
django cms Documentation
Release 3.2.5.post1

Patrick Lauber

August 01, 2016

Contents

1 Overview 3
1.1 Tutorials . 3
1.2 How-to guides . 3
1.3 Key topics . 3
1.4 Reference . 3

2 Join us online 5

3 Why django CMS? 7

4 Release Notes 9

5 Table of contents 11
5.1 Tutorials . 11
5.2 How-to guides . 28
5.3 Key topics . 88
5.4 Reference . 102
5.5 Development & community . 149
5.6 Release notes & upgrade information . 168
5.7 Using django CMS . 209
5.8 Indices and tables . 221

Python Module Index 223

i

ii

django cms Documentation, Release 3.2.5.post1

Contents 1

django cms Documentation, Release 3.2.5.post1

2 Contents

CHAPTER 1

Overview

django CMS is a modern web publishing platform built with Django, the web application framework “for perfec-
tionists with deadlines”.

django CMS offers out-of-the-box support for the common features you’d expect from a CMS, but can also be
easily customised and extended by developers to create a site that is tailored to their precise needs.

1.1 Tutorials

For the new django CMS developer, from installation to creating your own addon applications.

1.2 How-to guides

Practical step-by-step guides for the more experienced developer, covering several important topics.

1.3 Key topics

Explanation and analysis of some key concepts in django CMS.

1.4 Reference

Technical reference material, for classes, methods, APIs, commands.

3

https://djangoproject.com/

django cms Documentation, Release 3.2.5.post1

4 Chapter 1. Overview

CHAPTER 2

Join us online

django CMS is supported by a friendly and very knowledgeable community.

Our IRC channel, #django-cms, is on irc.freenode.net. If you don’t have an IRC client, you can join our
IRC channel using the KiwiIRC web client, which works pretty well.

Our django CMS users email list is for general django CMS questions and discussion

Our django CMS developers email list is for discussions about the development of django CMS

5

https://kiwiirc.com/client/irc.freenode.net/django-cms
https://kiwiirc.com/client/irc.freenode.net/django-cms
https://groups.google.com/forum/#!forum/django-cms
https://groups.google.com/forum/#!forum/django-cms-developers

django cms Documentation, Release 3.2.5.post1

6 Chapter 2. Join us online

CHAPTER 3

Why django CMS?

django CMS is a well-tested CMS platform that powers sites both large and small. Here are a few of the key
features:

• robust internationalisation (i18n) support for creating multilingual sites

• virtually unlimited undo history, allowing editors to revert to a previous version

• front-end editing, providing rapid access to the content management interface

• support for a variety of editors with advanced text editing features.

• a flexible plugins system that lets developers put powerful tools at the fingertips of editors, without over-
whelming them with a difficult interface

• ...and much more

There are other capable Django-based CMS platforms but here’s why you should consider django CMS:

• thorough documentation

• easy and comprehensive integration into existing projects - django CMS isn’t a monolithic application

• a healthy, active and supportive developer community

• a strong culture of good code, including an emphasis on automated testing

7

django cms Documentation, Release 3.2.5.post1

8 Chapter 3. Why django CMS?

CHAPTER 4

Release Notes

This document refers to version 3.2.5.post1

Warning: Version 3.0 introduces some significant changes that require action if you are upgrading from a
previous version. Please refer to Upgrading from previous versions

9

django cms Documentation, Release 3.2.5.post1

10 Chapter 4. Release Notes

CHAPTER 5

Table of contents

5.1 Tutorials

The pages in this section of the documentation are aimed at the newcomer to django CMS. They’re designed to
help you get started quickly, and show how easy it is to work with django CMS as a developer who wants to
customise it and get it working according to their own requirements.

These tutorials take you step-by-step through some key aspects of this work. They’re not intended to explain the
topics in depth, or provide reference material, but they will leave you with a good idea of what it’s possible to
achieve in just a few steps, and how to go about it.

Once you’re familiar with the basics presented in these tutorials, you’ll find the more in-depth coverage of the
same topics in the How-to section.

The tutorials follow a logical progression, starting from installation of django CMS and the creation of a brand
new project, and build on each other, so it’s recommended to work through them in the order presented here.

5.1.1 Installing django CMS

We’ll get started by setting up our environment.

Requirements

django CMS requires Django version 1.6.9 or later, 1.7, 1.8 or 1.9, and Python 2.6, 2.7, 3.3, 3.4 or 3.5.

Your working environment

We’re going to assume that you have a reasonably recent version of virtualenv installed and that you have some
basic familiarity with it.

Please check that you have installed the required binary libraries before proceeding.

Create and activate a virtual environment

virtualenv env
source env/bin/activate

Note that if you’re using Windows, to activate the virtualenv you’ll need:

env\Scripts\activate

11

http://djangocms-installer.readthedocs.org/en/latest/libraries.html

django cms Documentation, Release 3.2.5.post1

Use the django CMS installer

The django CMS installer is a helpful script that takes care of setting up a new project.

Install it:

pip install djangocms-installer

This provides you with a new command, djangocms.

Create a new directory to work in, and cd into it:

mkdir tutorial-project
cd tutorial-project

Run it to create a new Django project called mysite:

djangocms -f -p . mysite

This means:

• run the django CMS installer

• install Django Filer too (-f) - required for this tutorial

• use the current directory as the parent of the new project directory (-p .)

• call the new project directory mysite

Note: About Django Filer

Django Filer, a useful application for managing files and processing images. Although it’s not required for django
CMS itself, a vast number of django CMS addons use it, and nearly all django CMS projects have it installed. If
you know you won’t need it, omit the flag. See the django CMS installer documentation for more information.

Warning: djangocms-installer expects directory . to be empty at this stage, and will check for this, and will
warn if it’s not. You can get it to skip the check and go ahead anyway using the -s flag; note that this may
overwrite existing files.

Windows users may need to do a little extra to make sure Python files are associated correctly if that doesn’t work
right away:

assoc .py=Python.file
ftype Python.File="C:\Users\Username\workspace\demo\env\Scripts\python.exe" "%1" %*

For the purposes of this tutorial, it’s recommended that you answer the installer’s questions as follows (where we
suggest something different from the default, it’s indicated with an asterisk *).

Warning: Django security support
Django 1.6 support is provided as an interim measure only. In accordance with the Django Project’s security
policies, 1.6 no longer receives security updates from the Django Project team. Projects running on Django
1.6 have known vulnerabilities, so don’t choose to install this version unless you have a particular need to.

• Database configuration (in URL format): sqlite://localhost/project.db

• django CMS version: stable

• Django version: stable

• Activate Django I18N / L10N setting: yes

• Install and configure reversion support: yes

• Languages to enable. Option can be provided multiple times, or as a comma separated list: en, de *

12 Chapter 5. Table of contents

https://github.com/nephila/djangocms-installer
http://djangocms-installer.readthedocs.org
https://docs.djangoproject.com/en/dev/internals/security/
https://docs.djangoproject.com/en/dev/internals/security/

django cms Documentation, Release 3.2.5.post1

• Optional default time zone: America/Chicago

• Activate Django time zone support: yes

• Activate CMS permission management: yes

• Use Twitter Bootstrap Theme: yes *

• Use custom template set: no

• Load a starting page with examples after installation: yes *

Create a Django admin user when invited.

Start up the new site

python manage.py runserver

Open http://localhost:8000/ in your browser, where you should be presented with your brand new django CMS
homepage.

Congratulations, you now have installed a fully functional CMS.

To log in, append ?edit to the URL and hit enter. This will enable the toolbar, from where you can log in and
manage your website.

If you are not already familiar with django CMS, take a few minutes to run through the basics of the django CMS
tutorial for users.

5.1.2 Templates & Placeholders

In this tutorial we’ll introduce Placeholders, and we’re also going to show how you can make your own HTML
templates CMS-ready.

Templates

You can use HTML templates to customise the look of your website, define Placeholders to mark sections for
managed content and use special tags to generate menus and more.

5.1. Tutorials 13

http://localhost:8000/

django cms Documentation, Release 3.2.5.post1

You can define multiple templates, with different layouts or built-in components, and choose them for each page
as required. A page’s template can be switched for another at any time.

You’ll find the site’s templates in mysite/templates.

If you didn’t change the automatically-created home page’s template, it’s feature.html.

Placeholders

Placeholders are an easy way to define sections in an HTML template that will be filled with content from the
database when the page is rendered. This content is edited using django CMS’s frontend editing mechanism,
using Django template tags.

You can see them in feature.html: {% placeholder "feature" %} and {% placeholder
"content" %}.

You’ll also see {% load cms_tags %} in that file - cms_tags is the required template tag library.

If you’re not already familiar with Django template tags, you can find out more in the Django documentation.

Add a new placeholder {% placeholder "splashbox" %} to the template’s HTML structure. You can
add it anywhere, for example:

{% block content %}
<div class="jumbotron">

{% placeholder "feature" %}
</div>
<div>

{% placeholder "content" %}
</div>
<div>

{% placeholder "splashbox" %}
</div>

{% endblock content %}

If you switch to Structure mode, you’ll see the new placeholder available for use.

Static Placeholders

The content of the placeholders we’ve encountered so far is different for every page. Sometimes though you’ll
want to have a section on your website which should be the same on every single page, such as a footer block.

You could hard-code your footer into the template, but it would be nicer to be able to manage it through the CMS.
This is what static placeholders are for.

14 Chapter 5. Table of contents

https://docs.djangoproject.com/en/dev/topics/templates/

django cms Documentation, Release 3.2.5.post1

Static placeholders are an easy way to display the same content on multiple locations on your website. Static
placeholders act almost like normal placeholders, except for the fact that once a static placeholder is created and
you added content to it, it will be saved globally. Even when you remove the static placeholders from a template,
you can reuse them later.

So let’s add a footer to all our pages. Since we want our footer on every single page, we should add it to our base
template (mysite/templates/base.html). Place it at the bottom of the HTML <body>:

<footer>
{% static_placeholder 'footer' %}

</footer>

Save the template and return to your browser. Refresh any page in Structure mode, and you’ll see the new
static placeholder. If you add some content to it in the usual way, you’ll see that it appears on your site’s other
pages too.

Rendering Menus

In order to render the CMS’s menu in your template you can use the show_menu tag.

The example we use in mysite/templates/base.html is:

<ul class="nav navbar-nav">
{% show_menu 0 1 100 100 "menu.html" %}

Any template that uses show_menu must load the CMS’s menu_tags library first:

{% load menu_tags %}

If you chose “bootstrap” while setting up with djangocms-installer, the menu will already be there and
templates/menu.html will already contain a version that uses bootstrap compatible markup.

Next we’ll look at Integrating applications.

5.1.3 Integrating applications

All the following sections of this tutorial are concerned with integrating other applications into django CMS,
which is where a vast part of its power comes from.

Integrating applications doesn’t just mean installing them alongside django CMS, so that they peacefully co-exist.
It means using django CMS’s features to build them into a single coherent web project that speeds up the work of
managing the site, and makes possible richer and more automated publishing.

It’s key to the way that django CMS integration works that it doesn’t require you to modify your other appli-
cations unless you want to. This is particularly important when you’re using third-party applications and don’t
want to have to maintain your own forked versions of them. (The only exception to this is if you decide to build
django CMS features directly into the applications themselves, for example when using placeholders in other
applications.)

For this tutorial, we’re going to take a basic Django opinion poll application and integrate it into the CMS. So
we’ll install that, and create a second, independent, Polls/CMS Integration application to manage the integration,
leaving the first untouched.

Install the polls application

Install the application from its GitHub repository using pip:

pip install git+http://git@github.com/divio/django-polls.git#egg=polls

5.1. Tutorials 15

https://github.com/divio/django-polls

django cms Documentation, Release 3.2.5.post1

Let’s add this application to our project. Add ’polls’ to the end of INSTALLED_APPS in your project’s
settings.py (see the note on The INSTALLED_APPS setting about ordering).

Add the following line to urlpatterns in the project’s urls.py:

url(r'^polls/', include('polls.urls', namespace='polls')),

Make sure this line is included before the line for the django-cms urls:

url(r'^', include('cms.urls')),

django CMS’s URL pattern needs to be last, because it “swallows up” anything that hasn’t already been matched
by a previous pattern.

Now run the application’s migrations:

python manage.py migrate polls

At this point you should be able to log in to the Django admin - http://localhost:8000/admin/ - and
find the Polls application.

Create a new Poll, for example:

• Question: Which browser do you prefer?

Choices:

– Safari

– Firefox

– Chrome

Now if you visit http://localhost:8000/en/polls/, you should be able to see the published poll and
submit a response.

Improve the templates for Polls

You’ll have noticed that the in the Polls application we only have minimal templates, and no navigation or styling.

Our django CMS pages on the other hand have access to a number of default templates in the project, all of which
extend one called base.html. So, let’s improve this by overriding the polls application’s base template.

We’ll do this in the project directory.

In mysite/templates, add polls/base.html, containing:

16 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

{% extends 'base.html' %}

{% block content %}
{% block polls_content %}
{% endblock %}

{% endblock %}

Refresh the /polls/ page again, which should now be properly integrated into the site.

Set up a new polls_cms_integration application

So far, however, the Polls application has been integrated into the project, but not into django CMS itself. The two
applications are completely independent. They cannot make use of each other’s data or functionality.

Let’s create the new Polls/CMS Integration application where we will bring them together.

Create the application

Create a new package at the project root called polls_cms_integration:

python manage.py startapp polls_cms_integration

So our workspace looks like this:

env/
src/ # the django polls application is in here

polls_cms_integration/ # the newly-created application
__init__.py
admin.py
models.py
migrations.py
tests.py
views.py

mysite/
static/
project.db
requirements.txt

Add it to INSTALLED_APPS

Next is to integrate the polls_cms_integration application into the project.

Add polls_cms_integration to INSTALLED_APPS in settings.py - and now we’re ready to use it
to being integrating Polls with django CMS. We’ll start by developing a Polls plugin.

Note: The project or the application?

5.1. Tutorials 17

django cms Documentation, Release 3.2.5.post1

Earlier, we added new templates to the project. We could equally well have have added
templates/polls/base.html inside polls_cms_integration. After all, that’s where we’re going
to be doing all the other integration work.

However, we’d now have an application that makes assumptions about the name of the template it should extend
(see the first line of the base.html template we created) which might not be correct for a different project.

Also, we’d have to make sure that polls_cms_integration came before polls in INSTALLED_APPS,
otherwise the templates in polls_cms_integration would not in fact override the ones in polls. Putting
them in the project guarantees that they will override those in all applications.

Either way of doing it is reasonable, as long as you understand their implications.

5.1.4 Plugins

Our application exists and is installed, but so far, does absolutely nothing at all. In this section we’ll add some
new functionality: a Polls plugin.

The Plugin model

In the models.py of polls_cms_integration add the following:

from django.db import models
from cms.models import CMSPlugin
from polls.models import Poll

class PollPluginModel(CMSPlugin):
poll = models.ForeignKey(Poll)

def __unicode__(self):
return self.poll.question

Note: django CMS plugins inherit from cms.models.CMSPlugin (or a sub-class thereof) and not
models.Model.

PollPluginModel might seem an odd choice for a model name (that is, with model in the name) but it helps
distinguish it from the next class, PollPluginPublisher, that we need to create.

The Plugin class

Now create a new file cms_plugins.py in the same folder your models.py is in. The plugin class is
responsible for providing django CMS with the necessary information to render your plugin.

For our poll plugin, we’re going to write the following plugin class:

from cms.plugin_base import CMSPluginBase
from cms.plugin_pool import plugin_pool
from polls_cms_integration.models import PollPluginModel
from django.utils.translation import ugettext as _

class PollPluginPublisher(CMSPluginBase):
model = PollPluginModel # model where plugin data are saved
module = _("Polls")
name = _("Poll Plugin") # name of the plugin in the interface
render_template = "polls_cms_integration/poll_plugin.html"

18 Chapter 5. Table of contents

http://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model

django cms Documentation, Release 3.2.5.post1

def render(self, context, instance, placeholder):
context.update({'instance': instance})
return context

plugin_pool.register_plugin(PollPluginPublisher) # register the plugin

Note: All plugin classes must inherit from cms.plugin_base.CMSPluginBase and must register them-
selves with the cms.plugin_pool.plugin_pool.

A reasonable convention for plugin naming is:

• PollPluginModel: the model class

• PollPluginPublisher: the plugin class

You don’t need to follow this convention, but choose one that makes sense and stick to it.

The template

The render_template attribute in the plugin class is required, and tells the plugin which
render_template to use when rendering.

In this case the template needs to be at polls_cms_integration/templates/polls_cms_integration/poll_plugin.html
and should look something like this:

<h1>{{ instance.poll.question }}</h1>

<form action="{% url 'polls:vote' instance.poll.id %}" method="post">
{% csrf_token %}
<div class="form-group">

{% for choice in instance.poll.choice_set.all %}
<div class="radio">

<label>
<input type="radio" name="choice" value="{{ choice.id }}">
{{ choice.choice_text }}

</label>
</div>

{% endfor %}
</div>
<input type="submit" value="Vote" />

</form>

Prepare the database

Create a database migration to add the plugin table:

python manage.py makemigrations polls_cms_integration
python manage.py migrate polls_cms_integration

Try out the new plugin

Finally, start the runserver and visit http://localhost:8000/.

You can now drop the Poll Plugin into any placeholder on any page, just as you would any other plugin.

5.1. Tutorials 19

http://localhost:8000/

django cms Documentation, Release 3.2.5.post1

5.1.5 Apphooks

Right now, our Django Polls application is statically hooked into the project’s urls.py. This is all right, but we
can do more, by attaching applications to django CMS pages.

Create an apphook

We do this with an apphook, created using a CMSApp sub-class, which tells the CMS how to include that appli-
cation.

Apphooks live in a file called cms_apps.py, so create one in your Polls/CMS Integration application, i.e. in
polls_cms_integration.

This is the most basic example of an apphook for a django CMS application:

from django.utils.translation import ugettext_lazy as _
from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool

class PollsApphook(CMSApp):
name = _("Polls Application") # give your application a name
urls = ["polls.urls"] # link it to URL configuration(s)
app_name = "polls" # set the default application namespace

apphook_pool.register(PollsApphook) # register the application

Restart the runserver. This is necessary because we have created a new file containing Python code that won’t
be loaded until the server restarts. You only have to do this the first time the new file has been created.

20 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

Apply the apphook to a page

Now we need to create a new page, and attach the Polls application to it through this apphook.

Create and save a new page, then publish it.

Note: Your apphook won’t work until the page has been published.

In its Advanced settings, choose “Polls Application” from the Application menu. Leave the Application instance
name on the provided default (polls), and save once more.

Refresh the page, and you’ll find that the Polls application, along with any polls you have created, is now available
directly from the new django CMS page.

You can now remove the mention of the Polls application (url(r’^polls/’, include(’polls.urls’,
namespace=’polls’))) from your project’s urls.py - it’s no longer even required there.

5.1.6 Extending the Toolbar

django CMS allows you to control what appears in the toolbar. This allows you to integrate your application in
the frontend editing mode of django CMS and provide your users with a streamlined editing experience.

Registering toolbar items

There are two ways to control what gets shown in the toolbar.

