

Django-Conduit

Easy and powerful REST APIs for Django.

Why Use Django-Conduit?

	Easy to read, easy to debug, easy to extend

	Smart and efficient Related Resources

See the full list of features.

Table of Contents

	Filtering and Ordering
	Server Side Filters to Limit Access

	Client Side Filtering with Get Params

	Ordering Results

	How Filters & Ordering are Applied

	Related Resources & Objects

	Related Resource Fields
	Updating Related Resources

	Customizing Related Resource Fields

	Default Behavior

	Access, Authorization & Permissions
	Allowed Methods

	Authorization Hooks

	Forms & Validation

	Conduit Overview
	What is a Conduit?

	Conduit Methods

	Inheriting & Extending

	About
	Why not Django-REST-Framework?

	Why not Django-Tastypie?

Getting Started

Django-Conduit will automatically create your starting api based on your existing models.

	Install via PyPI: pip install django-conduit

	Add the following to your INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'conduit',
 # 'api',
)

	Generate your API app by running the following:

./manage.py create_api [name_of_your_app] --folder=api

	Uncomment ‘api’ in your INSTALLED_APPS

	Point your main URLconf (normally project_name/urls.py) to your new ‘api’ app:

urlpatterns = patterns('',
 ...
 url(r'^api/', include('api.urls')),
 ...
)

	Visit localhost:8000/api/v1/[model_name] to fetch one of your new resources!

All your new resources will be defined in api/views.py, and they will be registered with your Api object in api/urls.py.

Topics

	Filtering & Ordering

	Related Resources

	Access & Authorization

	Custom Fields

	Forms & Validation

	Conduit Views

	ModelResource

	Customizing Resources`

Indices and tables

	Index

	Module Index

	Search Page

Filtering and Ordering

During a get list view, it is useful to be able to filter or rearrange the results. Django-Conduit provides a few helpful properties and hooks to to filter your resources.

Server Side Filters to Limit Access

The default_filters dict on a ModelResource’s Meta class will apply the listed queryset filters before fetching results. The keys in default_filters ought to be a valid Queryset filter method for the specified model. Here is an example that only returns Foo objects that have a name starting with the the word ‘lamp’:

class FooResource(ModelResource):
 class Meta(ModelResource.Meta):
 default_filters = {
 'name__startswith': 'lamp'
 }

The default filters will eventually be applied to the queryset during the apply_filters method, resulting in something like this:

filtered_instances = Foo.objects.filter(name__startswith='lamp')

Client Side Filtering with Get Params

API consumers often need to be able to filter against certain resource fields using GET parameters. Filtering is enabled by specifying the allowed_filters array. The array takes a series of Queryset filter keywords:

class FooResource(ModelResource):
 class Meta(ModelResource.Meta):
 allowed_filters = [
 'name__icontains',
 'created__lte',
 'created__gte',
 'bar__name'
]

In the above example, API consumers will be allowed to get Foo objects by searching for strings in the Foo name, or by finding Foos created before or after a given datetime.

Note

Each Queryset filter has to be specified using the entire filter name. While verbose, this allows custom or related field parameters such as bar__name to be easily specified.

Ordering Results

If you want to specify the default order for objected, returned, you can simply specify the order_by string using the default_ordering Meta field:

class FooResource(ModelResource):
 class Meta(ModelResource.Meta):
 default_ordering='-created'

The value of default_ordering should be the same one you would use when performing order_by on a queryset. The above example will result in the following operation:

Foo.objects.order_by('-created')

To allow API consumers to order the results, the allowed_ordering field is an array of valid ordering keys:

class FooResource(ModelResource):
 class Meta(ModelResource.Meta):
 allowed_ordering = [
 'created',
 '-created'
]

Note how the forward and reverse string both have to be specified. This is to provide precise control over client ordering values.

How Filters & Ordering are Applied

Filtering and ordering happens inside two steps in the default conduit pipeline. The first happens inside process_filters. To determine order, first the method looks for an order_by GET parameter. If none are specified, it defaults to the default_ordering attribute. If the order_by parameter is not a valid value, the client receives a 400.

The filters start with the default_filters dictionary. This dictionary is then updated from filters specified in the GET parameters, provided they are specified in allowed_filters.

After the order_by and filters are determined, their values are sent forward in the kwargs dictionary where they are picked up again in pre_get_list. This is the method that first applies the kwargs['order_by'] value, and then applies the values inside kwargs['filters']. It stores the ordered and filtered queryset inside of kwargs['objs']. The objects are then subject to authorization limits and paginated inside get_list before the final set of objects is determined.

Related Resources & Objects

django-conduit treats related ForeignKey and ManyToMany objects in an intuitive and efficient manner. You can use related resources to treat them similarly to Django’s ORM, or you can default to their simple behavior as pointers to primary keys.

