGURATION’, ’Dev’)

from configurations.management import execute_from_command_line

execute_from_command_line(sys.argv)

3

django-configurations Documentation, Release dev

Notice in line 9 we don’t use the common tool django.core.management.execute_from_command_line
but instead configurations.management.execute_from_command_line.

The same applies to your wsgi.py file, e.g.:

import os

os.environ.setdefault(’DJANGO_SETTINGS_MODULE’, ’mysite.settings’)
os.environ.setdefault(’DJANGO_CONFIGURATION’, ’Dev’)

from configurations.wsgi import get_wsgi_application

application = get_wsgi_application()

Here we don’t use the default django.core.wsgi.get_wsgi_application function but instead
configurations.wsgi.get_wsgi_application.

That’s it! You can now use your project with manage.py and your favorite WSGI enabled server.

4 Chapter 1. Quickstart

CHAPTER

TWO

WAIT, WHAT?

django-configurations helps you organize the configuration of your Django project by providing the glue code to
bridge between Django’s module based settings system and programming patterns like mixins, facades, factories and
adapters that are useful for non-trivial configuration scenarios.

It allows you to use the native abilities of Python inheritance without the side effects of module level namespaces that
often lead to the unfortunate use of the from foo import * anti-pattern.

5

http://en.wikipedia.org/wiki/Mixin
http://en.wikipedia.org/wiki/Facade_pattern
http://en.wikipedia.org/wiki/Factory_method_pattern
http://en.wikipedia.org/wiki/Adapter_pattern

django-configurations Documentation, Release dev

6 Chapter 2. Wait, what?

CHAPTER

THREE

OKAY, HOW DOES IT WORK?

Any subclass of the configurations.Settings class will automatically use the values of its class and instance
attributes (including properties and methods) to set module level variables of the same module – that’s how Django
will interface to the django-configurations based settings during startup and also the reason why it requires you to use
its own startup functions.

That means when Django starts up django-configurations will have a look at the DJANGO_CONFIGURATION envi-
ronment variable to figure out which class in the settings module (as defined by the DJANGO_SETTINGS_MODULE
environment variable) should be used for the process. It then instantiates the class defined with
DJANGO_CONFIGURATION and copies the uppercase attributes to the module level variables. New in version
0.2. Alternatively you can use the --configuration command line option that django-configurations adds to
all Django management commands. Behind the scenes it will simply set the DJANGO_CONFIGURATION environe-
ment variable so this is purely optional and just there to compliment the default --settings option that Django
adds if you prefer that instead of setting environment variables.

7

django-configurations Documentation, Release dev

8 Chapter 3. Okay, how does it work?

CHAPTER

FOUR

BUT ISN’T THAT MAGIC?

Yes, it looks like magic, but it’s also maintainable and non-intrusive. No monkey patching is needed to teach Django
how to load settings via django-configurations because it uses Python import hooks (PEP 302) behind the scenes.

9

http://www.python.org/dev/peps/pep-0302/

django-configurations Documentation, Release dev

10 Chapter 4. But isn’t that magic?

CHAPTER

FIVE

USAGE PATTERNS

There are various configuration patterns that can be implemented with django-configurations. The most common
pattern is to have a base class and various subclasses based on the enviroment they are supposed to be used in, e.g. in
production, staging and development.

5.1 Server specific settings

For example, imagine you have a base setting class in your settings.py file:

from configurations import Settings

class Base(Settings):
TIME_ZONE = ’Europe/Berlin’

class Dev(Base):
DEBUG = True
TEMPLATE_DEBUG = DEBUG

class Prod(Base):
TIME_ZONE = ’America/New_York’

You can now set the DJANGO_CONFIGURATION environment variable to one of the class names you’ve defined, e.g.
on your production server it should be Prod. In bash that would be:

export DJANGO_SETTINGS_MODULE=mysite.settings
export DJANGO_CONFIGURATION=Prod
python manage.py runserver

Alternatively you can use the --configuration option when using Django management commands along the
lines of Django’s default --settings command line option, e.g.:

python manage.py runserver --settings=mysite.settings --configuration=Prod

5.2 Global settings defaults

Every configurations.Settings subclass will automatically contain Django’s global settings as class at-
tributes, so you can refer to them when setting other values, e.g.:

11

django-configurations Documentation, Release dev

from configurations import Settings

class Prod(Settings):
TEMPLATE_CONTEXT_PROCESSORS = Settings.TEMPLATE_CONTEXT_PROCESSORS + (

’django.core.context_processors.request’,
)

@property
def LANGUAGES(self):

return Settings.LANGUAGES + ((’tlh’, ’Klingon’),)

5.3 Mixins

You might want to apply some configuration values for each and every project you’re working on without having to
repeat yourself. Just define a few mixin you re-use multiple times:

class FullPageCaching(object):
USE_ETAGS = True

Then import that mixin class in your site settings module and use it with a Settings class:

from configurations import Settings

class Prod(Settings, FullPageCaching):
DEBUG = False
...