One is the CMS_TOOLBARS setting. This gives you full control over which classes are loaded, but requires that
you specify them all manually.

The other is to provide cms_toolbars.py files in your apps, which will be automatically loaded as long
CMS_TOOLBARS is not set (or set to None). We’ll work with this second method, and build up the functionality
step-by-step.

Create the toolbar menu

We create the menu using a CMSApp sub-class, and populate it in the populate() method.

Create a new cms_toolbars.py file in your Polls/CMS Integration application:

from django.utils.translation import ugettext_lazy as _
from cms.toolbar_pool import toolbar_pool
from cms.toolbar_base import CMSToolbar
from cms.utils.urlutils import admin_reverse

class PollToolbar(CMSToolbar):

5.1. Tutorials 21

django cms Documentation, Release 3.2.5.post1

def populate(self):

create the menu
menu = self.toolbar.get_or_create_menu(

'polls-application', # give your menu an internal identifier
_('Polls') # provide a name for the menu

)

toolbar_pool.register(PollToolbar)

Note: Don’t forget to restart the runserver to have your new toolbar item recognised.

If you refresh a page on your site, you’ll see the new Polls menu. It’s empty however - now we need to add
something to it.

Add menu items

Let’s add two items, commands for:

• a list of Polls, that will appear in the sideframe

• a new Poll

We need to edit the populate() method, as follows:

def populate(self):

create the menu
menu = self.toolbar.get_or_create_menu(

'polls-application', # give your menu an internal identifier
_('Polls') # provide a name for the menu

)

menu.add_sideframe_item(
name=_('Poll list'),
url=admin_reverse('polls_poll_changelist'),

)

menu.add_modal_item(
name=_('Add new poll'),
url=admin_reverse('polls_poll_add'),

)

In each case, the method specifies how we’re going to display the resource that opens next
(add_sideframe_item() or add_modal_item()). We also provide the name, and the admin url that
we want to make use of. The URL is actually derived automatically by Django, from the Polls’ application admin
views.

Refresh the page, and explore the new menu items you have created.

Control when the menu appears

At the moment, the menu appears whatever page we’re looking at - but perhaps it would make more sense to have
it displayed only when we’re actually looking on a page that is related to Polls.

So, in the populate()method we should check whether the current request is being handled by this application,
using the is_current_app attribute of CMSToolbar (and exit without doing anything if not).

22 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

There’s one complication: the application that would qualify as is_current_app - Polls/CMS Integration -
isn’t the same application that handles the request - Polls. So, we will also need to inform the PollToolbar
that Polls also counts as “this application”, by explicitly providing a supported_apps attribute.

That will look like this:

class PollToolbar(CMSToolbar):
supported_apps = (

'polls',
)

def populate(self):
if not self.is_current_app:

return

create the menu
menu = self.toolbar.get_or_create_menu(

'polls-application', # give your menu an internal identifier
_('Polls') # provide a name for the menu

)

[...]

And now, the menu for Polls will only appear on the pages where it should.

There’s more

There is quite a bit more we can do with menus. For example, you could check whether:

• we’re looking at a Poll instance

• we have admin permissions to edit Polls

and on that basis, add a menu item to Edit this Poll. However, that’s beyond the scope of this basic introduction,
but you’ll find more guidance and examples in Extending the Toolbar.

5.1.7 Extending the navigation menu

You may have noticed that while our Polls application has been integrated into the CMS, with plugins, toolbar
menu items and so on, the site’s navigation menu is still only determined by django CMS Pages.

We can hook into the django CMS menu system to add our own nodes to that navigation menu.

Create the toolbar menu

We create the menu using a CMSAttachMenu sub-class, and use the get_nodes() method to add the nodes.

For this we need a file called cms_menus.py in our application. Add cms_menus.py in
polls_cms_integration/:

from django.core.urlresolvers import reverse
from django.utils.translation import ugettext_lazy as _

from cms.menu_bases import CMSAttachMenu
from menus.base import NavigationNode
from menus.menu_pool import menu_pool

from polls.models import Poll

class PollsMenu(CMSAttachMenu):
name = _("Polls Menu") # give the menu a name this is required.

5.1. Tutorials 23

django cms Documentation, Release 3.2.5.post1

def get_nodes(self, request):
nodes = []

loop over all the Poll objects in the database
for poll in Poll.objects.all():

create a NavigationNode based on each one
node = NavigationNode(

title=poll.question,
url=reverse('polls:detail', args=(poll.pk,)),
id=poll.pk,

)
nodes.append(node)

return nodes

menu_pool.register_menu(PollsMenu)

What’s happening here:

• we define a PollsMenu class, and register it

• we give the class a name attribute (will be displayed in admin)

• in its get_nodes() method, we build and return a list of nodes, where:

• first we get all the Poll objects

• ... and then create a NavigationNode object from each one

• ... and return a list of these NavigationNodes

Apply the menu to a page

This menu class is not active until attached to a page.

In the Polls page’s Advanced settings, choose “Polls Menu” in the Attached menu field and save.

You’ll now see that every Poll is represented as a node in a sub-menu for the Polls page.

Apply it automatically

Note that you could have added the menu to any page. However, we can also attach a menu like this not just to a
page, but to an apphook - so that whatever page an application is attached to, the menu will be attached to.

We’ll do this in the cms_apps.py, where the apphook class PollsApphook lives - the amended lines are
highlighted:

from django.utils.translation import ugettext_lazy as _
from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool
from polls_cms_integration.cms_menus import PollsMenu

class PollsApphook(CMSApp):
name = _("Polls Application") # give your application a name
urls = ["polls.urls"] # link it to URL configuration(s)
app_name = "polls" # set the default application namespace
menus = [PollsMenu] # set a menu for this apphook

24 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

Any page that is attached to the Polls application will now have sub-menu items for each of the Polls in the
database. It doesn’t stop you from also adding menus to pages manually, but guarantees that they will appear on
the Polls page at least.

5.1.8 Content creation wizards

Content creation wizards allow you to make use of the toolbar’s Create button in your own applications. It opens
up a simple dialog box with the basic fields required to create a new item.

django CMS uses it for creating Pages, but you can add your own models to it.

Create the wizard

A wizard is created by a PollWizard class and a ModelForm.

In the polls_cms_integration application, add a cms_wizards.py file, containing:

from cms.wizards.wizard_base import Wizard
from cms.wizards.wizard_pool import wizard_pool

from polls_cms_integration.forms import PollWizardForm

class PollWizard(Wizard):
pass

poll_wizard = PollWizard(
title="Poll",
weight=200, # determines the ordering of wizards in the Create dialog
form=PollWizardForm,
description="Create a new Poll",

)

wizard_pool.register(poll_wizard)

We also need to create a forms.py with the ModelForm subclass:

from django import forms

from polls.models import Poll

class PollWizardForm(forms.ModelForm):
class Meta:

model = Poll
exclude = []

Note: Don’t forget to restart the runserver to have your new wizard recognised.

Refresh any page, hit the Create button in the toolbar - and the wizard dialog will open, offering you a new wizard
for creating Polls.

Note: Once again, this particular example is for illustration only. In the case of a Poll, with its multiple Questions
associated with it via foreign keys, we really want to be able to edit those questions at the same time too.

That would require a much more sophisticated form and processing than is possible within the scope of this
tutorial.

5.1. Tutorials 25

django cms Documentation, Release 3.2.5.post1

5.1.9 Integrating a third-party application

We’ve already written our own django CMS plugins and apps, but now we want to extend our CMS with a third-
party application, Aldryn News & Blog.

Basic installation

First, we need to install the app into our virtual environment from PyPI:

pip install aldryn-newsblog

Django settings

INSTALLED_APPS

Add the application and any of its requirements that are not there already to INSTALLED_APPS in
settings.py. Some will be already present; it’s up to you to check them because you need to avoid du-
plication:

you will probably need to add:
'aldryn_apphooks_config',
'aldryn_boilerplates',
'aldryn_categories',
'aldryn_newsblog',
'aldryn_people',
'aldryn_reversion',
'djangocms_text_ckeditor',
'parler',
'sortedm2m',
'taggit',

and you will probably find the following already listed:
'easy_thumbnails',
'filer',
'reversion',

THUMBNAIL_PROCESSORS

One of the dependencies is Django Filer. It provides a special feature that allows more
sophisticated image cropping. For this to work it needs its own thumbnail processor
(filer.thumbnail_processors.scale_and_crop_with_subject_location) to be listed
in settings.py in place of easy_thumbnails.processors.scale_and_crop:

THUMBNAIL_PROCESSORS = (
'easy_thumbnails.processors.colorspace',
'easy_thumbnails.processors.autocrop',
'easy_thumbnails.processors.scale_and_crop', # disable this one
'filer.thumbnail_processors.scale_and_crop_with_subject_location',
'easy_thumbnails.processors.filters',

)

ALDRYN_BOILERPLATE_NAME

Aldryn News & Blog uses aldryn-boilerplates to provide multiple sets of templates and static files for different
CSS frameworks. We’re using the Bootstrap 3 in this tutorial, so let’s choose bootstrap3 by adding the setting:

26 Chapter 5. Table of contents

https://github.com/aldryn/aldryn-newsblog
http://pypi.python.org
https://github.com/aldryn/aldryn-boilerplates

django cms Documentation, Release 3.2.5.post1

ALDRYN_BOILERPLATE_NAME='bootstrap3'

STATICFILES_FINDERS

Add the boilerplates static files finder to STATICFILES_FINDERS, immediately before
django.contrib.staticfiles.finders.AppDirectoriesFinder:

STATICFILES_FINDERS = [
'django.contrib.staticfiles.finders.FileSystemFinder',
'aldryn_boilerplates.staticfile_finders.AppDirectoriesFinder',
'django.contrib.staticfiles.finders.AppDirectoriesFinder',

]

If STATICFILES_FINDERS is not defined in your settings.py just copy and paste the code above.

TEMPLATES

Important: In Django 1.8, the TEMPLATE_LOADERS and TEMPLATE_CONTEXT_PROCESSORS settings are
rolled into the TEMPLATES setting. We’re assuming you’re using Django 1.8 here.

TEMPLATES = [
{

...
'OPTIONS': {

'context_processors': [
...
'aldryn_boilerplates.context_processors.boilerplate',
],

'loaders': [
...
'aldryn_boilerplates.template_loaders.AppDirectoriesLoader',
],

},
},

]

Migrate the database

We’ve added a new application so we need to update our database:

python manage.py migrate

Start the server again.

Create a new apphooked page

The News & Blog application comes with a django CMS apphook, so add a new django CMS page (call it News),
and add the News & Blog application to it just as you did for Polls.

For this application we also need to create and select an Application configuration.

Give this application configuration some settings:

• Instance namespace: news (this is used for reversing URLs)

• Application title: News (the name that will represent the application configuration in the admin)

• Permalink type: choose a format you prefer for news article URLs

5.1. Tutorials 27

django cms Documentation, Release 3.2.5.post1

Save this application configuration, and make sure it’s selected in Application configurations.

Publish the new page, and you should find the News & Blog application at work there. (Until you actually create
any articles, it will simply inform you that there are No items available.)

Add new News & Blog articles

You can add new articles using the admin or the new News menu that now appears in the toolbar when you are on
a page belonging to News & Blog.

You can also insert a Latest articles plugin into another page - like all good django CMS applications, Aldryn
News & Blog comes with plugins.

If you want to install django CMS into an existing project, or prefer to configure django CMS by hand, rather than
using the automated installer, see Installing django CMS by hand and then follow the rest of the tutorials.

Either way, you’ll be able to find support and help from the numerous friendly members of the django CMS
community, either on our mailinglist or IRC channel #django-cms on the irc.freenode.net network.

If you don’t have an IRC client, you can join our IRC channel using the KiwiIRC web client, which works pretty
well.

5.2 How-to guides

These guides presuppose some familiarity with django CMS. They cover some of the same territory as the Tuto-
rials, but in more detail.

5.2.1 Installing django CMS by hand

This is how to install django CMS ‘the hard way’ (it’s not really that hard, but there is an easier way).

It’s suitable if you want to dive in to integrating django CMS into an existing project, are already experienced at
setting up Django projects or indeed like to do things the hard way.

If you prefer an easier way using an automated configuration tool - definitely recommended for new users - see
Installing django CMS, which is part of a complete introductory tutorial.

This document assumes you are familiar with Python and Django. After you’ve integrated django CMS into your
project, you should be able to follow the Tutorials.

Requirements

• Python 2.6, 2.7, 3.3 or 3.4.

• Django 1.6.9 or later, 1.7.x, 1.8.x

• South 1.0.1 or higher (Only required up to Django 1.6)

• django-classy-tags 0.6.2 or higher

• django-treebeard 3.0 (for Django 1.6) or 4.0 (for Django 1.7 and up)

• django-sekizai 0.8.2 or higher

• djangocms-admin-style

• An installed and working instance of one of the databases listed in the Databases section.

Note: When installing the django CMS using pip, all of the dependencies will be installed automatically.

28 Chapter 5. Table of contents

https://groups.google.com/forum/#!forum/django-cms
https://kiwiirc.com/client/irc.freenode.net/django-cms
https://www.python.org
https://www.djangoproject.com
http://south.aeracode.org/
https://github.com/ojii/django-classy-tags
http://code.tabo.pe/django-treebeard/src
https://github.com/ojii/django-sekizai
https://github.com/divio/djangocms-admin-style

django cms Documentation, Release 3.2.5.post1

Recommended

These packages are not required, but they provide useful functionality with minimal additional configuration and
are well-proven.

Text Editors

• Django CMS CKEditor for a WYSIWYG editor 2.4.0 or higher

Other Plugins

• djangocms-link

• djangocms-snippet

• djangocms-style

• djangocms-column

• djangocms-grid

• djangocms-oembed

• djangocms-table

• djangocms-flash

File and image handling

• Django Filer for file and image management

• django-filer plugins for django CMS, required to use Django Filer with django CMS

• Pillow (fork of PIL) for image manipulation

Revision management

• django-reversion 1.8.X (Django 1.6) and 1.10 (Django 1.7+) to support versions of your content

Note: As of django CMS 3.0.x, only the most recent 10 published revisions are saved. You can change this
behaviour if required with CMS_MAX_PAGE_PUBLISH_REVERSIONS. Be aware that saved revisions
will cause your database size to increase.

Installing

Installing in a virtualenv using pip

Installing inside a virtualenv is the preferred way to install any Django installation.

sudo pip install --upgrade virtualenv
virtualenv env

Note: If you are not using a system-wide install of Python (such as with Homebrew), omit the usage of sudo
when installing via pip.

Switch to the virtualenv at the command line by typing:

source env/bin/activate

5.2. How-to guides 29

https://github.com/divio/djangocms-text-ckeditor
https://github.com/stefanfoulis/django-filer
https://github.com/stefanfoulis/cmsplugin-filer
https://github.com/python-imaging/Pillow
https://github.com/etianen/django-reversion
http://www.virtualenv.org

django cms Documentation, Release 3.2.5.post1

Next, install the CMS:

pip install django-cms

This will automatically install all of the requirements listed above.

While you could install packages one at a time using pip, we recommend using a requirements.txt file. The
following is an example file that can be used with pip to install django CMS and its dependencies:

Bare minimum
django-cms>=3.0

These dependencies are brought in by django CMS, but if you want to
lock-in their version, specify them
Django>=1.7

django-treebeard==3.0
django-sekizai==0.8.2
django-classy-tags==0.6.2
djangocms-admin-style==0.2.2
six==1.3.0

Optional, recommended packages
Pillow>=2
django-filer==0.9.9
cmsplugin-filer==0.10.1
django-reversion==1.8.5

Note: In the above list, packages are pinned to specific version as an example; those are not mandatory versions;
refer to requirements for any version-specific restrictions.

If you are using PostgreSQL as your database, add the Python adaptor to your requirements file:

psycopg2

For MySQL you would instead add:

mysql-python

Note: While the django CMS is compatible with Python 3.3+, the mysql-python package is not.

Before you install the Python adaptors for your chosen database, you will need to first install the appropriate
headers and development libraries. See the platform specific notes below.

Installing on Ubuntu

If you’re using Ubuntu (tested with 14.04), the following should get you started:

sudo aptitude install python-pip
sudo pip install virtualenv

Next, install the appropriate libraries to build the Python adaptors for your selected database. For PostgreSQL:

sudo aptitude install libpq-dev postgresql-client-9.3 python-dev

For MySQL:

sudo aptitude install libmysqlclient-dev python-dev

Installing and configuring database servers are beyond the scope of this document. See Databases below for more
information and related links.

30 Chapter 5. Table of contents

http://www.pip-installer.org
http://www.pip-installer.org/en/latest/cookbook.html#requirements-files

django cms Documentation, Release 3.2.5.post1

Installing on Mac OSX

If you are using the system provided Python (2.6 or later), ensure you have pip installed.

sudo easy_install pip
sudo pip install virtualenv

If you’re using Homebrew you can install pip and virtualenv with the python generic package:

brew install python
pip install virtualenv

Next, install the appropriate libraries to build the Python adaptors for your selected database. For PostgreSQL:

brew install postgres

For MySQL:

brew install mysql

Note: Homebrew does not set the databases to run automatically. The software necessary for the Python adaptors
will be installed but if you wish to run the database server locally, follow the Homebrew instructions shown in the
terminal output after installing.

Databases

We recommend using PostgreSQL or MySQL with django CMS. Installing and maintaining database systems is
outside the scope of this documentation, but is very well documented on the systems’ respective websites.

To use django CMS efficiently, we recommend:

• Creating a separate set of credentials for the django CMS project.

• Creating a new database for the django CMS project, not reusing an existing one.

Configuration and setup

Preparing the environment

The following steps assume your Django project will be - or already is - in ~/workspace/myproject, and
that you’ll be using a virtualenv.

If you already have a virtualenv with a project in it, activate it and move on to Configuring your project for django
CMS.

Otherwise:

cd ~/workspace/myproject/
virtualenv env
source env/bin/activate
pip install -r requirements.txt

Create a new Django project

django-admin.py startproject myproject

If this is new to you, you ought to read the official Django tutorial, which covers starting a new project.

5.2. How-to guides 31

http://brew.sh/
http://www.postgresql.org/
http://www.mysql.com
https://docs.djangoproject.com/en/dev/intro/tutorial01/

django cms Documentation, Release 3.2.5.post1

Configuring your project for django CMS

Open the settings.py file in your project.

To make your life easier, add the following at the top of the file:

-*- coding: utf-8 -*-
import os
gettext = lambda s: s
BASE_DIR = os.path.dirname(os.path.dirname(__file__))

Add the following apps to your INSTALLED_APPS. This includes django CMS itself as well as its dependencies
and other highly recommended applications/libraries:

'cms', # django CMS itself
'treebeard', # utilities for implementing a tree
'menus', # helper for model independent hierarchical website navigation
'south', # Only needed for Django < 1.7
'sekizai', # for JavaScript and CSS management
'djangocms_admin_style', # for the admin skin. You **must** add 'djangocms_admin_style' in the list **before** 'django.contrib.admin'.
'django.contrib.messages', # to enable messages framework (see :ref:`Enable messages <enable-messages>`)

Also add any (or all) of the following plugins, depending on your needs (see the note in The INSTALLED_APPS
setting about ordering):

'djangocms_file',
'djangocms_flash',
'djangocms_googlemap',
'djangocms_inherit',
'djangocms_picture',
'djangocms_teaser',
'djangocms_video',
'djangocms_link',
'djangocms_snippet',

Note: Most of the above plugins were previously distributed with django CMS, however, most of them
are now located in their own repositories and renamed. Furthermore plugins: ’cms.plugins.text’ and
’cms.plugins.twitter’ have been removed from the django CMS bundle. Read 3.0 release notes for
detailed information.