Related Resource Fields

Conduit lets you use other ModelResources for your related object fields. You can use a related resource by referencing it in the Fields metaclass. The below FooResource example using two related resource fields:

class FooResource(ModelResource):
 class Meta(ModelResource.Meta):
 model = Foo
 class Fields:
 bar = ForeignKeyField(attribute='bar', resource_cls='api.views.BarResource')
 bazzes = ManyToManyField(attribute='bazzes', resource_cls='api.views.BazResource', embed=True)

class BarResource(ModelResource):
 class Meta(ModelResource.Meta):
 model = Bar

class BazResource(ModelResource):
 class Meta(ModelResource.Meta):
 model = Baz

Using a related resource lets you embed the entire resource data inside of the parent resource. One of the resources above is set to embed=True, while the other is not and will default to the resource_uri. An example of the above FooResource would look like this:

{
 "bar": "/api/v1/bar/23/",
 "name": "stuffs",
 "id": 1,
 "bazzes": [
 {
 "resource_uri": "/api/v1/baz/1/",
 "id": 1,
 "name": "Baz 1"
 },
 {
 "resource_uri": "/api/v1/baz/7/",
 "id": 7,
 "name": "Baz 7"
 }
],
 "resource_uri": "/api/v1/foo/1/"
}

Updating Related Resources

The real power of using related resources is that they follow the rules of the resource they point to. Using our previous example, let’s say you update one of the Baz objects in place and then send a PUT to our parent resource at /api/v1/foo/1/:

{
 ...
 "bazzes": [
 {
 "resource_uri": "/api/v1/baz/1/",
 "id": 1,
 "name": "MODIFIED BAZ NAME"
 },
 {
 "resource_uri": "/api/v1/baz/7/",
 "id": 7,
 "name": "Baz 7"
 }
],
 ...
}

The Baz object with id == 1 will now have the name “MODIFIED BAZ NAME” unless the BazResource determines the request is not authorized (using the methods described in Access & Authorization<access_authorization>) or if the data doesn’t validate, etc.

If you include data for a related resource without a primary key, it will created the related object for you and add it to the parent resource object. For example, if you send a PUT to our /api/v1/foo/1/ resource with the following data:

{
 ...
 "bazzes": [
 {
 "resource_uri": "/api/v1/baz/1/",
 "id": 1,
 "name": "MODIFIED BAZ NAME"
 },
 {
 "resource_uri": "/api/v1/baz/7/",
 "id": 7,
 "name": "Baz 7"
 },
 {
 "name": "New Baz"
 }
],
 ...
}

The related BazResource will attempt to create a new Baz as if you had sent a POST to /api/v1/baz/. Then it will add the new Baz object to Foo’s ManyToMany field. In the return response, the object will be filled in with its new id and resource_uri.

Similarly if you PUT to /api/v1/foo/1/ and omit one of the existing Baz objects, it will remove it from the ManyToMany field. It will NOT delete the Baz object, however:

{
 ...
 "bazzes": [
 {
 "resource_uri": "/api/v1/baz/1/",
 "id": 1,
 "name": "MODIFIED BAZ NAME"
 }
],
 ...
}

The above request will remove all but the Baz 1 object from Foo’s bazzes field.

Customizing Related Resource Fields

The default ForeignKeyField and ManyToManyField that ship with Conduit can easily be subclassed and customized. The fields work very similarly to ModelResources, except instead of a single Meta.conduit pipeline, they have two pipelines. One if for updating from request data, and the other is for fetching the existing resource.

A subclassed FK field which adds a custom additional step to the pipeline would look like this:

class CustomForeignKeyField(ForeignKeyField):
 dehydrate_conduit = (
 'objs_to_bundles',
 ## Adds a custom step when grabbing and object
 ## and turning it to json data
 'myapp.resources.CustomResource.custom_method'
 'add_resource_uri',
)

 save_conduit = (
 'check_allowed_methods',
 'get_object_from_kwargs',
 'hydrate_request_data',
 ## Adds a custom step when preparing data
 ## for updating / creating new object
 'myapp.resources.CustomResource.custom_method'
 'initialize_new_object',
 'save_fk_objs',
 'auth_put_detail',
 'auth_post_detail',
 'form_validate',
 'put_detail',
 'post_list',
 'save_m2m_objs',
)

Default Behavior

By default, conduit will serialize your model’s related object fields by their raw value. A ForeignKey field will produce the primary key of your related object. A ManyToMany field will product a list of primary keys.

An example resource Foo has one FK and one M2M field:

class Foo(models.Model):
 name = models.CharField(max_length=255)
 bar = models.ForeignKey(Bar)
 bazzes = models.ManyToManyField(Baz)

Will produce a detail response looking like this:

{
 "name": "My Foo",
 "bar": 45,
 "bazzes": [5, 87, 200],
 "resource_uri": "/api/v1/foo/1/"
}

When updating a ForeignKey field, conduit will set the model’s [field]_id to the integer you send it. Be careful not to set it to a nonexistent related model, since there are not constraint checks done when saved to the database.