5.4 Pristine methods

New in version 0.3. In case one of your settings itself need to be a callable, you need to tell that django-configurations
by using the pristinemethod decorator, e.g.:

from configurations import Settings, pristinemethod

class Prod(Settings):

@pristinemethod
def ACCESS_FUNCTION(user):

return user.is_staff

Lambdas work, too:

from configurations import Settings, pristinemethod

class Prod(Settings):
ACCESS_FUNCTION = pristinemethod(lamda user: user.is_staff)

5.5 Setup methods

New in version 0.3. If there is something required to be set up before or after the settings loading happens, please
override the pre_setup or post_setup class methods like so (don’t forget to apply the Python @classmethod
decorator:

12 Chapter 5. Usage patterns

django-configurations Documentation, Release dev

from configurations import Settings

class Prod(Settings):
...

@classmethod
def pre_setup(cls):

if something.completely.different():
cls.DEBUG = True

@classmethod
def post_setup(cls):

print("done setting up! \o/")

As you can see above the pre_setup method can also be used to programmatically change a class attribute of the
settings class and it will be taken into account when doing the rest of the settings setup. Of course that won’t work for
post_setup since that’s when the settings setup is already done.

In fact you can easily do something unrelated to settings, like connecting to a database:

from configurations import Settings

class Prod(Settings):
...

@classmethod
def post_setup(cls):

import mango
mango.connect(’enterprise’)

Warning: You could do the same by overriding the __init__ method of your settings class but this may cause
hard to debug errors because at the time the __init__ method is called (during Django startup) the Django
setting system isn’t fully loaded yet.
So anything you do in __init__ that may require django.conf.settings or Django models there is a
good chance it won’t work. Use the post_setup method for that instead.

5.5. Setup methods 13

django-configurations Documentation, Release dev

14 Chapter 5. Usage patterns

CHAPTER

SIX

ALTERNATIVES

Many thanks to those project that have previously solved these problems:

• The Pinax project for spearheading the efforts to extend the Django project metaphor with reusable project
templates and a flexible configuration environment.

• django-classbasedsettings by Matthew Tretter for being the immediate inspiration for django-configurations.

15

http://pinaxproject.com
https://github.com/matthewwithanm/django-classbasedsettings

django-configurations Documentation, Release dev

16 Chapter 6. Alternatives

CHAPTER

SEVEN

COOKBOOK

7.1 Celery

Given Celery’s way to load Django settings in worker processes you should probably just add the following to the
begin of your settings module:

from configurations import importer
importer.install()

That has the same effect as using the manage.py or wsgi.py utilities mentioned above.

7.2 FastCGI

In case you use FastCGI for deploying Django (you really shouldn’t) and aren’t allowed to us Django’s runfcgi man-
agement command (that would automatically handle the setup for your if you’ve followed the quickstart guide above),
make sure to use something like the following script:

#!/usr/bin/env python

import os
import sys

os.environ.setdefault(’DJANGO_SETTINGS_MODULE’, ’mysite.settings’)
os.environ.setdefault(’DJANGO_CONFIGURATION’, ’MySiteSettings’)

from configurations.fastcgi import runfastcgi

runfastcgi(method=’threaded’, daemonize=’true’)

As you can see django-configurations provides a helper module configurations.fastcgi that handles the
setup of your configurations.

17

https://docs.djangoproject.com/en/1.5/howto/deployment/fastcgi/

django-configurations Documentation, Release dev

18 Chapter 7. Cookbook

CHAPTER

EIGHT

BUGS AND FEATURE REQUESTS

As always you mileage may vary, so please don’t hesitate to send in feature requests and bug reports at the usual place:

https://github.com/jezdez/django-configurations/issues

Thanks!

19

https://github.com/jezdez/django-configurations/issues

django-configurations Documentation, Release dev

20 Chapter 8. Bugs and feature requests

CHAPTER

NINE

CHANGELOG

9.1 v0.3 (2013-05-15)

• Added pristinemethod decorator to be able to have callables as settings.

• Added pre_setup and post_setup method hooks to be able to run code before or after the settings loading
is finished.

• Minor docs and tests cleanup.

9.2 v0.2.1 (2013-04-11)

• Fixed a regression in parsing the new -C/--configuration management command option.

• Minor fix in showing the configuration in the runserver management command output.

9.3 v0.2 (2013-03-27)

• backward incompatible change Dropped support for Python 2.5! Please use the 0.1 version if you really want.

• Added Python>3.2 and Django 1.5 support!

• Catch error when getting or evaluating callable setting class attributes.

• Simplified and extended tests.

• Added optional -C/--configuration management command option similar to Django’s --settings
option

• Fixed the runserver message about which setting is used to show the correct class.

• Stopped hiding AttributeErrors happening during initialization of settings classes.

• Added FastCGI helper.

• Minor documentation fixes

9.4 v0.1 (2012-07-21)

• Initial public release

21