Warning: Adding the ’djangocms_snippet’ plugin is a potential security hazard. For more informa-
tion, refer to snippet_plugin.

Some commonly-used plugins are described in more detail in Some commonly-used plugins. There are even more
plugins available on the django CMS extensions page.

In addition, make sure you uncomment (enable) ’django.contrib.admin’

You may also wish to use django-filer and its components with the django CMS plugin instead of the
djangocms_file, djangocms_picture, djangocms_teaser and djangocms_video core plug-
ins. In this case you should check the django-filer documentation and django CMS plugin documentation for
detailed installation information, and then return to this tutorial.

If you opt for the core plugins you should take care that directory to which the CMS_PAGE_MEDIA_PATH setting
points (by default cms_page_media/ relative to MEDIA_ROOT) is writeable by the user under which Django
will be running. If you have opted for django-filer there is a similar requirement for its configuration.

If you want versioning of your content you should also install django-reversion and add it to INSTALLED_APPS:

• ’reversion’

You need to add the django CMS middlewares to your MIDDLEWARE_CLASSES at the right position:

32 Chapter 5. Table of contents

http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
https://github.com/divio/djangocms-snippet
http://www.django-cms.org/en/extensions/
https://github.com/stefanfoulis/django-filer
https://github.com/stefanfoulis/cmsplugin-filer
https://github.com/stefanfoulis/cmsplugin-filer#installation
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-MEDIA_ROOT
https://github.com/etianen/django-reversion
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-MIDDLEWARE_CLASSES

django cms Documentation, Release 3.2.5.post1

MIDDLEWARE_CLASSES = (
'cms.middleware.utils.ApphookReloadMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.locale.LocaleMiddleware',
'django.middleware.common.CommonMiddleware',
'cms.middleware.user.CurrentUserMiddleware',
'cms.middleware.page.CurrentPageMiddleware',
'cms.middleware.toolbar.ToolbarMiddleware',
'cms.middleware.language.LanguageCookieMiddleware',

)

Notice that django CMS v3.2 introduces a new middleware: cms.middleware.utils.ApphookReloadMiddleware.
This should be placed very near the top of your middleware classes tuple/list.

Note: In Django 1.8, the TEMPLATE_DIRS, TEMPLATE_LOADERS and
TEMPLATE_CONTEXT_PROCESSORS settings are rolled into the TEMPLATES setting.

For earlier versions, put the context_processors and items listed into
TEMPLATE_CONTEXT_PROCESSORS, the DIRS items into TEMPLATE_DIRS and so on.

TEMPLATES = [
{

'DIRS': [os.path.join(BASE_DIR, "templates"),],
'OPTIONS': {

'context_processors': [
...
'sekizai.context_processors.sekizai',
'cms.context_processors.cms_settings',
],

},
},

]

Warning: Be sure to have ’django.contrib.sites’ in INSTALLED_APPS and set SITE_ID param-
eter in your settings: they may be missing from the settings file generated by django-admin depending
on your Django version and project template.

Changed in version 3.0.0.

Warning: Django messages framework is now required for the toolbar to work properly.
To enable it you must be check the following settings:

• INSTALLED_APPS: must contain ’django.contrib.messages’
• MIDDLEWARE_CLASSES: must contain ’django.contrib.messages.middleware.MessageMiddleware’
• TEMPLATES["OPTIONS"]["context_processors"]: must contain
’django.contrib.messages.context_processors.messages’

Point your STATIC_ROOT to where the static files should live (that is, your images, CSS files, JavaScript files,
etc.):

STATIC_ROOT = os.path.join(BASE_DIR, "static")
STATIC_URL = "/static/"

For uploaded files, you will need to set up the MEDIA_ROOT setting:

MEDIA_ROOT = os.path.join(BASE_DIR, "media")
MEDIA_URL = "/media/"

5.2. How-to guides 33

http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-STATIC_ROOT
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-MEDIA_ROOT

django cms Documentation, Release 3.2.5.post1

Note: Please make sure both the static and media sub-folders exist in your project and are writeable.

Add at least one template to CMS_TEMPLATES; for example:

CMS_TEMPLATES = (
('template_1.html', 'Template One'),
('template_2.html', 'Template Two'),

)

We will create the actual template files at a later step, don’t worry about it for now. Simply paste this code into
your settings file.

Note: The templates you define in CMS_TEMPLATES have to exist at runtime and contain at least one {%
placeholder <name> %} template tag to be useful for django CMS.

The django CMS allows you to edit all languages for which Django has built in translations. Since these are
numerous, we’ll limit it to English for now:

LANGUAGES = [
('en', 'English'),

]

Finally, set up the DATABASES part of the file to reflect your database deployment. If you just want to try out
things locally, SQLite3 is the easiest database to set up, however it should not be used in production. If you still
wish to use it for now, this is what your DATABASES setting should look like:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.sqlite3',
'NAME': os.path.join(BASE_DIR, 'database.sqlite'),

}
}

django CMS, as well as its plugins, supports both Django 1.7 and Django 1.6 migrations.

Since version 3.1, migrations are stored in modules compatible with Django 1.7 and South 1.0.2 without further
configuration.

django CMS plugins are being ported to the same structure; in the meantime, on Django 1.7, you may need to
specify where the migrations are situated using the MIGRATION_MODULES setting:

MIGRATION_MODULES = {
Add also the following modules if you're using these plugins:
'djangocms_file': 'djangocms_file.migrations_django',
'djangocms_flash': 'djangocms_flash.migrations_django',
'djangocms_googlemap': 'djangocms_googlemap.migrations_django',
'djangocms_inherit': 'djangocms_inherit.migrations_django',
'djangocms_link': 'djangocms_link.migrations_django',
'djangocms_picture': 'djangocms_picture.migrations_django',
'djangocms_snippet': 'djangocms_snippet.migrations_django',
'djangocms_teaser': 'djangocms_teaser.migrations_django',
'djangocms_video': 'djangocms_video.migrations_django',
'djangocms_text_ckeditor': 'djangocms_text_ckeditor.migrations_django',

}

Please check each plugin configuration option to see how to configure Django 1.7 support.

34 Chapter 5. Table of contents

http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-DATABASES
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-DATABASES

django cms Documentation, Release 3.2.5.post1

URL configuration

You need to include the ’cms.urls’ urlpatterns at the end of your urlpatterns. We suggest starting
with the following ~/workspace/myproject/myproject/urls.py:

from django.conf import settings
from django.conf.urls import include, url
from django.conf.urls.i18n import i18n_patterns
from django.conf.urls.static import static
from django.contrib import admin

admin.autodiscover() # Not required for Django 1.7.x+

urlpatterns = i18n_patterns('',
url(r'^admin/', include(admin.site.urls)),
url(r'^', include('cms.urls')),

) + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

Creating templates

django CMS uses templates to define how a page should look and what parts of it are editable. Editable areas are
called placeholders. These templates are standard Django templates and you may use them as described in the
official documentation.

Templates you wish to use on your pages must be declared in the CMS_TEMPLATES setting:

CMS_TEMPLATES = (
('template_1.html', 'Template One'),
('template_2.html', 'Template Two'),

)

If you have followed this tutorial from the beginning, this code should already be in your settings file.

Now, on with the actual template files!

Fire up your favourite editor and create a file called base.html in a folder called templates in your
myproject directory.

Here is a simple example for a base template called base.html:

{% load cms_tags sekizai_tags %}
<html>

<head>
<title>{% page_attribute "page_title" %}</title>
{% render_block "css" %}

</head>
<body>

{% cms_toolbar %}
{% placeholder base_content %}
{% block base_content %}{% endblock %}
{% render_block "js" %}

</body>
</html>

Now, create a file called template_1.html in the same directory. This will use your base template, and add
extra content to it:

{% extends "base.html" %}
{% load cms_tags %}

{% block base_content %}
{% placeholder template_1_content %}

{% endblock %}

5.2. How-to guides 35

http://docs.djangoproject.com/en/stable/topics/templates/

django cms Documentation, Release 3.2.5.post1

When you set template_1.html as a template on a page you will get two placeholders to put plugins in. One is
template_1_content from the page template template_1.html and another is base_content from
the extended base.html.

When working with a lot of placeholders, make sure to give descriptive names to your placeholders so you can
identify them more easily in the admin panel.

Now, feel free to experiment and make a template_2.html file! If you don’t feel creative, just copy tem-
plate_1 and name the second placeholder something like “template_2_content”.

Static files handling with sekizai The django CMS handles media files (CSS stylesheets and JavaScript files)
required by CMS plugins using django-sekizai. This requires you to define at least two sekizai namespaces in
your templates: js and css. You can do so using the render_block template tag from the sekizai_tags
template tag library. We highly recommended putting the {% render_block "css" %} tag as the last thing
before the closing </head> HTML tag and the {% render_block "js" %} tag as the last thing before the
closing </body> HTML tag.

Initial database setup

django CMS uses Django 1.7’s built-in support for database migrations to manage creating and altering database
tables. django CMS still offers South-style migrations for users of Django up to 1.6 but as noted above, strictly
requires South>=1.0.1 in this case.

Fresh install If you are using Django 1.7 or later run:

python manage.py migrate
python manage.py createsuperuser

If you are using Django 1.6.x run:

python manage.py syncdb --all
python manage.py migrate --fake

The call to syncdb will prompt you to create a super user. Choose ‘yes’ and enter appropriate values.

Upgrade If you are upgrading your installation of django CMS from a previous version run:

python manage.py syncdb # Django 1.6.x only
python manage.py migrate

Check you did everything right

Now, use the following command to check if you did everything correctly:

python manage.py cms check

Up and running!

That should be it. Restart your development server using python manage.py runserver and point a web
browser to 127.0.0.1:8000 : you should get the django CMS “Installation Successful” screen.

36 Chapter 5. Table of contents

https://github.com/ojii/django-sekizai
http://127.0.0.1:8000

django cms Documentation, Release 3.2.5.post1

Use the new side-frame-based administration by appending ‘?edit’ to your URL as follows:
http://127.0.0.1:8000/?edit. This will reveal a login form.

Log in with the user you created during the database setup.

If this is your first django CMS project, read through the tutorial for a walk-through of the main features of django
CMS.

For more information on using django CMS for managing web content, see Using django CMS.

To deploy your django CMS project on a production web server, please refer to the Django documentation.

5.2.2 Custom Plugins

CMS Plugins are reusable content publishers that can be inserted into django CMS pages (or indeed into any
content that uses django CMS placeholders). They enable the publishing of information automatically, without
further intervention.

This means that your published web content, whatever it is, is kept up-to-date at all times.

It’s like magic, but quicker.

Unless you’re lucky enough to discover that your needs can be met by the built-in plugins, or by the many available
third-party plugins, you’ll have to write your own custom CMS Plugin. Don’t worry though - writing a CMS
Plugin is rather simple.

5.2. How-to guides 37

https://github.com/divio/django-cms-tutorial
http://docs.djangoproject.com/en/dev/howto/deployment/

django cms Documentation, Release 3.2.5.post1

Why would you need to write a plugin?

A plugin is the most convenient way to integrate content from another Django app into a django CMS page.

For example, suppose you’re developing a site for a record company in django CMS. You might like to have a
“Latest releases” box on your site’s home page.

Of course, you could every so often edit that page and update the information. However, a sensible record company
will manage its catalogue in Django too, which means Django already knows what this week’s new releases are.

This is an excellent opportunity to make use of that information to make your life easier - all you need to do is
create a django CMS plugin that you can insert into your home page, and leave it to do the work of publishing
information about the latest releases for you.

Plugins are reusable. Perhaps your record company is producing a series of reissues of seminal Swiss punk
records; on your site’s page about the series, you could insert the same plugin, configured a little differently, that
will publish information about recent new releases in that series.

Overview

A django CMS plugin is fundamentally composed of three things.

• a plugin editor, to configure a plugin each time it is deployed

• a plugin publisher, to do the automated work of deciding what to publish

• a plugin template, to render the information into a web page

These correspond to the familiar Model-View-Template scheme:

• the plugin model to store its configuration

• the plugin view that works out what needs to be displayed

• the plugin template to render the information

And so to build your plugin, you’ll make it from:

• a sub-class of cms.models.pluginmodel.CMSPlugin to store the configuration for your plugin
instances

• a sub-class of cms.plugin_base.CMSPluginBase that defines the operating logic of your plugin

• a template that renders your plugin

A note about cms.plugin_base.CMSPluginBase

cms.plugin_base.CMSPluginBase is actually a sub-class of django.contrib.admin.options.ModelAdmin.

Because CMSPluginBase sub-classes ModelAdmin several important ModelAdmin options are also avail-
able to CMS plugin developers. These options are often used:

• exclude

• fields

• fieldsets

• form

• formfield_overrides

• inlines

• radio_fields

• raw_id_fields

• readonly_fields

38 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

Please note, however, that not all ModelAdmin options are effective in a CMS plugin. In particular, any options
that are used exclusively by the ModelAdmin‘s changelist will have no effect. These and other notable
options that are ignored by the CMS are:

• actions

• actions_on_top

• actions_on_bottom

• actions_selection_counter

• date_hierarchy

• list_display

• list_display_links

• list_editable

• list_filter

• list_max_show_all

• list_per_page

• ordering

• paginator

• preserve_fields

• save_as

• save_on_top

• search_fields

• show_full_result_count

• view_on_site

An aside on models and configuration

The plugin model, the sub-class of cms.models.pluginmodel.CMSPlugin, is actually optional.

You could have a plugin that doesn’t need to be configured, because it only ever does one thing.

For example, you could have a plugin that only publishes information about the top-selling record of the past seven
days. Obviously, this wouldn’t be very flexible - you wouldn’t be able to use the same plugin for the best-selling
release of the last month instead.

Usually, you find that it is useful to be able to configure your plugin, and this will require a model.

The simplest plugin

You may use python manage.py startapp to set up the basic layout for you plugin app (remember to
add your plugin to INSTALLED_APPS). Alternatively, just add a file called cms_plugins.py to an existing
Django application.

In cms_plugins.py, you place your plugins. For our example, include the following code:

from cms.plugin_base import CMSPluginBase
from cms.plugin_pool import plugin_pool
from cms.models.pluginmodel import CMSPlugin
from django.utils.translation import ugettext_lazy as _

class HelloPlugin(CMSPluginBase):
model = CMSPlugin

5.2. How-to guides 39

django cms Documentation, Release 3.2.5.post1

render_template = "hello_plugin.html"
cache = False

plugin_pool.register_plugin(HelloPlugin)

Now we’re almost done. All that’s left is to add the template. Add the following into the root template directory
in a file called hello_plugin.html:

<h1>Hello {% if request.user.is_authenticated %}{{ request.user.first_name }} {{ request.user.last_name}}{% else %}Guest{% endif %}</h1>

This plugin will now greet the users on your website either by their name if they’re logged in, or as Guest if they’re
not.

Now let’s take a closer look at what we did there. The cms_plugins.py files are where you should define your
sub-classes of cms.plugin_base.CMSPluginBase, these classes define the different plugins.

There are two required attributes on those classes:

• model: The model you wish to use for storing information about this plugin. If you do not require
any special information, for example configuration, to be stored for your plugins, you can simply use
cms.models.pluginmodel.CMSPlugin (we’ll look at that model more closely in a bit). In a nor-
mal admin class, you don’t need to supply this information because admin.site.register(Model,
Admin) takes care of it, but a plugin is not registered in that way.

• name: The name of your plugin as displayed in the admin. It is generally good practice to mark this string
as translatable using django.utils.translation.ugettext_lazy(), however this is optional.
By default the name is a nicer version of the class name.

• cache: This is a property that tells the plugin rendering system in django CMS whether to cache the
plugin’s output to speed-up subsequent views of the same plugin. By default, the cms caches. Since we
want each visitor to see output that is specific to him or her, we need to tell the cms to not cache this plugin.

And one of the following must be defined if render_plugin attribute is True (the default):

• render_template: The template to render this plugin with.

or

• get_render_template: A method that returns a template path to render the plugin with.

In addition to those attributes, you can also define a render() method on your sub-classes. It is specifically this
render method that is the view for your plugin.

Troubleshooting

Since plugin modules are found and loaded by django’s importlib, you might experience errors because the path
environment is different at runtime. If your cms_plugins isn’t loaded or accessible, try the following:

$ python manage.py shell
>>> from importlib import import_module
>>> m = import_module("myapp.cms_plugins")
>>> m.some_test_function()

Storing configuration

In many cases, you want to store configuration for your plugin instances. For example, if you have a plugin that
shows the latest blog posts, you might want to be able to choose the amount of entries shown. Another example
would be a gallery plugin where you want to choose the pictures to show for the plugin.

To do so, you create a Django model by sub-classing cms.models.pluginmodel.CMSPlugin in the
models.py of an installed application.

Let’s improve our HelloPlugin from above by making its fallback name for non-authenticated users config-
urable.

40 Chapter 5. Table of contents

http://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.ugettext_lazy

django cms Documentation, Release 3.2.5.post1

In our models.py we add the following:

from cms.models.pluginmodel import CMSPlugin

from django.db import models

class Hello(CMSPlugin):
guest_name = models.CharField(max_length=50, default='Guest')

If you followed the Django tutorial, this shouldn’t look too new to you. The only differ-
ence to normal models is that you sub-class cms.models.pluginmodel.CMSPlugin rather than
django.db.models.base.Model.

Now we need to change our plugin definition to use this model, so our new cms_plugins.py looks like this:

from cms.plugin_base import CMSPluginBase
from cms.plugin_pool import plugin_pool
from django.utils.translation import ugettext_lazy as _

from .models import Hello

class HelloPlugin(CMSPluginBase):
model = Hello
name = _("Hello Plugin")
render_template = "hello_plugin.html"
cache = False

def render(self, context, instance, placeholder):
context = super(HelloPlugin, self).render(context, instance, placeholder)
return context

plugin_pool.register_plugin(HelloPlugin)

We changed the model attribute to point to our newly created Hello model and pass the model instance to the
context.

As a last step, we have to update our template to make use of this new configuration:

<h1>Hello {% if request.user.is_authenticated %}
{{ request.user.first_name }} {{ request.user.last_name}}

{% else %}
{{ instance.guest_name }}

{% endif %}</h1>

The only thing we changed there is that we use the template variable {{ instance.guest_name }} instead
of the hard-coded Guest string in the else clause.

Warning: You cannot name your model fields the same as any installed plugins lower- cased model name,
due to the implicit one-to-one relation Django uses for sub-classed models. If you use all core plugins, this
includes: file, flash, googlemap, link, picture, snippetptr, teaser, twittersearch,
twitterrecententries and video.
Additionally, it is recommended that you avoid using page as a model field, as it is declared as a property of
cms.models.pluginmodel.CMSPlugin, and your plugin will not work as intended in the administra-
tion without further work.