Similarly, when updated a ManyToMany field and give it a nonexistent primary key, the add will silently fail and the invalid primary key will not enter the ManyToMany list.

Important

Updating raw primary keys will not produce errors for invalid keys.

Access, Authorization & Permissions

Django-Conduit provides several ‘out of the box’ ways to control access to your resources.

Note

See the Filtering & Ordering` guide to limit retrievable objected based on static values.

Allowed Methods

One quick way to prevent create or update access to a resource is to limit the allowed http methods:

class FooResource(ModelResource):
 class Meta(ModelResource.Meta):
 model = Foo
 allowed_methods = ['get']

The above example will prevent sending put, post, or delete requests to the Foo Resource. Currently only ‘get’, ‘put’, ‘post’, and ‘delete’ are valid values.

Authorization Hooks

For granular permissions on individual objects, Django-Conduit provides a list of ready made hooks for you to implement your permission checks. The hook methods follow a naming pattern of auth_[method]_[list/detail]. The method being the http method, and list/detail whether it is an action on a list url (api/v1/foo) or a detail url (api/v1/foo/1)

It is entirely up to you how you want to handle permissions, but here are a couple suggestions.

	Filter objects a user can retrieve based on ownership. Ownership is determined by the user specified in a owner field on the model:

@match(match=['get', 'list'])
def auth_get_list(self, request, *args, **kwargs):
 objs = kwargs['objs']
 objs = objs.filter(owner=request.user)
 return (request, args, kwargs)

	Disable update access if a user does not own an object:

@match(match=['put', 'detail'])
def auth_put_detail(self, request, *args, **kwargs):
 # single obj is still found in 'objs' kwarg
 obj = kwargs['objs'][0]
 if request.user != obj.owner:
 # HttpInterrupt will immediately end processing
 # the request. Get it by:
 # from conduit.exceptions import HttpInterrupt
 response = HttpResponse('', status=403)
 raise HttpInterrupt(response)
 return (request, args, kwargs)

Note

It is important that you include the @match wrapper so that the check is only executed on the right requests. More about Method Subscriptions

Here is a full list of the authorization hook methods:

'auth_get_detail',
'auth_get_list',
'auth_put_detail',
'auth_put_list',
'auth_post_detail',
'auth_post_list',
'auth_delete_detail',
'auth_delete_list'

Some of these already have checks, such as auth_put_list, which will automatically raise an HttpInterrupt. This is because sending a PUT to a list endpoint is not a valid request.

Forms & Validation

With django-conduit you can use Django’s ModelForms to easily validate your resources. You can specify a form to be used by assigning the form_class on the resource’s Meta class:

from example.forms import FooForm

class FooResource(ModelResource):
 class Meta(ModelResource.Meta):
 form_class = FooForm

The form validation happens during POST and PUT requests. Any data sent in the request that does not correspond to the model’s field names will be discarded for validation.

If errors are found during validation, they are serialized into JSON and immediately return a 400 Http response. If an error occurs while validating a related field, the JSON error is specified as having occured within that related field.

Conduit Overview

What is a Conduit?

Conduits are views that send requests through a simple list of functions to produce a response. This process is often called a pipeline (hence the name conduit). Here is an example:

conduit = (
 'deserialize_json',
 'run_form_validation',
 'response'
)

Each of the items in the conduit tuple reference a method. Each method is called in succession. This is very similar to how Django’s MIDDLEWARE_CLASSES work. A conduit pipeline is specified in a Conduit view like this:

class FormView(Conduit):
 """
 Simple view for processing form input
 """
 form_class = MyForm

 class Meta:
 conduit = (
 'deserialized_json_data',
 'validate_form',
 'process_data',
 'response'
)

Conduit Methods

All functions in a conduit pipeline take the same four parameters as input.

	
	self

	The Conduit view instance

	
	request

	The Django request object

	
	*args

	Capture variable number of arguments

	
	**kwargs

	Capture variable number of keyword arguments

The methods also return these same values, though they may be modified in place. The only response that is different is the last, which must return a response, most likely an HttpResponse.

Warning

The last method in a conduit must return a response, such as HttpResponse

Inheriting & Extending

To inherit the conduit tuple from another Conduit view, your metaclass must do the inheriting. We can use a different form with the above view by inheriting its methods and conduit, while overriding its form_class:

class OtherFormView(FormView):
 """
 Process a different form
 """
 form_class = OtherForm

 class Meta(FormView.Meta):
 pass

If you want to add or remove a step from another conduit, you must specify the new pipeline in its entirety. Here is a simple but not recommended example that extends our view from above by adding a publish_to_redis method:

class PublishFormView(FormView):
 """
 Process a form and publish event to redis
 """
 form_class = OtherForm

 class Meta:
 conduit = (
 'deserialized_json_data',
 'validate_form',
 'process_data',
 'publish_to_redis',
 'response'
)

In this example, we didn’t inherit the meta class since we were overriding conduit anyway.