Warning: If you are using Python 2.x and overriding the __unicode__ method of the model file, make
sure to return its results as UTF8-string. Otherwise saving an instance of your plugin might fail with the
frontend editor showing an <Empty> plugin instance. To return in Unicode use a return statement like return
u’{0}’.format(self.guest_name).

5.2. How-to guides 41

django cms Documentation, Release 3.2.5.post1

Handling Relations

Every time the page with your custom plugin is published the plugin is copied. So if your custom plugin has
foreign key (to it, or from it) or many-to-many relations you are responsible for copying those related objects, if
required, whenever the CMS copies the plugin - it won’t do it for you automatically.

Every plugin model inherits the empty cms.models.pluginmodel.CMSPlugin.copy_relations()
method from the base class, and it’s called when your plugin is copied. So, it’s there for you to adapt to your
purposes as required.

Typically, you will want it to copy related objects. To do this you should create a method called
copy_relations on your plugin model, that receives the old instance of the plugin as an argument.

You may however decide that the related objects shouldn’t be copied - you may want to leave them alone, for
example. Or, you might even want to choose some altogether different relations for it, or to create new ones when
it’s copied... it depends on your plugin and the way you want it to work.

If you do want to copy related objects, you’ll need to do this in two slightly different ways, depending on whether
your plugin has relations to or from other objects that need to be copied too:

For foreign key relations from other objects Your plugin may have items with foreign keys to it, which will
typically be the case if you set it up so that they are inlines in its admin. So you might have two models, one for
the plugin and one for those items:

class ArticlePluginModel(CMSPlugin):
title = models.CharField(max_length=50)

class AssociatedItem(models.Model):
plugin = models.ForeignKey(

ArticlePluginModel,
related_name="associated_item"

)

You’ll then need the copy_relations() method on your plugin model to loop over the associated items and
copy them, giving the copies foreign keys to the new plugin:

class ArticlePluginModel(CMSPlugin):
title = models.CharField(max_length=50)

def copy_relations(self, oldinstance):
for associated_item in oldinstance.associated_item.all():

instance.pk = None; instance.pk.save() is the slightly odd but
standard Django way of copying a saved model instance
associated_item.pk = None
associated_item.plugin = self
associated_item.save()

For many-to-many or foreign key relations to other objects Let’s assume these are the relevant bits of your
plugin:

class ArticlePluginModel(CMSPlugin):
title = models.CharField(max_length=50)
sections = models.ManyToManyField(Section)

Now when the plugin gets copied, you want to make sure the sections stay, so it becomes:

class ArticlePluginModel(CMSPlugin):
title = models.CharField(max_length=50)
sections = models.ManyToManyField(Section)

def copy_relations(self, oldinstance):
self.sections = oldinstance.sections.all()

42 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

If your plugins have relational fields of both kinds, you may of course need to use both the copying techniques
described above.

Relations between plugins It is much harder to manage the copying of relations when they are from one plugin
to another.

See the GitHub issue copy_relations() does not work for relations between cmsplugins #4143 for more details.

Advanced

Inline Admin

If you want to have the foreign key relation as a inline admin, you can create an admin.StackedInline class
and put it in the Plugin to “inlines”. Then you can use the inline admin form for your foreign key references:

class ItemInlineAdmin(admin.StackedInline):
model = AssociatedItem

class ArticlePlugin(CMSPluginBase):
model = ArticlePluginModel
name = _("Article Plugin")
render_template = "article/index.html"
inlines = (ItemInlineAdmin,)

def render(self, context, instance, placeholder):
context = super(ArticlePlugin, self).render(context, instance, placeholder)
items = instance.associated_item.all()
context.update({

'items': items,
})
return context

Plugin form

Since cms.plugin_base.CMSPluginBase extends django.contrib.admin.options.ModelAdmin,
you can customise the form for your plugins just as you would customise your admin interfaces.

The template that the plugin editing mechanism uses is cms/templates/admin/cms/page/plugin/change_form.html.
You might need to change this.

If you want to customise this the best way to do it is:

• create a template of your own that extends cms/templates/admin/cms/page/plugin/change_form.html
to provide the functionality you require;

• provide your cms.plugin_base.CMSPluginBase sub-class with a change_form_template at-
tribute pointing at your new template.

Extending admin/cms/page/plugin/change_form.html ensures that you’ll keep a unified look and
functionality across your plugins.

There are various reasons why you might want to do this. For example, you might have a snippet of JavaScript
that needs to refer to a template variable), which you’d likely place in {% block extrahead %}, after a {{
block.super }} to inherit the existing items that were in the parent template.

Or: cms/templates/admin/cms/page/plugin/change_form.html extends Django’s own
admin/base_site.html, which loads a rather elderly version of jQuery, and your plugin admin might
require something newer. In this case, in your custom change_form_template you could do something like:

5.2. How-to guides 43

https://github.com/divio/django-cms/issues/4143

django cms Documentation, Release 3.2.5.post1

{% block jquery %}
<script type="text/javascript" src="///ajax.googleapis.com/ajax/libs/jquery/1.8.0/jquery.min.js" type="text/javascript"></script>

{% endblock jquery %}``

to override the {% block jquery %}.

Handling media

If your plugin depends on certain media files, JavaScript or stylesheets, you can include them from your plugin
template using django-sekizai. Your CMS templates are always enforced to have the css and js sekizai names-
paces, therefore those should be used to include the respective files. For more information about django-sekizai,
please refer to the django-sekizai documentation.

Note that sekizai can’t help you with the admin-side plugin templates - what follows is for your plugins’ output
templates.

Sekizai style To fully harness the power of django-sekizai, it is helpful to have a consistent style on how to use
it. Here is a set of conventions that should be followed (but don’t necessarily need to be):

• One bit per addtoblock. Always include one external CSS or JS file per addtoblock or one snippet
per addtoblock. This is needed so django-sekizai properly detects duplicate files.

• External files should be on one line, with no spaces or newlines between the addtoblock tag and the
HTML tags.

• When using embedded javascript or CSS, the HTML tags should be on a newline.

A good example:

{% load sekizai_tags %}

{% addtoblock "js" %}<script type="text/javascript" src="{{ MEDIA_URL }}myplugin/js/myjsfile.js"></script>{% endaddtoblock %}
{% addtoblock "js" %}<script type="text/javascript" src="{{ MEDIA_URL }}myplugin/js/myotherfile.js"></script>{% endaddtoblock %}
{% addtoblock "css" %}<link rel="stylesheet" type="text/css" href="{{ MEDIA_URL }}myplugin/css/astylesheet.css">{% endaddtoblock %}
{% addtoblock "js" %}
<script type="text/javascript">

$(document).ready(function(){
doSomething();

});
</script>
{% endaddtoblock %}

A bad example:

{% load sekizai_tags %}

{% addtoblock "js" %}<script type="text/javascript" src="{{ MEDIA_URL }}myplugin/js/myjsfile.js"></script>
<script type="text/javascript" src="{{ MEDIA_URL }}myplugin/js/myotherfile.js"></script>{% endaddtoblock %}
{% addtoblock "css" %}

<link rel="stylesheet" type="text/css" href="{{ MEDIA_URL }}myplugin/css/astylesheet.css"></script>
{% endaddtoblock %}
{% addtoblock "js" %}<script type="text/javascript">

$(document).ready(function(){
doSomething();

});
</script>{% endaddtoblock %}

Plugin Context

The plugin has access to the django template context. You can override variables using the with tag.

44 Chapter 5. Table of contents

https://github.com/ojii/django-sekizai
http://django-sekizai.readthedocs.org

django cms Documentation, Release 3.2.5.post1

Example:

{% with 320 as width %}{% placeholder "content" %}{% endwith %}

Plugin Context Processors

Plugin context processors are callables that modify all plugins’ context before rendering. They are enabled using
the CMS_PLUGIN_CONTEXT_PROCESSORS setting.

A plugin context processor takes 3 arguments:

• instance: The instance of the plugin model

• placeholder: The instance of the placeholder this plugin appears in.

• context: The context that is in use, including the request.

The return value should be a dictionary containing any variables to be added to the context.

Example:

def add_verbose_name(instance, placeholder, context):
'''
This plugin context processor adds the plugin model's verbose_name to context.
'''
return {'verbose_name': instance._meta.verbose_name}

Plugin Processors

Plugin processors are callables that modify all plugins’ output after rendering. They are enabled using the
CMS_PLUGIN_PROCESSORS setting.

A plugin processor takes 4 arguments:

• instance: The instance of the plugin model

• placeholder: The instance of the placeholder this plugin appears in.

• rendered_content: A string containing the rendered content of the plugin.

• original_context: The original context for the template used to render the plugin.

Note: Plugin processors are also applied to plugins embedded in Text plugins (and any custom plugin
allowing nested plugins). Depending on what your processor does, this might break the output. For ex-
ample, if your processor wraps the output in a div tag, you might end up having div tags inside of
p tags, which is invalid. You can prevent such cases by returning rendered_content unchanged if
instance._render_meta.text_enabled is True, which is the case when rendering an embedded plu-
gin.

Example Suppose you want to wrap each plugin in the main placeholder in a colored box but it would be too
complicated to edit each individual plugin’s template:

In your settings.py:

CMS_PLUGIN_PROCESSORS = (
'yourapp.cms_plugin_processors.wrap_in_colored_box',

)

In your yourapp.cms_plugin_processors.py:

5.2. How-to guides 45

django cms Documentation, Release 3.2.5.post1

def wrap_in_colored_box(instance, placeholder, rendered_content, original_context):
'''
This plugin processor wraps each plugin's output in a colored box if it is in the "main" placeholder.
'''
Plugins not in the main placeholder should remain unchanged
Plugins embedded in Text should remain unchanged in order not to break output
if placeholder.slot != 'main' or (instance._render_meta.text_enabled and instance.parent):

return rendered_content
else:

from django.template import Context, Template
For simplicity's sake, construct the template from a string:
t = Template('<div style="border: 10px {{ border_color }} solid; background: {{ background_color }};">{{ content|safe }}</div>')
Prepare that template's context:
c = Context({

'content': rendered_content,
Some plugin models might allow you to customise the colors,
for others, use default colors:
'background_color': instance.background_color if hasattr(instance, 'background_color') else 'lightyellow',
'border_color': instance.border_color if hasattr(instance, 'border_color') else 'lightblue',

})
Finally, render the content through that template, and return the output
return t.render(c)

Nested Plugins

You can nest CMS Plugins in themselves. There’s a few things required to achieve this functionality:

models.py:

class ParentPlugin(CMSPlugin):
add your fields here

class ChildPlugin(CMSPlugin):
add your fields here

cms_plugins.py:

from .models import ParentPlugin, ChildPlugin

class ParentCMSPlugin(CMSPluginBase):
render_template = 'parent.html'
name = 'Parent'
model = ParentPlugin
allow_children = True # This enables the parent plugin to accept child plugins
You can also specify a list of plugins that are accepted as children,
or leave it away completely to accept all
child_classes = ['ChildCMSPlugin']

def render(self, context, instance, placeholder):
context = super(ParentCMSPlugin, self).render(context, instance, placeholder)
return context

plugin_pool.register_plugin(ParentCMSPlugin)

class ChildCMSPlugin(CMSPluginBase):
render_template = 'child.html'
name = 'Child'
model = ChildPlugin
require_parent = True # Is it required that this plugin is a child of another plugin?
You can also specify a list of plugins that are accepted as parents,
or leave it away completely to accept all

46 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

parent_classes = ['ParentCMSPlugin']

def render(self, context, instance, placeholder):
context = super(ChildCMSPlugin, self).render(context, instance, placeholder)
return context

plugin_pool.register_plugin(ChildCMSPlugin)

parent.html:

{% load cms_tags %}

<div class="plugin parent">
{% for plugin in instance.child_plugin_instances %}

{% render_plugin plugin %}
{% endfor %}

</div>

child.html:

<div class="plugin child">
{{ instance }}

</div>

Extending context menus of placeholders or plugins

There are three possibilities to extend the context menus of placeholders or plugins.

• You can either extend a placeholder context menu.

• You can extend all plugin context menus.

• You can extend the current plugin context menu.

For this purpose you can overwrite 3 methods on CMSPluginBase.

• get_extra_placeholder_menu_items

• get_extra_global_plugin_menu_items

• get_extra_local_plugin_menu_items

Example:

class AliasPlugin(CMSPluginBase):
name = _("Alias")
allow_children = False
model = AliasPluginModel
render_template = "cms/plugins/alias.html"

def render(self, context, instance, placeholder):
context = super(AliasPlugin, self).render(context, instance, placeholder)
if instance.plugin_id:

plugins = instance.plugin.get_descendants(include_self=True).order_by('placeholder', 'tree_id', 'level',
'position')

plugins = downcast_plugins(plugins)
plugins[0].parent_id = None
plugins = build_plugin_tree(plugins)
context['plugins'] = plugins

if instance.alias_placeholder_id:
content = render_placeholder(instance.alias_placeholder, context)
print content
context['content'] = mark_safe(content)

return context

5.2. How-to guides 47

django cms Documentation, Release 3.2.5.post1

def get_extra_global_plugin_menu_items(self, request, plugin):
return [

PluginMenuItem(
_("Create Alias"),
reverse("admin:cms_create_alias"),
data={'plugin_id': plugin.pk, 'csrfmiddlewaretoken': get_token(request)},

)
]

def get_extra_placeholder_menu_items(self, request, placeholder):
return [

PluginMenuItem(
_("Create Alias"),
reverse("admin:cms_create_alias"),
data={'placeholder_id': placeholder.pk, 'csrfmiddlewaretoken': get_token(request)},

)
]

def get_plugin_urls(self):
urlpatterns = [

url(r'^create_alias/$', self.create_alias, name='cms_create_alias'),
]
urlpatterns = patterns('', *urlpatterns)
return urlpatterns

def create_alias(self, request):
if not request.user.is_staff:

return HttpResponseForbidden("not enough privileges")
if not 'plugin_id' in request.POST and not 'placeholder_id' in request.POST:

return HttpResponseBadRequest("plugin_id or placeholder_id POST parameter missing.")
plugin = None
placeholder = None
if 'plugin_id' in request.POST:

pk = request.POST['plugin_id']
try:

plugin = CMSPlugin.objects.get(pk=pk)
except CMSPlugin.DoesNotExist:

return HttpResponseBadRequest("plugin with id %s not found." % pk)
if 'placeholder_id' in request.POST:

pk = request.POST['placeholder_id']
try:

placeholder = Placeholder.objects.get(pk=pk)
except Placeholder.DoesNotExist:

return HttpResponseBadRequest("placeholder with id %s not found." % pk)
if not placeholder.has_change_permission(request):

return HttpResponseBadRequest("You do not have enough permission to alias this placeholder.")
clipboard = request.toolbar.clipboard
clipboard.cmsplugin_set.all().delete()
language = request.LANGUAGE_CODE
if plugin:

language = plugin.language
alias = AliasPluginModel(language=language, placeholder=clipboard, plugin_type="AliasPlugin")
if plugin:

alias.plugin = plugin
if placeholder:

alias.alias_placeholder = placeholder
alias.save()
return HttpResponse("ok")

48 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

Plugin data migrations

Due to the migration from Django MPTT to django-treebeard in version 3.1, the plugin model is different between
the two versions. Schema migration are not affected as the migration systems (both South and Django) detects the
different bases.

Data migration are a different story, though.

If your data migration does something like:

MyPlugin = apps.get_model('my_app', 'MyPlugin')

for plugin in MyPlugin.objects.all():
... do something ...

You may end up with an error like django.db.utils.OperationalError: (1054, "Unknown
column ’cms_cmsplugin.level’ in ’field list’") because depending on the order the migra-
tions are executed, the historical models may be out of sync with the applied database schema.

To keep compatibility with 3.0 and 3.x you can force the data migration to run before the django CMS migration
that creates treebeard fields, by doing this the data migration will always be executed on the “old” database schema
and no conflict will exist.

For South migrations add this:

from distutils.version import LooseVersion
import cms
USES_TREEBEARD = LooseVersion(cms.__version__) >= LooseVersion('3.1')

class Migration(DataMigration):

if USES_TREEBEARD:
needed_by = [

('cms', '0070_auto__add_field_cmsplugin_path__add_field_cmsplugin_depth__add_field_c')
]

For Django migrations add this:

from distutils.version import LooseVersion
import cms
USES_TREEBEARD = LooseVersion(cms.__version__) >= LooseVersion('3.1')

class Migration(migrations.Migration):

if USES_TREEBEARD:
run_before = [

('cms', '0004_auto_20140924_1038')
]

5.2.3 Customising navigation menus

In this document we discuss three different way of customising the navigation menus of django CMS sites.

1. Menus: Statically extend the menu entries

2. Attach Menus: Attach your menu to a page.

3. Navigation Modifiers: Modify the whole menu tree

Menus

Create a cms_menus.py in your application, with the following:

5.2. How-to guides 49

django cms Documentation, Release 3.2.5.post1

from menus.base import Menu, NavigationNode
from menus.menu_pool import menu_pool
from django.utils.translation import ugettext_lazy as _

class TestMenu(Menu):

def get_nodes(self, request):
nodes = []
n = NavigationNode(_('sample root page'), "/", 1)
n2 = NavigationNode(_('sample settings page'), "/bye/", 2)
n3 = NavigationNode(_('sample account page'), "/hello/", 3)
n4 = NavigationNode(_('sample my profile page'), "/hello/world/", 4, 3)
nodes.append(n)
nodes.append(n2)
nodes.append(n3)
nodes.append(n4)
return nodes

menu_pool.register_menu(TestMenu)

Note: Up to version 3.1 this module was named menu.py. Please update your existing modules to the new
naming convention. Support for the old name will be removed in version 3.4.

If you refresh a page you should now see the menu entries above. The get_nodes function should return a list
of NavigationNode instances. A NavigationNode takes the following arguments:

title Text for the menu node

url URL for the menu node link

id A unique id for this menu

parent_id=None If this is a child of another node, supply the id of the parent here.

parent_namespace=None If the parent node is not from this menu you can give it the parent namespace.
The namespace is the name of the class. In the above example that would be: TestMenu

attr=None A dictionary of additional attributes you may want to use in a modifier or in the template

visible=True Whether or not this menu item should be visible

Additionally, each NavigationNode provides a number of methods which are detailed in the
NavigationNode API references.

Customise menus at runtime

To adapt your menus according to request dependent conditions (say: anonymous/logged in user), you can use
Navigation Modifiers or you can make use of existing ones.

For example it’s possible to add {’visible_for_anonymous’: False}/{’visible_for_authenticated’:
False} attributes recognised by the django CMS core AuthVisibility modifier.

Complete example:

class UserMenu(Menu):
def get_nodes(self, request):

return [
NavigationNode(_("Profile"), reverse(profile), 1, attr={'visible_for_anonymous': False}),
NavigationNode(_("Log in"), reverse(login), 3, attr={'visible_for_authenticated': False}),
NavigationNode(_("Sign up"), reverse(logout), 4, attr={'visible_for_authenticated': False}),
NavigationNode(_("Log out"), reverse(logout), 2, attr={'visible_for_anonymous': False}),

]

50 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

Attach Menus

Classes that extend from menus.base.Menu always get attached to the root. But if you want the menu to be
attached to a CMS Page you can do that as well.

Instead of extending from Menu you need to extend from cms.menu_bases.CMSAttachMenu and you need
to define a name. We will do that with the example from above:

from menus.base import NavigationNode
from menus.menu_pool import menu_pool
from django.utils.translation import ugettext_lazy as _
from cms.menu_bases import CMSAttachMenu

class TestMenu(CMSAttachMenu):

name = _("test menu")

def get_nodes(self, request):
nodes = []
n = NavigationNode(_('sample root page'), "/", 1)
n2 = NavigationNode(_('sample settings page'), "/bye/", 2)
n3 = NavigationNode(_('sample account page'), "/hello/", 3)
n4 = NavigationNode(_('sample my profile page'), "/hello/world/", 4, 3)
nodes.append(n)
nodes.append(n2)
nodes.append(n3)
nodes.append(n4)
return nodes

menu_pool.register_menu(TestMenu)

Now you can link this Menu to a page in the Advanced tab of the page settings under attached menu.

Navigation Modifiers

Navigation Modifiers give your application access to navigation menus.

A modifier can change the properties of existing nodes or rearrange entire menus.

Example use-cases

A simple example: you have a news application that publishes pages independently of django CMS. However, you
would like to integrate the application into the menu structure of your site, so that at appropriate places a News
node appears in the navigation menu.

In another example, you might want a particular attribute of your Pages to be available in menu templates. In
order to keep menu nodes lightweight (which can be important in a site with thousands of pages) they only contain
the minimum attributes required to generate a usable menu.

In both cases, a Navigation Modifier is the solution - in the first case, to add a new node at the appropriate place,
and in the second, to add a new attribute - on the attr attribute, rather than directly on the NavigationNode,
to help avoid conflicts - to all nodes in the menu.

How it works

Place your modifiers in your application’s cms_menus.py.

To make your modifier available, it then needs to be registered with menus.menu_pool.menu_pool.

Now, when a page is loaded and the menu generated, your modifier will be able to inspect and modify its nodes.

5.2. How-to guides 51

django cms Documentation, Release 3.2.5.post1

Here is an example of a simple modifier that places a Page’s attribute in the corresponding NavigationNode:

from menus.base import Modifier
from menus.menu_pool import menu_pool

from cms.models import Page

class MyMode(Modifier):
"""

"""
def modify(self, request, nodes, namespace, root_id, post_cut, breadcrumb):

if the menu is not yet cut, don't do anything
if post_cut:

return nodes
otherwise loop over the nodes
for node in nodes:

does this node represent a Page?
if node.attr["is_page"]:

if so, put its changed_by attribute on the node
node.attr["changed_by"] = Page.objects.get(id=node.id).changed_by

return nodes

menu_pool.register_modifier(MyMode)

It has a method modify() that should return a list of NavigationNode instances. modify() should take
the following arguments:

request A Django request instance. You want to modify based on sessions, or user or permissions?

nodes All the nodes. Normally you want to return them again.

namespace A Menu Namespace. Only given if somebody requested a menu with only nodes from this names-
pace.

root_id Was a menu request based on an ID?

post_cut Every modifier is called two times. First on the whole tree. After that the tree gets cut to only show
the nodes that are shown in the current menu. After the cut the modifiers are called again with the final tree.
If this is the case post_cut is True.

breadcrumb Is this breadcrumb call rather than a menu call?

Here is an example of a built-in modifier that marks all node levels:

class Level(Modifier):
"""
marks all node levels
"""
post_cut = True

def modify(self, request, nodes, namespace, root_id, post_cut, breadcrumb):
if breadcrumb:

return nodes
for node in nodes:

if not node.parent:
if post_cut:

node.menu_level = 0
else:

node.level = 0
self.mark_levels(node, post_cut)

return nodes

def mark_levels(self, node, post_cut):
for child in node.children:

if post_cut:

52 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

child.menu_level = node.menu_level + 1
else:

child.level = node.level + 1
self.mark_levels(child, post_cut)

menu_pool.register_modifier(Level)

5.2.4 Apphooks

An apphook allows you to attach a Django application to a page. For example, you might have a news application
that you’d like integrated with django CMS. In this case, you can create a normal django CMS page without any
content of its own, and attach the news application to the page; the news application’s content will be delivered at
the page’s URL.

To create an apphook place a cms_apps.py in your application. And in it write the following:

from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool
from django.utils.translation import ugettext_lazy as _

class MyApphook(CMSApp):
name = _("My Apphook")
urls = ["myapp.urls"]

apphook_pool.register(MyApphook)

Note: Up to version 3.1 the module was named cms_app.py, please update your existing modules to the new
naming convention. Support for the old name will be removed in version 3.4.

Replace myapp.urls with the path to your applications urls.py. Now edit a page and open the advanced
settings tab. Select your new apphook under “Application”. Save the page.

Warning: Whenever you add or remove an apphook, change the slug of a page containing an apphook or the
slug if a page which has a descendant with an apphook, the server must restart to re-load the URL caches.
If you have the cms.middleware.utils.ApphookReloadMiddleware (recommended) installed, the server will
restart automatically. Otherwise, you will need to restart it manually.
If you have the
An apphook won’t appear until it is published. Take note that this also means all parent pages must also be
published.

Note: If at some point you want to remove this apphook after deleting the cms_apps.py there is a cms
management command called uninstall apphooks that removes the specified apphook(s) from all pages
by name. eg. manage.py cms uninstall apphooks MyApphook. To find all names for uninstallable
apphooks there is a command for this as well manage.py cms list apphooks.

If you attached the app to a page with the url /hello/world/ and the app has a urls.py that looks like this:

from django.conf.urls import *

urlpatterns = patterns('sampleapp.views',
url(r'^$', 'main_view', name='app_main'),
url(r'^sublevel/$', 'sample_view', name='app_sublevel'),

)

The main_view should now be available at /hello/world/ and the sample_view has the URL
/hello/world/sublevel/.

5.2. How-to guides 53

django cms Documentation, Release 3.2.5.post1

Note: CMS pages below the page to which the apphook is attached to, can be visible, provided that the apphook
urlconf regexps are not too greedy. From a URL resolution perspective, attaching an apphook works in same way
as inserting the apphook urlconf in the root urlconf at the same path as the page it’s attached to.

Note: All views that are attached like this must return a RequestContext instance instead of the default
Context instance.

Apphook menus

If you want to add a menu to that page as well that may represent some views in your app add it to your apphook
like this:

from myapp.menu import MyAppMenu

class MyApphook(CMSApp):
name = _("My Apphook")
urls = ["myapp.urls"]
menus = [MyAppMenu]

apphook_pool.register(MyApphook)

For an example if your app has a Category model and you want this category model to be displayed in the menu
when you attach the app to a page. We assume the following model:

from django.db import models
from django.core.urlresolvers import reverse
import mptt

class Category(models.Model):
parent = models.ForeignKey('self', blank=True, null=True)
name = models.CharField(max_length=20)

def __unicode__(self):
return self.name

def get_absolute_url(self):
return reverse('category_view', args=[self.pk])

try:
mptt.register(Category)

except mptt.AlreadyRegistered:
pass

We would now create a menu out of these categories:

from menus.base import NavigationNode
from menus.menu_pool import menu_pool
from django.utils.translation import ugettext_lazy as _
from cms.menu_bases import CMSAttachMenu
from myapp.models import Category

class CategoryMenu(CMSAttachMenu):

name = _("test menu")

def get_nodes(self, request):
nodes = []
for category in Category.objects.all().order_by("tree_id", "lft"):

54 Chapter 5. Table of contents

http://django.readthedocs.io/en/latest/ref/templates/api.html#django.template.RequestContext
http://django.readthedocs.io/en/latest/ref/templates/api.html#django.template.Context

django cms Documentation, Release 3.2.5.post1

node = NavigationNode(
category.name,
category.get_absolute_url(),
category.pk,
category.parent_id

)
nodes.append(node)

return nodes

menu_pool.register_menu(CategoryMenu)

If you add this menu now to your apphook:

from myapp.menus import CategoryMenu

class MyApphook(CMSApp):
name = _("My Apphook")
urls = ["myapp.urls"]
menus = [MyAppMenu, CategoryMenu]

You get the static entries of MyAppMenu and the dynamic entries of CategoryMenu both attached to the same
page.

Attaching an application multiple times

If you want to attach an application multiple times to different pages you have two different possibilities:

• Give every application its own namespace in the advanced settings of a page.

• Define an app_name attribute on the CMSApp class.

The problem is that if you only define a namespace you need to have multiple templates per attached app.

For example:

{% url 'my_view' %}

Will not work any more when you namespace an app. You will need to do something like:

{% url 'my_namespace:my_view' %}

The problem is now if you attach apps to multiple pages your namespace will change. The solution for this
problem is application namespaces.

If you’d like to use application namespaces to reverse the URLs related to your app, you can assign a value to the
app_name attribute of your app hook like this:

class MyNamespacedApphook(CMSApp):
name = _("My Namespaced Apphook")
urls = ["myapp.urls"]
app_name = "myapp_namespace"

apphook_pool.register(MyNamespacedApphook)

Note: If you do provide an app_name, then you will need to also give the app a unique namespace in the
Advanced settings of the page. If you do not, and no other instance of the app exists using it, then the ‘default
instance namespace’ will be automatically set for you. You can then either reverse for the namespace(to target
different apps) or the app_name (to target links inside the same app).

If you use app namespace you will need to give all your view context a current_app:

5.2. How-to guides 55

django cms Documentation, Release 3.2.5.post1

from django.core.urlresolvers import resolve
from django.shortcuts import render

def my_view(request):
request.current_app = resolve(request.path_info).namespace
return render(request, "my_template.html")

Note: You need to set the current_app explicitly in all your view contexts as Django does not allow any other
way of doing this.

You can reverse namespaced apps similarly and it “knows” in which app instance it is:

{% url myapp_namespace:app_main %}

If you want to access the same URL but in a different language use the language template tag:

{% load i18n %}
{% language "de" %}

{% url myapp_namespace:app_main %}
{% endlanguage %}

Note: The official Django documentation has more details about application and instance names-
paces, the current_app scope and the reversing of such URLs. You can look it up at
https://docs.djangoproject.com/en/dev/topics/http/urls/#url-namespaces

When using the reverse function, the current_app must be explicitly passed as an argument. You can do
so by looking up the current_app attribute of the request instance:

def myviews(request):
current_app = resolve(request.path_info).namespace

reversed_url = reverse('myapp_namespace:app_main',
current_app=current_app)

...

Or, if you are rendering a plugin, of the context instance:

class MyPlugin(CMSPluginBase):
def render(self, context, instance, placeholder):

...
current_app = resolve(request.path_info).namespace
reversed_url = reverse('myapp_namespace:app_main',

current_app=current_app)
...

Apphook permissions

By default all apphooks have the same permissions set as the page they are assigned to. So if you set login required
on page the attached apphook and all its urls have the same requirements.

To disable this behaviour set permissions = False on your apphook:

class SampleApp(CMSApp):
name = _("Sample App")
urls = ["project.sampleapp.urls"]
permissions = False

If you still want some of your views to have permission checks you can enable them via a decorator:

cms.utils.decorators.cms_perms

56 Chapter 5. Table of contents

https://docs.djangoproject.com/en/dev/topics/http/urls/#url-namespaces

django cms Documentation, Release 3.2.5.post1

Here is a simple example:

from cms.utils.decorators import cms_perms

@cms_perms
def my_view(request, **kw):

...

If you have your own permission check in your app, or just don’t want to wrap some nested apps with CMS
permission decorator, then use exclude_permissions property of the apphook:

class SampleApp(CMSApp):
name = _("Sample App")
urls = ["project.sampleapp.urls"]
permissions = True
exclude_permissions = ["some_nested_app"]

For example, django-oscar apphook integration needs to be used with exclude_permissions of the dash-
board app, because it uses the customisable access function. So, your apphook in this case will look like this:

class OscarApp(CMSApp):
name = _("Oscar")
urls = [

patterns('', *application.urls[0])
]
exclude_permissions = ['dashboard']

Automatically restart server on apphook changes

As mentioned above, whenever you:

• add or remove an apphook

• change the slug of a page containing an apphook

• change the slug of a page with a descendant with an apphook

The CMS the server will reload its URL caches. It does this by listening for the signal:
cms.signals.urls_need_reloading.

Warning: This signal does not actually do anything itself. For automated server restarting you need to
implement logic in your project that gets executed whenever this signal is fired. Because there are many ways
of deploying Django applications, there is no way we can provide a generic solution for this problem that will
always work.

Warning: The signal is fired after a request. If you change something via an API you’ll need a request for
the signal to fire.

5.2.5 Namespaced Apphooks

Namespaced configuration for apphooks allows to have multiple instances of the same app be used in different
locations in the page tree. This also provides the building blocks needed to have some extra configuration in the
database to control some aspects of each instance of the app.

We’ll illustrate this example with a new application.

Basic concepts

The concept of apphook configuration is to store all the configuration in an applications-specific model, and let
the developer specify the desired options in a form. In the views the configuration model instance specific for

5.2. How-to guides 57

https://github.com/tangentlabs/django-oscar
https://github.com/tangentlabs/django-oscar/blob/0.7.2/oscar/apps/dashboard/nav.py#L57

django cms Documentation, Release 3.2.5.post1

the current application namespace is loaded (through a mixin) and thus it is available in the view to provide the
configuration for the current namespace.

Namespaces can be created on the fly in the Page admin Advanced settings.

When creating an application configuration, you are in fact defining a namespace, which is saved in the same field
in the Page model as the plain namespaces.

step-by-step implementation

We’re going to create a new application called FAQ. It is a simple list of Frequently asked questions. And we’ll
make it possible to setup multiple sets of FAQ Entries at different locations of the page tree, each with its individual
set of entries.

Lets create our new FAQ app:

python manage.py startapp faq

models.py:

from aldryn_apphooks_config.fields import AppHookConfigField
from aldryn_apphooks_config.managers import AppHookConfigManager
from django.db import models
from faq.cms_appconfig import FaqConfig

class Entry(models.Model):
app_config = AppHookConfigField(FaqConfig)
question = models.TextField(blank=True, default='')
answer = models.TextField()

objects = AppHookConfigManager()

def __unicode__(self):
return self.question

class Meta:
verbose_name_plural = 'entries'

The app_config field is essentially a ForeignKey to a model we’ll define in the next step. That model will
hold the specific namespace configuration and allows to assign an Entry to a namespace.

The custom AppHookConfigManager simply makes the default queryset easily filterable by the namespace
like this: Entry.objects.namespace(’foobar’).

Next lets define the AppHookConfig model (in cms_appconfig.py):

from aldryn_apphooks_config.models import AppHookConfig
from aldryn_apphooks_config.utils import setup_config
from app_data import AppDataForm
from django.db import models
from django import forms
from django.utils.translation import ugettext_lazy as _

class FaqConfig(AppHookConfig):
paginate_by = models.PositiveIntegerField(

_('Paginate size'),
blank=False,
default=5,

)

class FaqConfigForm(AppDataForm):

58 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

title = forms.CharField()
setup_config(FaqConfigForm, FaqConfig)

The implementation can be completely empty as the minimal schema is defined in the parent (abstract) model.

In this case we’re defining a few extra fields though. We’re defining paginate_by as a normal model field. We’ll
use it later to control how many entries should be displayed per page. For the title, we’re using a AppDataForm
(see django-appdata). These forms can also be extended from other applications by just registering them. So other
apps can add fields without altering the model (it’s saved in a json field). The title field could also just be a model
field, like paginate_by. But we’re using the AppDataForm to demonstrate this capability.

In admin.py we need to define all fields we’d like to display:

from django.contrib import admin
from .cms_appconfig import FaqConfig
from .models import Entry
from aldryn_apphooks_config.admin import ModelAppHookConfig, BaseAppHookConfig

class EntryAdmin(ModelAppHookConfig, admin.ModelAdmin):
list_display = (

'question',
'answer',
'app_config',

)
list_filter = (

'app_config',
)

admin.site.register(Entry, EntryAdmin)

class FaqConfigAdmin(BaseAppHookConfig, admin.ModelAdmin):
def get_config_fields(self):

return (
'paginate_by',
'config.title',

)
admin.site.register(FaqConfig, FaqConfigAdmin)

get_config_fields defines the fields that should be displayed. Any fields using the AppData forms need to
be prefixed by config..

Now lets create the apphook with appconfig support (cms_apps.py):

from aldryn_apphooks_config.app_base import CMSConfigApp
from cms.apphook_pool import apphook_pool
from django.utils.translation import ugettext_lazy as _
from .cms_appconfig import FaqConfig

class FaqApp(CMSConfigApp):
name = _("Faq App")
urls = ["faq.urls"]
app_name = "faq"
app_config = FaqConfig

apphook_pool.register(FaqApp)

We have all the basics in place. Now we’ll add a list view for the FAQ entries that only displays entries for the
currently used namespace (views.py):

from aldryn_apphooks_config.mixins import AppConfigMixin
from django.views import generic
from .models import Entry

5.2. How-to guides 59

django cms Documentation, Release 3.2.5.post1

class IndexView(AppConfigMixin, generic.ListView):
model = Entry
template_name = 'faq/index.html'

def get_queryset(self):
qs = super(IndexView, self).get_queryset()
return qs.namespace(self.namespace)

def get_paginate_by(self, queryset):
try:

return self.config.paginate_by
except AttributeError:

return 10

AppConfigMixin provides a complete support to namespaces, so the view is not required to set anything specific
to support them; the following attributes are set for the view class instance:

• current namespace in self.namespace

• namespace configuration (the instance of FaqConfig) in self.config

• current application in the current_app parameter passed to the Response class

In this case we’re filtering to only show entries assigned to the current namespace in
get_queryset. There is no magic behind qs.namespace, it could have also been written as
qs.filter(app_config__namespace=self.namespace).

In get_paginate_by we use the value from our appconfig model.

And now for the rest of the missing files of the FAQ app.

And the template (faq/templates/faq/index.html):

{% extends 'base.html' %}

{% block content %}
<h1>{{ view.config.title }}</h1>
<p>Namespace: {{ view.namespace }}</p>
<dl>

{% for entry in object_list %}
<dt>{{ entry.question }}</dt>
<dd>{{ entry.answer }}</dd>

{% endfor %}
</dl>

{% if is_paginated %}
<div class="pagination">

{% if page_obj.has_previous %}

previous
{% else %}

previous
{% endif %}

Page {{ page_obj.number }} of {{ page_obj.paginator.num_pages }}.

{% if page_obj.has_next %}
next

{% else %}
next

{% endif %}

60 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

</div>
{% endif %}

{% endblock %}

urls.py:

from django.conf.urls import patterns, url
from . import views

urlpatterns = patterns('',
url(r'^$', views.IndexView.as_view(), name='index'),

)

Finally, lets add faq to INSTALLED_APPS and create a migrations:

python manage.py makemigrations faq
python manage.py migrate faq

Now we should be all set. Create two pages with the faq apphook with different namespaces and different
configurations. Also create some entries assigned to the two namespaces. Don’t forget to publish the pages with
the apphook and restart the server.

5.2.6 Working with templates

Application can reuse cms templates by mixing cms template tags and normal django templating language.

static_placeholder

Plain placeholder cannot be used in templates used by external applications, use static_placeholder
instead.