Warning

Class inheritance is NOT the recommended way to customize your Conduit views.

While inheriting views, including multiple inheritance, is very familiar to Django developers, there is another more flexible way to extend your Conduit views. The methods in the conduit can reference any namespaced function, as long as they take the correct 4 input parameters.

Using namespaced methods, the recommended way to create the above view would look like this:

class PublishFormView(Conduit):
 """
 Process a form and publish event to redis
 """
 form_class = OtherForm

 class Meta:
 conduit = (
 'myapp.views.FormView.deserialized_json_data',
 'myapp.views.FormView.validate_form',
 'myapp.views.FormView.process_data',
 'publish_to_redis',
 'myapp.views.FormView.response'
)

The advantage here over multiple inheritance is that the source of the methods is made explicit. This makes debugging much easier if a little inconvenient.

About

Django-Conduit is meant to accomodate the most common API patterns such as dealing with related resources and permissions access. It was designed to be very easy to read, debug, and extend, and ultimately make your code more readable as well.

The conduit based views are aimed to respect and take advantage of the request-response cycle. This includes ideas such as transaction support, minimizing database queries, but most importantly a pipeline of events which can be easily intercepted, extended, and introspected.

We believe Django-Conduit is the fastest way to develop a REST API that works like you would expect or want it to.

Why not Django-REST-Framework?

DRF was built around Django’s Class Based Views and as a result produces highly cryptic yet verbose view classes. Interacting with CBVs often involves using special class methods that hopefully hook into the right part of the request-response cycle. Class based inheritance makes a very frustrating experience when developing complex views.

Why not Django-Tastypie?

Django-Conduit is heavily inspired by Tastypie. It uses a similar declarative syntax for resources, as well as a similar syntax for related fields and metaclasses. Conduit was partly built to simplify and streamline a lot of Tastypie’s internal logic. While built rather differently, Conduit aims to emulate some of Tastypie’s best features.

Index

Getting Started

Installation

	Install via PyPI: pip install django-conduit

	Add the following to your INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'conduit',
 ...
)

Create Your API

We’re going to use the AutoAPI to automatically set up the boilerplate for all your Conduit resources!

	Generate your API app by running the following:

./manage.py create_api [app1 app2 app3] --folder=api

	Add the ‘api’ Django app to your INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'api',
 ...
)

	Add the API to your root urls.py:

urlpatterns = patterns('',
 ...
 url(r'^api/', include('api.urls')),
 ...
)

Using Your API

	Visit localhost:8000/api/v1/[model_name] to fetch one of your new resources!

ModelResource

The model resource can be used to expose your Django models as RESTful api resources.

Standard Pipeline

Custom Field Manipulation

Related Resources (ForeignKey & ManyToMany)

Allowing / Disallowing Http Methods

Authorization

List of Features

	Transaction Support

	Each API request is wrapped in a transaction and rolls back any changes if an error occurs. For example, changes to an embedded resource may not be allowed. This raises a permissions error and any changes to the parent model instance will be reversed

	Easy to Follow Code

	Conduit’s flat and extendable design makes it incredibly easy to debug and tune for performance. The chain of events is meant to be explicit and atomic.

	Permissions and Authorization Hooks

	Pre-made hooks are available to filter or authorize resources based on whatever permissions you’re using.

	Advanced Filtering & Ordering

	Prefilter your resources on the serverside or use url parameters that match Django Queryset syntax.

	Intelligent Errors

	Conduit returns from validation and other errors of resources and their embedded resources so that you know exactly where errors are occuring.

Custom Fields and Data

Sometimes you will need to present or accept data that differs from your Django model and tables.

Adding Fields and Data

 _static/comment-close.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

_static/file.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Django-Conduit

 		Filtering and Ordering

 		Server Side Filters to Limit Access

 		Client Side Filtering with Get Params

 		Ordering Results

 		How Filters & Ordering are Applied

 		Related Resources & Objects

 		Related Resource Fields

 		Updating Related Resources

 		Customizing Related Resource Fields

 		Default Behavior

 		Access, Authorization & Permissions

 		Allowed Methods

 		Authorization Hooks

 		Forms & Validation

 		Conduit Overview

 		What is a Conduit?

 		Conduit Methods

 		Inheriting & Extending

 		About

 		Why not Django-REST-Framework?

 		Why not Django-Tastypie?

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