CMS_TEMPLATE

New in version 3.0.

CMS_TEMPLATE is a context variable available in the context; it contains the template path for CMS pages and
application using apphooks, and the default template (i.e.: the first template in CMS_TEMPLATES) for non-CMS
managed URLs.

This is mostly useful to use it in the extends template tag in the application templates to get the current page
template.

Example: cms template

{% load cms_tags %}
<html>

<body>
{% cms_toolbar %}
{% block main %}
{% placeholder "main" %}
{% endblock main %}
</body>

</html>

Example: application template

{% extends CMS_TEMPLATE %}
{% load cms_tags %}
{% block main %}
{% for item in object_list %}

5.2. How-to guides 61

django cms Documentation, Release 3.2.5.post1

{{ item }}
{% endfor %}
{% static_placeholder "sidebar" %}
{% endblock main %}

CMS_TEMPLATE memorises the path of the cms template so the application template can dynamically import it.

render_model

New in version 3.0.

render_model allows to edit the django models from the frontend by reusing the django CMS frontend editor.

5.2.7 Extending the page & title models

New in version 3.0.

You can extend the page and title models with your own fields (e.g. adding an icon for every page) by using
the extension models: cms.extensions.PageExtension and cms.extensions.TitleExtension,
respectively.

Title vs Page extensions

The difference between a page extension and a title extension is related to the difference between the Page and
Title models.

Titles support pages by providing a storage mechanism, amongst other things, for language-specific properties
of Pages. So, if you find that you need to extend the page model in a language-specific manner - for example,
if you need to create language-specific keywords for each language of your pages - then you may need to use a
TitleExtension.

On the other hand if the extension you’d like to create is the same for all of the different languages of the page,
then you may be fine using a PageExtension.

Implement a basic extension

Three basic steps are required:

• add the extension model

• add the extension admin

• add a toolbar menu item for the extension

The model

To add a field to the page model, create a class that inherits from cms.extensions.PageExtension. Make
sure to import the cms.extensions.PageExtension model. Your class should live in one of your apps’
models.py (or module).

Note: Since PageExtension (and TitleExtension) inherit from django.db.models.Model, you
are free to add any field you want but make sure you don’t use a unique constraint on any of your added fields
because uniqueness prevents the copy mechanism of the extension from working correctly. This means that you
can’t use one-to-one relations on the extension model.

Finally, you’ll need to register the model using extension_pool.

62 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

Here’s a simple example which adds an icon field to the page:

from django.db import models

from cms.extensions import PageExtension
from cms.extensions.extension_pool import extension_pool

class IconExtension(PageExtension):
image = models.ImageField(upload_to='icons')

extension_pool.register(IconExtension)

Of course, you will need to make and run a migration for this new model.

The admin

To make your extension editable, you must first create an admin class that sub-classes
cms.extensions.PageExtensionAdmin. This admin handles page permissions.

Note: If you want to use your own admin class, make sure to exclude the live versions of the extensions by using
filter(extended_page__publisher_is_draft=True) on the queryset.

Continuing with the example model above, here’s a simple corresponding PageExtensionAdmin class:

from django.contrib import admin
from cms.extensions import PageExtensionAdmin

from .models import IconExtension

class IconExtensionAdmin(PageExtensionAdmin):
pass

admin.site.register(IconExtension, IconExtensionAdmin)

Since PageExtensionAdmin inherits from ModelAdmin, you’ll be able to use the normal set of Django
ModelAdmin properties appropriate to your needs.

Once you’ve registered your admin class, a new model will appear in the top- level admin list.

Note: Note that the field that holds the relationship between the extension and a CMS Page is non-editable, so it
does not appear directly in the Page admin views. This may be addressed in a future update, but in the meantime
the toolbar provides access to it.

The toolbar item

You’ll also want to make your model editable from the cms toolbar in order to associate each instance of the
extension model with a page.

To add toolbar items for your extension create a file named cms_toolbars.py in one of your apps, and add
the relevant menu entries for the extension on each page.

Here’s a simple version for our example:

from cms.toolbar_pool import toolbar_pool
from cms.extensions.toolbar import ExtensionToolbar
from django.utils.translation import ugettext_lazy as _

5.2. How-to guides 63

django cms Documentation, Release 3.2.5.post1

from .models import IconExtension

@toolbar_pool.register
class IconExtensionToolbar(ExtensionToolbar):

defines the model for the current toolbar
model = IconExtension

def populate(self):
setup the extension toolbar with permissions and sanity checks
current_page_menu = self._setup_extension_toolbar()
if it's all ok
if current_page_menu:

retrieves the instance of the current extension (if any) and the toolbar item URL
page_extension, url = self.get_page_extension_admin()
if url:

adds a toolbar item
current_page_menu.add_modal_item(_('Page Icon'), url=url,

disabled=not self.toolbar.edit_mode)

Note: For a title extension, the populate() method above would need to loop over the titles for the page:

def populate(self):
setup the extension toolbar with permissions and sanity checks
current_page_menu = self._setup_extension_toolbar()
if it's all ok
if current_page_menu and self.toolbar.edit_mode:

create a sub menu
position = 0
sub_menu = self._get_sub_menu(current_page_menu, 'submenu_label', 'Submenu', position)
retrieves the instances of the current title extension (if any) and the toolbar item URL
urls = self.get_title_extension_admin()
cycle through the title list
for title_extension, url in urls:

adds toolbar items
sub_menu.add_modal_item('icon for title %s' % self._page().get_title(),

url=url, disabled=not self.toolbar.edit_mode)

Otherwise, the implementation is similar.

Using extensions

In templates

To access a page extension in page templates you can simply access the appropriate related_name field that is now
available on the Page object.

As per the normal related_name naming mechanism, the appropriate field to access is the same as
your PageExtension model name, but lowercased. Assuming your Page Extension model class is
IconExtension, the relationship to the page extension model will be available on page.iconextension.
From there you can access the extra fields you defined in your extension, so you can use something like:

{% load staticfiles %}

{# rest of template omitted ... #}

{% if request.current_page.iconextension %}

{% endif %}

64 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

where request.current_page is the normal way to access the current page that is rendering the template.

It is important to remember that unless the operator has already assigned a page extension to every page, a
page may not have the iconextension relationship available, hence the use of the {% if ... %}...{%
endif %} above.

With menus

Like most other Page attributes, extensions are not represented in the menu NavigationNodes, and therefore
menu templates will not have access to them by default.

In order to make the extension accessible, you’ll need to create a menu modifier (see the example provided) that
does this.

Each page extension instance has a one-to-one relationship with its page. Get the extension by using the reverse
relation, along the lines of extension = page.yourextensionlowercased, and place this attribute of
page on the node - as (for example) node.extension.

In the menu template the icon extension we created above would therefore be available as
child.extension.icon.

Handling relations

If your PageExtension or TitleExtension includes a ForeignKey from another model or includes
a ManyToMany field, you should also override the method copy_relations(self, oldinstance,
language) so that these fields are copied appropriately when the CMS makes a copy of your extension to
support versioning, etc.

Here’s an example that uses a ManyToMany‘ field:

from django.db import models
from cms.extensions import PageExtension
from cms.extensions.extension_pool import extension_pool

class MyPageExtension(PageExtension):

page_categories = models.ManyToMany('categories.Category', blank=True, null=True)

def copy_relations(self, oldinstance, language):
for page_category in oldinstance.page_categories.all():

page_category.pk = None
page_category.mypageextension = self
page_category.save()

extension_pool.register(MyPageExtension)

Complete toolbar API

The example above uses the Simplified Toolbar API.

If you need complete control over the layout of your extension toolbar items you can still use the low-level API to
edit the toolbar according to your needs:

from cms.api import get_page_draft
from cms.toolbar_pool import toolbar_pool
from cms.toolbar_base import CMSToolbar
from cms.utils import get_cms_setting
from cms.utils.permissions import has_page_change_permission
from django.core.urlresolvers import reverse, NoReverseMatch
from django.utils.translation import ugettext_lazy as _

5.2. How-to guides 65

django cms Documentation, Release 3.2.5.post1

from .models import IconExtension

@toolbar_pool.register
class IconExtensionToolbar(CMSToolbar):

def populate(self):
always use draft if we have a page
self.page = get_page_draft(self.request.current_page)

if not self.page:
Nothing to do
return

check global permissions if CMS_PERMISSION is active
if get_cms_setting('PERMISSION'):

has_global_current_page_change_permission = has_page_change_permission(self.request)
else:

has_global_current_page_change_permission = False
check if user has page edit permission

can_change = self.request.current_page and self.request.current_page.has_change_permission(self.request)
if has_global_current_page_change_permission or can_change:

try:
icon_extension = IconExtension.objects.get(extended_object_id=self.page.id)

except IconExtension.DoesNotExist:
icon_extension = None

try:
if icon_extension:

url = reverse('admin:myapp_iconextension_change', args=(icon_extension.pk,))
else:

url = reverse('admin:myapp_iconextension_add') + '?extended_object=%s' % self.page.pk
except NoReverseMatch:

not in urls
pass

else:
not_edit_mode = not self.toolbar.edit_mode
current_page_menu = self.toolbar.get_or_create_menu('page')
current_page_menu.add_modal_item(_('Page Icon'), url=url, disabled=not_edit_mode)

Now when the operator invokes “Edit this page...” from the toolbar, there will be an additional menu item Page
Icon ... (in this case), which can be used to open a modal dialog where the operator can affect the new icon
field.

Note that when the extension is saved, the corresponding page is marked as having unpublished changes. To see
the new extension values publish the page.

Simplified Toolbar API

The simplified Toolbar API works by deriving your toolbar class from ExtensionToolbar which provides
the following API:

• cms.extensions.toolbar.ExtensionToolbar._setup_extension_toolbar(): this
must be called first to setup the environment and do the permission checking;

• cms.extensions.toolbar.ExtensionToolbar.get_page_extension_admin(): for
page extensions, retrieves the correct admin URL for the related toolbar item; returns the extension instance
(or None if not exists) and the admin URL for the toolbar item;

• cms.extensions.toolbar.ExtensionToolbar.get_title_extension_admin(): for
title extensions, retrieves the correct admin URL for the related toolbar item; returns a list of the exten-
sion instances (or None if not exists) and the admin urls for each title of the current page;

66 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

5.2.8 Extending the Toolbar

New in version 3.0.

You can add and remove toolbar items. This allows you to integrate django CMS’s frontend editing mode into
your application, and provide your users with a streamlined editing experience.

For the toolbar API reference, please refer to cms.toolbar.

Important: Overlay and sideframe

Then django CMS sideframe has been replaced with an overlay mechanism. The API still refers to the
sideframe, because it is invoked in the same way, and what has changed is merely the behaviour in the user’s
browser.

In other words, sideframe and the overlay refer to different versions of the same thing.

Registering

There are two ways to control what gets shown in the toolbar.

One is the CMS_TOOLBARS. This gives you full control over which classes are loaded, but requires that you
specify them all manually.

The other is to provide cms_toolbars.py files in your apps, which will be automatically loaded as long
CMS_TOOLBARS is not set (or is set to None).

If you use the automated way, your cms_toolbars.py file should contain
classes that extend cms.toolbar_base.CMSToolbar and are registered using
cms.toolbar_pool.toolbar_pool.register(). The register function can be used as a decora-
tor.

These classes have four attributes: * toolbar (the toolbar object) * request (the current request) *
is_current_app (a flag indicating whether the current request is handled by the same app as the function
is in) * app_path (the name of the app used for the current request)

These classes must implement a populate or post_template_populate function. An optional
request_hook function is available for you to overwrite as well.

• The populate functions will only be called if the current user is a staff user.

• The populate function will be called before the template and plugins are rendered.

• The post_template_populate function will be called after the template is rendered.

• The request_hook function is called before the view and may return a response. This way you can issue
redirects from a toolbar if needed

These classes can define an optional supported_apps attribute, specifying which applications the toolbar will
work with. This is useful when the toolbar is defined in a different application from the views it’s related to.

supported_apps is a tuple of application dotted paths (e.g: supported_apps =
(’whatever.path.app’, ’another.path.app’).

A simple example, registering a class that does nothing:

from cms.toolbar_pool import toolbar_pool
from cms.toolbar_base import CMSToolbar

@toolbar_pool.register
class NoopModifier(CMSToolbar):

def populate(self):
pass

5.2. How-to guides 67

django cms Documentation, Release 3.2.5.post1

def post_template_populate(self):
pass

def request_hook(self):
pass

Note: Up to version 3.1 the module was named cms_toolbar.py. Please update your existing modules to the
new naming convention. Support for the old name will be removed in version 3.4.

Warning: As the toolbar passed to post_template_populate has been already populated with items
from other applications, it might contain different items when processed by populate.

Tip: You can change the toolbar or add items inside a plugin render method
(context[’request’].toolbar) or inside a view (request.toolbar)

Adding items

Items can be added through the various APIs exposed by the toolbar and its items.

To add a cms.toolbar.items.Menu to the toolbar, use cms.toolbar.toolbar.CMSToolbar.get_or_create_menu().

Then, to add a link to your changelist that will open in the sideframe, use the
cms.toolbar.items.ToolbarMixin.add_sideframe_item() method on the menu object re-
turned.

When adding items, all arguments other than the name or identifier should be given as keyword arguments. This
will help ensure that your custom toolbar items survive upgrades.

Following our Extending the Toolbar, let’s add the poll app to the toolbar:

from django.core.urlresolvers import reverse
from django.utils.translation import ugettext_lazy as _
from cms.toolbar_pool import toolbar_pool
from cms.toolbar_base import CMSToolbar

@toolbar_pool.register
class PollToolbar(CMSToolbar):

def populate(self):
if self.is_current_app:

menu = self.toolbar.get_or_create_menu('poll-app', _('Polls'))
url = reverse('admin:polls_poll_changelist')
menu.add_sideframe_item(_('Poll overview'), url=url)

However, there’s already a menu added by the CMS which provides access to various admin views, so you might
want to add your menu as a sub menu there. To do this, you can use positional insertion coupled with the fact that
cms.toolbar.toolbar.CMSToolbar.get_or_create_menu() will return already existing menus:

from django.core.urlresolvers import reverse
from django.utils.translation import ugettext_lazy as _
from cms.toolbar_pool import toolbar_pool
from cms.toolbar.items import Break
from cms.cms_toolbars import ADMIN_MENU_IDENTIFIER, ADMINISTRATION_BREAK
from cms.toolbar_base import CMSToolbar

@toolbar_pool.register
class PollToolbar(CMSToolbar):

68 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

def populate(self):
admin_menu = self.toolbar.get_or_create_menu(ADMIN_MENU_IDENTIFIER, _('Site'))
position = admin_menu.find_first(Break, identifier=ADMINISTRATION_BREAK)
menu = admin_menu.get_or_create_menu('poll-menu', _('Polls'), position=position)
url = reverse('admin:polls_poll_changelist')
menu.add_sideframe_item(_('Poll overview'), url=url)
admin_menu.add_break('poll-break', position=menu)

If you wish to simply detect the presence of a menu without actually creating it, you can use
cms.toolbar.toolbar.CMSToolbar.get_menu(), which will return the menu if it is present, or, if
not, will return None.

Modifying an existing toolbar

If you need to modify an existing toolbar (say to change the supported_apps attribute) you can do this by
extending the original one, and modifying the appropriate attribute.

If CMS_TOOLBARS is used to register the toolbars, add your own toolbar instead of the original one, otherwise
unregister the original and register your own:

from cms.toolbar_pool import toolbar_pool
from third.party.app.cms.toolbar_base import FooToolbar

@toolbar_pool.register
class BarToolbar(FooToolbar):

supported_apps = ('third.party.app', 'your.app')

toolbar_pool.unregister(FooToolbar)

Adding Items Alphabetically

Sometimes it is desirable to add sub-menus from different applications alphabetically. This can be challenging
due to the non-obvious manner in which your apps will be loaded into Django and is further complicated when
you add new applications over time.

To aid developers, django-cms exposes a cms.toolbar.items.ToolbarMixin.get_alphabetical_insert_position()
method, which, if used consistently, can produce alphabetised sub-menus, even when they come from multiple
applications.

An example is shown here for an ‘Offices’ app, which allows handy access to certain admin functions for managing
office locations in a project:

from django.core.urlresolvers import reverse
from django.utils.translation import ugettext_lazy as _
from cms.toolbar_base import CMSToolbar
from cms.toolbar_pool import toolbar_pool
from cms.toolbar.items import Break, SubMenu
from cms.cms_toolbars import ADMIN_MENU_IDENTIFIER, ADMINISTRATION_BREAK

@toolbar_pool.register
class OfficesToolbar(CMSToolbar):

def populate(self):
#
'Apps' is the spot on the existing djang-cms toolbar admin_menu
'where we'll insert all of our applications' menus.
#
admin_menu = self.toolbar.get_or_create_menu(

ADMIN_MENU_IDENTIFIER, _('Apps')
)

5.2. How-to guides 69

django cms Documentation, Release 3.2.5.post1

#
Let's check to see where we would insert an 'Offices' menu in the
admin_menu.
#
position = admin_menu.get_alphabetical_insert_position(

_('Offices'),
SubMenu

)

#
If zero was returned, then we know we're the first of our
applications' menus to be inserted into the admin_menu, so, here
we'll compute that we need to go after the first
ADMINISTRATION_BREAK and, we'll insert our own break after our
section.
#
if not position:

OK, use the ADMINISTRATION_BREAK location + 1
position = admin_menu.find_first(

Break,
identifier=ADMINISTRATION_BREAK

) + 1
Insert our own menu-break, at this new position. We'll insert
all subsequent menus before this, so it will ultimately come
after all of our applications' menus.
admin_menu.add_break('custom-break', position=position)

OK, create our office menu here.
office_menu = admin_menu.get_or_create_menu(

'offices-menu',
_('Offices ...'),
position=position

)

Let's add some sub-menus to our office menu that help our users
manage office-related things.

Take the user to the admin-listing for offices...
url = reverse('admin:offices_office_changelist')
office_menu.add_sideframe_item(_('Offices List'), url=url)

Display a modal dialogue for creating a new office...
url = reverse('admin:offices_office_add')
office_menu.add_modal_item(_('Add New Office'), url=url)

Add a break in the sub-menus
office_menu.add_break()

More sub-menus...
url = reverse('admin:offices_state_changelist')
office_menu.add_sideframe_item(_('States List'), url=url)

url = reverse('admin:offices_state_add')
office_menu.add_modal_item(_('Add New State'), url=url)

Here is the resulting toolbar (with a few other menus sorted alphabetically beside it)

70 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

Adding items through views

Another way to add items to the toolbar is through our own views (polls/views.py). This method can be
useful if you need to access certain variables, in our case e.g. the selected poll and its sub-methods:

from django.core.urlresolvers import reverse
from django.shortcuts import get_object_or_404, render
from django.utils.translation import ugettext_lazy as _

from polls.models import Poll

def detail(request, poll_id):
poll = get_object_or_404(Poll, pk=poll_id)
menu = request.toolbar.get_or_create_menu('polls-app', _('Polls'))
menu.add_modal_item(_('Change this Poll'), url=reverse('admin:polls_poll_change', args=[poll_id]))
menu.add_sideframe_item(_('Show History of this Poll'), url=reverse('admin:polls_poll_history', args=[poll_id]))
menu.add_sideframe_item(_('Delete this Poll'), url=reverse('admin:polls_poll_delete', args=[poll_id]))

return render(request, 'polls/detail.html', {'poll': poll})

Detecting URL changes Sometimes toolbar entries allow you to change the URL of the current object displayed
in the website.

For example, suppose you are viewing a blog entry, and the toolbar allows the blog slug or URL to be edited.
The toolbar will watch the django.contrib.admin.models.LogEntry model and detect if you create
or edit an object in the admin via modal or sideframe view. After the modal or sideframe closes it will redirect to
the new URL of the object.

5.2. How-to guides 71

django cms Documentation, Release 3.2.5.post1

To set this behaviour manually you can set the request.toolbar.set_object() function on which you
can set the current object.

Example:

def detail(request, poll_id):
poll = get_object_or_404(Poll, pk=poll_id)
if hasattr(request, 'toolbar'):

request.toolbar.set_object(poll)
return render(request, 'polls/detail.html', {'poll': poll})

If you want to watch for object creation or editing of models and redirect after they have been added or changed
add a watch_models attribute to your toolbar.

Example:

class PollToolbar(CMSToolbar):

watch_models = [Poll]

def populate(self):
...

After you add this every change to an instance of Poll via sideframe or modal window will trigger a redirect to the
URL of the poll instance that was edited, according to the toolbar status: if in draft mode the get_draft_url()
is returned (or get_absolute_url() if the former does not exists), if in live mode and the method exists
get_public_url() is returned.

Frontend

The toolbar adds a class cms-ready to the html tag when ready. Additionally we add
cms-toolbar-expanded when the toolbar is visible (expanded).

The toolbar also fires a JavaScript event called cms-ready on the document. You can listen to this event using
jQuery:

CMS.$(document).on('cms-ready', function () { ... });

5.2.9 Using South with django CMS

South is an incredible piece of software that lets you handle database migrations. This document is by no means
meant to replace the excellent documentation available online, but rather to give a quick primer on why you should
use South and how to get started quickly.

Installation

As always using Django and Python is a joy. Installing South is as simple as typing:

pip install South

Then, simply add south to the list of INSTALLED_APPS in your settings.py file.

Basic usage

For a very short crash course:

1. Instead of the initial manage.py syncdb command, simply run manage.py schemamigration
--initial <app name>. This will create a new migrations package, along with a new migration file
(in the form of a python script).

72 Chapter 5. Table of contents

http://south.aeracode.org/docs/index.html
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS

django cms Documentation, Release 3.2.5.post1

2. Run the migration using manage.py migrate. Your tables will be created in the database and Django
will work as usual.

3. Whenever you make changes to your models.py file, run manage.py schemamigration --auto
<app name> to create a new migration file. Next run manage.py migrate to apply the newly created
migration.

More information about South

Obviously, South is a very powerful tool and this simple crash course is only the very tip of the iceberg. Readers
are highly encouraged to have a quick glance at the excellent official South documentation.

5.2.10 Testing Your Extensions

Testing Apps

Resolving View Names

Your apps need testing, but in your live site they aren’t in urls.py as they are attached to a CMS page. So if
you want to be able to use reverse() in your tests, or test templates that use the url template tag, you need to
hook up your app to a special test version of urls.py and tell your tests to use that.

So you could create myapp/tests/urls.py with the following code:

from django.contrib import admin
from django.conf.urls import url, include

urlpatterns = [
url(r'^admin/', include(admin.site.urls)),
url(r'^myapp/', include('myapp.urls')),
url(r'', include('cms.urls')),

]

And then in your tests you can plug this in with the override_settings() decorator:

from django.test.utils import override_settings
from cms.test_utils.testcases import CMSTestCase

class MyappTests(CMSTestCase):

@override_settings(ROOT_URLCONF='myapp.tests.urls')
def test_myapp_page(self):

test_url = reverse('myapp_view_name')
rest of test as normal

If you want to the test url conf throughout your test class, then you can use apply the decorator to the whole class:

from django.test.utils import override_settings
from cms.test_utils.testcases import CMSTestCase

@override_settings(ROOT_URLCONF='myapp.tests.urls')
class MyappTests(CMSTestCase):

def test_myapp_page(self):
test_url = reverse('myapp_view_name')
rest of test as normal

5.2. How-to guides 73

http://south.aeracode.org/docs/index.html
http://django.readthedocs.io/en/latest/ref/templates/builtins.html#std:templatetag-url

django cms Documentation, Release 3.2.5.post1

CMSTestCase

Django CMS includes CMSTestCase which has various utility methods that might be useful for testing your
CMS app and manipulating CMS pages.

Testing Plugins

To test plugins, you need to assign them to a placeholder. Depending on at what level you want to test your plugin,
you can either check the HTML generated by it or the context provided to its template:

from django.test import TestCase

from cms.api import add_plugin
from cms.models import Placeholder

from myapp.cms_plugins import MyPlugin
from myapp.models import MyappPlugin

class MypluginTests(TestCase):
def test_plugin_context(self):

placeholder = Placeholder.objects.create(slot='test')
model_instance = add_plugin(

placeholder,
MyPlugin,
'en',

)
plugin_instance = model_instance.get_plugin_class_instance()
context = plugin_instance.render({}, model_instance, None)
self.assertIn('key', context)
self.assertEqual(context['key'], 'value')

def test_plugin_html(self):
placeholder = Placeholder.objects.create(slot='test')
model_instance = add_plugin(

placeholder,
MyPlugin,
'en',

)
html = model_instance.render_plugin({})
self.assertEqual(html, 'Test')

5.2.11 Placeholders outside the CMS

Placeholders are special model fields that django CMS uses to render user-editable content (plugins) in templates.
That is, it’s the place where a user can add text, video or any other plugin to a webpage, using the same frontend
editing as the CMS pages.

Placeholders can be viewed as containers for CMSPlugin instances, and can be used outside the CMS in custom
applications using the PlaceholderField.

By defining one (or several) PlaceholderField on a custom model you can take advantage of the full power
of CMSPlugin.

Get started

You need to define a PlaceholderField on the model you would like to use:

from django.db import models
from cms.models.fields import PlaceholderField

74 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

class MyModel(models.Model):
your fields
my_placeholder = PlaceholderField('placeholder_name')
your methods

The PlaceholderField has one required parameter, a string slotname.

The slotname is used in templates, to determine where the placeholder’s plugins should appear in the page, and
in the placeholder configuration CMS_PLACEHOLDER_CONF, which determines which plugins may be inserted
into this placeholder.

You can also use a callable for the slotname, as in:

from django.db import models
from cms.models.fields import PlaceholderField

def my_placeholder_slotname(instance):
return 'placeholder_name'

class MyModel(models.Model):
your fields
my_placeholder = PlaceholderField(my_placeholder_slotname)
your methods

Warning: For security reasons the related_name for a PlaceholderField may not be suppressed using
’+’; this allows the cms to check permissions properly. Attempting to do so will raise a ValueError.

Note: If you add a PlaceholderField to an existing model, you’ll be able to see the placeholder in the frontend
editor only after saving the relevant instance.

Admin Integration

Changed in version 3.0.

Your model with PlaceholderFields can still be edited in the admin. However, any PlaceholderFields in
it will only be available for editing from the frontend. PlaceholderFields must not be present in any
fieldsets, fields, form or other ModelAdmin field’s definition attribute.

To provide admin support for a model with a PlaceholderField in your application’s admin, you
need to use the mixin PlaceholderAdminMixin along with the ModelAdmin. Note that the
PlaceholderAdminMixin must precede the ModelAdmin in the class definition:

from django.contrib import admin
from cms.admin.placeholderadmin import PlaceholderAdminMixin
from myapp.models import MyModel

class MyModelAdmin(PlaceholderAdminMixin, admin.ModelAdmin):
pass

admin.site.register(MyModel, MyModelAdmin)

I18N Placeholders

Out of the box PlaceholderAdminMixin supports multiple languages and will
display language tabs. If you extend your model admin class derived from
PlaceholderAdminMixin and overwrite change_form_template have a look at

5.2. How-to guides 75

https://docs.python.org/3/library/exceptions.html#ValueError
http://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin

django cms Documentation, Release 3.2.5.post1

admin/placeholders/placeholder/change_form.html to see how to display the language
tabs.

If you need other fields translated as well, django CMS has support for django-hvad. If you use a
TranslatableModel model be sure to not include the placeholder fields amongst the translated fields:

class MultilingualExample1(TranslatableModel):
translations = TranslatedFields(

title=models.CharField('title', max_length=255),
description=models.CharField('description', max_length=255),

)
placeholder_1 = PlaceholderField('placeholder_1')

def __unicode__(self):
return self.title

Be sure to combine both hvad’s TranslatableAdmin and PlaceholderAdminMixin when registering
your model with the admin site:

from cms.admin.placeholderadmin import PlaceholderAdminMixin
from django.contrib import admin
from hvad.admin import TranslatableAdmin
from myapp.models import MultilingualExample1

class MultilingualModelAdmin(TranslatableAdmin, PlaceholderAdminMixin, admin.ModelAdmin):
pass

admin.site.register(MultilingualExample1, MultilingualModelAdmin)

Templates

To render the placeholder in a template you use the render_placeholder tag from the cms_tags template
tag library:

{% load cms_tags %}

{% render_placeholder mymodel_instance.my_placeholder "640" %}

The render_placeholder tag takes the following parameters:

• PlaceholderField instance

• width parameter for context sensitive plugins (optional)

• language keyword plus language-code string to render content in the specified language (optional)

The view in which you render your placeholder field must return the request object in the context. This is
typically achieved in Django applications by using RequestContext:

from django.shortcuts import get_object_or_404, render

def my_model_detail(request, id):
object = get_object_or_404(MyModel, id=id)
return render(request, 'my_model_detail.html', {

'object': object,
})

If you want to render plugins from a specific language, you can use the tag like this:

{% load cms_tags %}

{% render_placeholder mymodel_instance.my_placeholder language 'en' %}

76 Chapter 5. Table of contents

https://github.com/kristianoellegaard/django-hvad

django cms Documentation, Release 3.2.5.post1

Adding content to a placeholder

Changed in version 3.0.

Placeholders can be edited from the frontend by visiting the page displaying your model (where you put the
render_placeholder tag), then appending ?edit to the page’s URL.

This will make the frontend editor top banner appear (and if necessary will require you to login).

Once in frontend editing mode, the interface for your application’s PlaceholderFields will work in much
the same way as it does for CMS Pages, with a switch for Structure and Content modes and so on.

There is no automatic draft/live functionality for general Django models, so content is updated instantly whenever
you add/edit them.

Options

If you need to change ?edit to a custom string (say, ?admin_on) you may set
CMS_TOOLBAR_URL__EDIT_ON variable in your settings.py to "admin_on".

You may also change other URLs with similar settings:

• ?edit_off (CMS_TOOLBAR_URL__EDIT_OFF)

• ?build (CMS_TOOLBAR_URL__BUILD)

• ?toolbar_off (CMS_TOOLBAR_URL__DISABLE)

When changing these settings, please be careful because you might inadvertently replace reserved strings in system
(such as ?page). We recommended you use safely unique strings for this option (such as secret_admin or
company_name).

Permissions

To be able to edit a placeholder user must be a staff member and needs either edit permissions on the model that
contains the PlaceholderField, or permissions for that specific instance of that model. Required permissions
for edit actions are:

• to add: require add or change permission on related Model or instance.

• to change: require add or change permission on related Model or instance.

• to delete: require add or change or delete permission on related Model or instance.

With this logic, an user who can change a Model’s instance but can not add a new Model’s instance will be able
to add some placeholders or plugins to existing Model’s instances.

Model permissions are usually added through the default Django auth application and its admin interface.
Object-level permission can be handled by writing a custom authentication backend as described in django docs

For example, if there is a UserProfile model that contains a PlaceholderField then the custom backend
can refer to a has_perm method (on the model) that grants all rights to current user only based on the user’s
UserProfile object:

def has_perm(self, user_obj, perm, obj=None):
if not user_obj.is_staff:

return False
if isinstance(obj, UserProfile):

if user_obj.get_profile()==obj:
return True

return False

5.2. How-to guides 77

https://docs.djangoproject.com/en/1.7/topics/auth/customizing/#handling-object-permissions

django cms Documentation, Release 3.2.5.post1

5.2.12 Caching

Set-up

To setup caching configure a caching backend in django.

Details for caching can be found here: https://docs.djangoproject.com/en/dev/topics/cache/

In your middleware settings be sure to add django.middleware.cache.UpdateCacheMiddleware at
the first and django.middleware.cache.FetchFromCacheMiddleware at the last position:

MIDDLEWARE_CLASSES=[
'django.middleware.cache.UpdateCacheMiddleware',
...
'cms.middleware.language.LanguageCookieMiddleware',
'cms.middleware.user.CurrentUserMiddleware',
'cms.middleware.page.CurrentPageMiddleware',
'cms.middleware.toolbar.ToolbarMiddleware',
'django.middleware.cache.FetchFromCacheMiddleware',

],

Plugins

New in version 3.0.

Normally all plugins will be cached. If you have a plugin that is dynamic based on the current user or other
dynamic properties of the request set the cache=False attribute on the plugin class:

class MyPlugin(CMSPluginBase):
name = _("MyPlugin")
cache = False

Warning: If you disable a plugin cache be sure to restart the server and clear the cache afterwards.

Content Cache Duration

Default: 60

This can be changed in CMS_CACHE_DURATIONS

Settings

Caching is set default to true. Have a look at the following settings to enable/disable various caching behaviours:

• CMS_PAGE_CACHE

• CMS_PLACEHOLDER_CACHE

• CMS_PLUGIN_CACHE

5.2.13 Frontend editing for Page and Django models

New in version 3.0.

As well as PlaceholderFields, ‘ordinary’ Django model fields (both on CMS Pages and your own Django
models) can also be edited through django CMS’s frontend editing interface. This is very convenient for the user
because it saves having to switch between frontend and admin views.

78 Chapter 5. Table of contents

https://docs.djangoproject.com/en/dev/topics/cache/

django cms Documentation, Release 3.2.5.post1

Using this interface, model instance values that can be edited show the “Double-click to edit” hint on hover.
Double-clicking opens a pop-up window containing the change form for that model.

Note: This interface is not currently available for touch-screen users, but will be improved in future releases.

Warning: By default and for consistency with previous releases, templatetags used by this feature mark as
safe the content of the rendered model attribute. This may be a security risk if used on fields which may hold
non-trusted content. Be aware, and use the templatetags accordingly. To change this behaviour, set the setting:
CMS_UNESCAPED_RENDER_MODEL_TAGS to False.

Warning: This feature is only partially compatible with django-hvad: using render_model with hvad-
translated fields (say {% render_model object ’translated_field’ %} returns an error if the
hvad-enabled object does not exists in the current language. As a workaround render_model_icon can
be used instead.

Template tags

This feature relies on five template tags sharing common code. All require that you {% load cms_tags %}
in your template:

• render_model (for editing a specific field)

• render_model_block (for editing any of the fields in a defined block)

• render_model_icon (for editing a field represented by another value, such as an image)

• render_model_add (for adding an instance of the specified model)

• render_model_add_block (for adding an instance of the specified model)

Look at the tag-specific page for more detailed reference and discussion of limitations and caveats.

Page titles edit

For CMS pages you can edit the titles from the frontend; according to the attribute specified a default field, which
can also be overridden, will be editable.

Main title:

{% render_model request.current_page "title" %}

Page title:

{% render_model request.current_page "page_title" %}

Menu title:

{% render_model request.current_page "menu_title" %}

All three titles:

{% render_model request.current_page "titles" %}

You can always customise the editable fields by providing the edit_field parameter:

{% render_model request.current_page "title" "page_title,menu_title" %}

5.2. How-to guides 79

django cms Documentation, Release 3.2.5.post1

Page menu edit

By using the special keyword changelist as edit field the frontend editing will show the page tree; a common
pattern for this is to enable changes in the menu by wrapping the menu template tags:

{% render_model_block request.current_page "changelist" %}
<h3>Menu</h3>

{% show_menu 1 100 0 1 "sidebar_submenu_root.html" %}

{% endrender_model_block %}

Will render to:

<div class="cms-plugin cms-plugin-cms-page-changelist-1">
<h3>Menu</h3>

Home
another
[...]

</div>

Editing ‘ordinary’ Django models

As noted above, your own Django models can also present their fields for editing in the frontend. This is achieved
by using the FrontendEditableAdminMixin base class.

Note that this is only required for fields other than PlaceholderFields. PlaceholderFields are auto-
matically made available for frontend editing.

Configure the model’s admin class

Configure your admin class by adding the FrontendEditableAdminMixin mixin to it (see Django
admin documentation for general Django admin information):

from cms.admin.placeholderadmin import FrontendEditableAdminMixin
from django.contrib import admin

class MyModelAdmin(FrontendEditableAdminMixin, admin.ModelAdmin):
...

The ordering is important: as usual, mixins must come first.

Then set up the templates where you want to expose the model for editing, adding a render_model template
tag:

{% load cms_tags %}

{% block content %}
<h1>{% render_model instance "some_attribute" %}</h1>
{% endblock content %}

See templatetag reference for arguments documentation.

Selected fields edit

Frontend editing is also possible for a set of fields.

80 Chapter 5. Table of contents

http://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#module-django.contrib.admin
http://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#module-django.contrib.admin

django cms Documentation, Release 3.2.5.post1

Set up the admin You need to add to your model admin a tuple of fields editable from the frontend admin:

from cms.admin.placeholderadmin import FrontendEditableAdminMixin
from django.contrib import admin

class MyModelAdmin(FrontendEditableAdminMixin, admin.ModelAdmin):
frontend_editable_fields = ("foo", "bar")
...

Set up the template Then add comma separated list of fields (or just the name of one field) to the template tag:

{% load cms_tags %}

{% block content %}
<h1>{% render_model instance "some_attribute" "some_field,other_field" %}</h1>
{% endblock content %}

Special attributes

The attribute argument of the template tag is not required to be a model field, property or method can also be
used as target; in case of a method, it will be called with request as argument.

Custom views

You can link any field to a custom view (not necessarily an admin view) to handle model-specific editing workflow.

The custom view can be passed either as a named url (view_url parameter) or as name of a method (or property)
on the instance being edited (view_method parameter). In case you provide view_method it will be called
whenever the template tag is evaluated with request as parameter.

The custom view does not need to obey any specific interface; it will get edit_fields value as a GET parameter.

See templatetag reference for arguments documentation.

Example view_url:

{% load cms_tags %}

{% block content %}
<h1>{% render_model instance "some_attribute" "some_field,other_field" "" "admin:exampleapp_example1_some_view" %}</h1>
{% endblock content %}

Example view_method:

class MyModel(models.Model):
char = models.CharField(max_length=10)

def some_method(self, request):
return "/some/url"

{% load cms_tags %}

{% block content %}
<h1>{% render_model instance "some_attribute" "some_field,other_field" "" "" "some_method" %}</h1>
{% endblock content %}

5.2. How-to guides 81

django cms Documentation, Release 3.2.5.post1

Model changelist

By using the special keyword changelist as edit field the frontend editing will show the model changelist:

{% render_model instance "name" "changelist" %}

Will render to:

<div class="cms-plugin cms-plugin-myapp-mymodel-changelist-1">
My Model Instance Name

</div>

Filters

If you need to apply filters to the output value of the template tag, add quoted sequence of filters as in Django
filter template tag:

{% load cms_tags %}

{% block content %}
<h1>{% render_model instance "attribute" "" "" "truncatechars:9" %}</h1>
{% endblock content %}

Context variable

The template tag output can be saved in a context variable for later use, using the standard as syntax:

{% load cms_tags %}

{% block content %}
{% render_model instance "attribute" as variable %}

<h1>{{ variable }}</h1>

{% endblock content %}

5.2.14 Sitemap Guide

Sitemap

Sitemaps are XML files used by Google to index your website by using their Webmaster Tools and telling them
the location of your sitemap.

The CMSSitemap will create a sitemap with all the published pages of your CMS.

Configuration

• add django.contrib.sitemaps to your project’s INSTALLED_APPS setting

• add from cms.sitemaps import CMSSitemap to the top of your main urls.py

• add url(r’^sitemap\.xml$’, ’django.contrib.sitemaps.views.sitemap’,
{’sitemaps’: {’cmspages’: CMSSitemap}}), to your urlpatterns

django.contrib.sitemaps

More information about django.contrib.sitemaps can be found in the official Django documentation.

New in version 3.0.

82 Chapter 5. Table of contents

http://django.readthedocs.io/en/latest/ref/templates/builtins.html#std:templatetag-filter
http://django.readthedocs.io/en/latest/ref/contrib/sitemaps.html#module-django.contrib.sitemaps
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://django.readthedocs.io/en/latest/ref/contrib/sitemaps.html#module-django.contrib.sitemaps
http://docs.djangoproject.com/en/dev/ref/contrib/sitemaps/

django cms Documentation, Release 3.2.5.post1

5.2.15 Page Types

Page Types make it easier for content editors to create pages from predefined types.

The examples contain content such as plugins that will be copied over to the newly-created page, leaving the type
untouched.

Creating Page Types

First you need to create a new page in the usual way; this will become the template for your new page type.

Use this page as your template to add example content and plugins until you reach a satisfied result.

Once ready, choose Save as Page Type... from the Page menu and give it an appropriate name. Don’t worry about
making it perfect, you can continue to change its content and settings.

This will create a new page type, and makes it available from Add Page command and the Create wizard dialog.

If you don’t want or need the original page from which you create the new page type, you can simply delete it.

Managing Page Types

When you save a page as a page type, it is placed in the page list under Page Types node.

This node behaves differently from regular pages:

• They are not publicly accessible.

• All pages listed in Page Types will be rendered in the Page Types drop-down menu.

There’s also a quick way to create a new page type: simply drag an existing page to the Page Types node, where-
upon it will become a new page type.

Selecting a Page Type

You can now select a page type when creating a new page. You’ll find a drop-down menu named Page Type from
which you can select the type for your new page.

5.2. How-to guides 83

django cms Documentation, Release 3.2.5.post1

New in version 3.2.

5.2.16 Content creation wizards

django CMS offers a framework for creating ‘wizards’ - helpers - for content editors.

They provide a simplified workflow for common tasks.

A django CMS Page wizard already exists, but you can create your own for other content types very easily.

Create a content-creation wizard

Creating a CMS content creation wizard for your own module is fairly easy.

To begin, create a file in the root level of your module called cms_wizards.py. In this file, import Wizard as
follows:

from cms.wizards.wizard_base import Wizard
from cms.wizards.wizard_pool import wizard_pool

Then, simply subclass Wizard, instantiate it, then register it. If you were to do this for MyApp, it might look like
this:

my_apps/cms_wizards.py

from cms.wizards.wizard_base import Wizard
from cms.wizards.wizard_pool import wizard_pool

from .forms import MyAppWizardForm
from .models import MyApp

class MyAppWizard(Wizard):
pass

my_app_wizard = MyAppWizard(
title="New MyApp",
weight=200,
form=MyAppWizardForm,
description="Create a new MyApp instance",

)

84 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

wizard_pool.register(my_app_wizard)

And you need a form:

my_apps/forms.py

from django import forms

class MyAppWizardForm(forms.ModelForm):
model = MyApp
exclude = []

That’s it!

Note: the module name cms_wizards is special, in that any such-named modules in your project’s Python path
will automatically be loaded, triggering the registration of any wizards found in them. Wizards may be declared
and registered in other modules, but they might not be automatically loaded.

The above example is using a ModelForm, but you can also use forms.Form. In this case, you must provide
the model class as another keyword argument when you instantiate the Wizard object.

You must subclass cms.wizards.wizard_base.Wizard to use it. This is because each wizard’s unique-
ness is determined by its class and module name.

See the Reference section on wizards for technical details of the wizards API.

5.2.17 Contributing a patch

Note: For more background on the material covered in this how-to section, see the Contributing code and Running
and writing tests sections of the documentation.

django CMS is an open project, and welcomes the participation of anyone who would like to contribute, whatever
their any level of knowledge.

As well as code, we welcome contributions to django CMS’s documentation and translations.

Note: Feel free to dive into coding for django CMS in whichever way suits you. However, you need to be aware
of the guidelines and policies for django CMS project development. Adhering to them will make much easier for
the core developers to validate and accept your contribution.

The basics

The basic workflow for a code contribution will typically run as follows:

1. Fork the django CMS project GitHub repository to your own GitHub account

2. Clone your fork locally:

git clone git@github.com:YOUR_USERNAME/django-cms.git

3. Create a virtualenv:

virtualenv cms-develop
source cms-develop/bin/activate

4. Install its dependencies:

5.2. How-to guides 85

https://github.com/divio/django-cms

django cms Documentation, Release 3.2.5.post1

cd django-cms
pip install -r test_requirements/django-1.7.txt

Replace 1.7 with whichever version of Django you want to work with.

5. Create a new branch for your work:

git checkout -b my_fix

6. Edit the django CMS codebase to implement the fix or feature.

7. Run the test suite:

python manage.py test

8. Commit and push your code:

git commit
git push origin my_fix

9. Open a pull request on GitHub.

Target branches

See Branch policy for information about branch policy.

How to write a test

The django CMS test suite contains a mix of unit tests, functional tests, regression tests and integration tests.

Depending on your contribution, you will write a mix of them.

Let’s start with something simple. We’ll assume you have set up your environment correctly as described above.

Let’s say you want to test the behaviour of the CMSPluginBase.render method:

class CMSPluginBase(six.with_metaclass(CMSPluginBaseMetaclass, admin.ModelAdmin)):

...

def render(self, context, instance, placeholder):
context['instance'] = instance
context['placeholder'] = placeholder
return context

Writing a unit test for it will require us to test whether the returned context object contains the declared at-
tributes with the correct values.

We will start with a new class in an existing django CMS test module (cms.tests.plugins in this case):

class SimplePluginTestCase(CMSTestCase):
pass

Let’s try to run it:

python manage.py test cms.tests.test_plugins.SimplePluginTestCase

This will call the new test case class only and it’s handy when creating new tests and iterating quickly through the
steps. A full test run (python manage.py test) is required before opening a pull request.

This is the output you’ll get:

86 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

Creating test database for alias 'default'...

--
Ran 0 tests in 0.000s

OK

Which is correct as we have no test in our test case. Let’s add an empty one:

class SimplePluginTestCase(CMSTestCase):

def test_render_method(self):
pass

Running the test command again will return a slightly different output:

Creating test database for alias 'default'...
.
--
Ran 1 test in 0.001s

OK

This looks better, but it’s not that meaningful as we’re not testing anything.

Write a real test:

class SimplePluginTestCase(CMSTestCase):

def test_render_method(self):
"""
Tests the CMSPluginBase.render method by checking that the appropriate variables
are set in the returned context
"""
from cms.api import create_page
my_page = create_page('home', language='en', template='col_two.html')
placeholder = my_page.placeholders.get(slot='col_left')
context = self.get_context('/', page=my_page)
plugin = CMSPluginBase()

new_context = plugin.render(context, None, placeholder)
self.assertTrue('placeholder' in new_context)
self.assertEqual(placeholder, context['placeholder'])
self.assertTrue('instance' in new_context)
self.assertIsNone(new_context['instance'])

and run it:

Creating test database for alias 'default'...
.
--
Ran 1 test in 0.044s

OK

The output is quite similar to the previous run, but the longer execution time gives us a hint that this test is actually
doing something.

Let’s quickly check the test code.

To test CMSPluginBase.render method we need a RequestContext instance and a placeholder. As
CMSPluginBase does not have any configuration model, the instance argument can be None.

1. Create a page instance to get the placeholder

2. Get the placeholder by filtering the placeholders of the page instance on the expected placeholder name

5.2. How-to guides 87

django cms Documentation, Release 3.2.5.post1

3. Create a context instance by using the provided super class method

4. Call the render method on a CMSPluginBase instance; being stateless, it’s easy to call render of a bare
instance of the CMSPluginBase class, which helps in tests

5. Assert a few things the method must provide on the returned context instance

As you see, even a simple test like this assumes and uses many feature of the test utilities provided by django
CMS. Before attempting to write a test, take your time to explore the content of cms.test_utils pack-
age and check the shipped templates, example applications and, most of all, the base testcases defined in
cms.test_utils.testscases which provide a lot of useful methods to prepare the environment for our
tests or to create useful test data.

Submitting your code

After the code and the tests are ready and packed in commits, you must submit it for review and merge in the
django CMS GitHub project.

As noted above, always create a new branch for your code, be it a fix or a new feature, before committing changes,
then create your pull request from your branch to the target branch on django CMS.

Acceptance criteria

Matching these criteria from the very beginning will help the core developers to be able to review your submission
more quickly and efficiently and will increase the chances of making a successful pull request.

Please see our Development policies for guidance on which branches to use, how to prepare pull requests and so
on.

Features To be accepted, proposed features should have at least:

• natural language documentation in the docs folder describing the feature, its usage and potentially back-
ward incompatibilities.

• inline documentation (comments and docstrings) in the critical areas of the code explaining the behaviour

• appropriate test coverage

• Python 2/3 compatibility

• South and Django migrations (where applicable)

The pull request description must briefly describe the feature and the intended goal and benefits.

Bugs To be accepted, proposed bug fixes should have at least:

• inline documentation (comments and docstrings) in the critical areas of the code explaining the behaviour

• at least 1 regression test that demonstrates the issue and the fix

• Python 2/3 compatibility

• South and Django migrations (where applicable)

The pull request description must briefly describe the bug and the steps for its solution; in case the bug has been
opened elsewhere, it must be linked in the pull request description, describing the fix.

5.3 Key topics

This section explains and analyses some key concepts in django CMS. It’s less concerned with explaining how to
do things than with helping you understand how it works.

88 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

5.3.1 Using touch-screen devices with django CMS

Important: These notes about touch interface support apply only to the django CMS admin and editing
interfaces. The visitor-facing published site is wholly independent of this, and the responsibility of the site
developer.

General

django CMS has made extensive use of double-click functionality, which lacks an exact equivalent in touch-screen
interfaces. The touch interface will interpret taps and touches in an intelligent way.

Depending on the context, a tap will be interpreted to mean open for editing (that is, the equivalent of a double-
click), or to mean select (the equivalent of a single click), according to what makes sense in that context.

Similarly, in some contexts similar interactions may drag objects, or may scroll them, depending on what makes
most sense. Sometimes, the two behaviours will be present in the same view, for example in the page list, where
certain areas are draggable (for page re-ordering) while other parts of the page can be used for scrolling.

In general, the chosen behaviour is reasonable for a particular object, context or portion of the screen, and in
practice is quicker and easier to apprehend simply by using it than it is to explain.

Pop-up help text will refer to clicking or tapping depending on the device being used.

Be aware that some hover-related user hints are simply not available to touch interface users. For example, the
overlay (formerly, the sideframe) can be adjusted for width by dragging its edge, but this is not indicated in a
touch-screen interface.

Device support

Smaller devices such as most phones are too small to be adequately usable. For example, your Apple Watch is
sadly unlikely to provide a very good django CMS editing experience.

Older devices will often lack the performance to support a usefully responsive frontend editing/administration
interface.

The following devices are known to work well, so newer devices and more powerful models should also be
suitable:

• iOS: Apple iPad Air 1, Mini 4

• Android: Sony Xperia Z2 Tablet, Samsung Galaxy Tab 4

• Windows 10: Microsoft Surface

We welcome feedback about specific devices.

Your site’s frontend

django CMS’s toolbar and frontend editing architecture rely on good practices in your own frontend code. To work
well with django CMS’s responsive management framework, your own site should be friendly towards multiple
devices.

Whether you use your own frontend code or a framework such as Bootstrap 3 or Foundation, be aware that
problems in your CSS or markup can affect django CMS editing modes, and this will become especially apparent
to users of mobile/hand-held devices.

5.3. Key topics 89

django cms Documentation, Release 3.2.5.post1

Known issues

General issues

• Editing links that lack sufficient padding is currently difficult or impossible using touch-screens.

• Similarly, other areas of a page where the visible content is composed entirely of links with minimal padding
around them can be difficult or impossible to open for editing by tapping. This can affect the navigation
menu (double-clicking on the navigation menu opens the page list).

• Adding links is known to be problematic on some Android devices, because of the behaviour of the key-
board.

• On some devices, managing django CMS in the browser’s private (also known as incognito) mode can have
significant performance implications.

This is because local storage is not available in this mode, and user state must be stored in a Django session,
which is much less efficient.

This is an unusual use case, and should not affect many users.

CKEditor issues

• Scrolling on narrow devices, especially when opening the keyboard inside the CKEditor, does not always
work ideally - sometimes the keyboard can appear in the wrong place on-screen.

• Sometimes the CKEditor moves unexpectedly on-screen in use.

• Sometimes in Safari on iOS devices, a rendering bug will apparently truncate or reposition portions of the
toolbar when the CKEditor is opened - even though sections may appear to missing or moved, they can still
be activated by touching the part of the screen where they should have been found.

Django Admin issues

• In the page tree, the first touch on the page opens the keyboard which may be undesirable. This happens
because Django automatically focuses the search form input.

5.3.2 How the menu system works

Basic concepts

Soft Roots

A soft root is a page that acts as the root for a menu navigation tree.

Typically, this will be a page that is the root of a significant new section on your site.

When the soft root feature is enabled, the navigation menu for any page will start at the nearest soft root, rather
than at the real root of the site’s page hierarchy.

This feature is useful when your site has deep page hierarchies (and therefore multiple levels in its navigation
trees). In such a case, you usually don’t want to present site visitors with deep menus of nested items.

For example, you’re on the page “Introduction to Bleeding”, so the menu might look like this:

School of Medicine
Medical Education
Departments

Department of Lorem Ipsum
Department of Donec Imperdiet
Department of Cras Eros

90 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

Department of Mediaeval Surgery
Theory
Cures

Bleeding

* Introduction to Bleeding <current page>
Bleeding - the scientific evidence
Cleaning up the mess

Cupping
Leaches
Maggots

Techniques
Instruments

Department of Curabitur a Purus
Department of Sed Accumsan
Department of Etiam

Research
Administration
Contact us
Impressum

which is frankly overwhelming.

By making “Department of Mediaeval Surgery” a soft root, the menu becomes much more manageable:

Department of Mediaeval Surgery
Theory
Cures

Bleeding

* Introduction to Bleeding <current page>
Bleeding - the scientific evidence
Cleaning up the mess

Cupping
Leaches
Maggots

Techniques
Instruments

Registration

The menu system isn’t monolithic. Rather, it is composed of numerous active parts, many of which can operate
independently of each other.

What they operate on is a list of menu nodes, that gets passed around the menu system, until it emerges at the
other end.

The main active parts of the menu system are menu generators and modifiers.

Some of these parts are supplied with the menus application. Some come from other applications (from the cms
application in django CMS, for example, or some other application entirely).

All these active parts need to be registered within the menu system.

Then, when the time comes to build a menu, the system will ask all the registered menu generators and modifiers
to get to work on it.

Generators and Modifiers

Menu generators and modifiers are classes.

Generators To add nodes to a menu a generator is required.

There is one in cms for example, which examines the Pages in the database and adds them as nodes.

5.3. Key topics 91

django cms Documentation, Release 3.2.5.post1

These classes are sub-classes of menus.base.Menu. The one in cms is cms.menu.CMSMenu.

In order to use a generator, its get_nodes() method must be called.

Modifiers A modifier examines the nodes that have been assembled, and modifies them according to its require-
ments (adding or removing them, or manipulating their attributes, as it sees fit).

An important one in cms (cms.menu.SoftRootCutter) removes the nodes that are no longer required when
a soft root is encountered.

These classes are sub-classes of menus.base.Modifier. Examples are cms.menu.NavExtender and
cms.menu.SoftRootCutter.

In order to use a modifier, its modify() method must be called.

Note that each Modifier’s modify() method can be called twice, before and after the menu has been trimmed.

For example when using the {% show_menu %} template tag, it’s called:

• first, by menus.menu_pool.MenuPool.get_nodes(), with the argument post_cut = False

• later, by the template tag, with the argument post_cut = True

This corresponds to the state of the nodes list before and after menus.templatetags.menu_tags.cut_levels(),
which removes nodes from the menu according to the arguments provided by the template tag.

This is because some modification might be required on all nodes, and some might only be required on the subset
of nodes left after cutting.

Nodes

Nodes are assembled in a tree. Each node is an instance of the menus.base.NavigationNode class.

A NavigationNode has attributes such as URL, title, parent and children - as one would expect in a navigation tree.

It also has an attr attribute, a dictionary that’s provided for you to add arbitrary attributes to, rather than placing
them directly on the node itself, where they might clash with something.

Warning: You can’t assume that a menus.base.NavigationNode represents a django CMS Page.
Firstly, some nodes may represent objects from other applications. Secondly, you can’t expect to be able to
access Page objects via NavigationNodes. To check if node represents a CMS Page, check for ‘is_page’ in
menus.base.NavigationNode.attr and that it is True.

Menu system logic

Let’s look at an example using the {% show_menu %} template tag. It will be different for other template tags,
and your applications might have their own menu classes. But this should help explain what’s going on and what
the menu system is doing.

One thing to understand is that the system passes around a list of nodes, doing various things to it.

Many of the methods below pass this list of nodes to the ones it calls, and return them to the ones that they were
in turn called by.

Don’t forget that show_menu recurses - so it will do all of the below for each level in the menu.

• {% show_menu %} - the template tag in the template

– menus.templatetags.menu_tags.ShowMenu.get_context()

* menus.menu_pool.MenuPool.get_nodes()

· menus.menu_pool.MenuPool.discover_menus() checks every application’s cms_menus.py, and registers:

92 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

Menu classes, placing them in the self.menus dict

Modifier classes, placing them in the self.modifiers list

· menus.menu_pool.MenuPool._build_nodes()

checks the cache to see if it should return cached nodes

loops over the Menus in self.menus (note: by default the only generator is cms.menu.CMSMenu); for each:

call its get_nodes() - the menu generator

menus.menu_pool._build_nodes_inner_for_one_menu()

adds all nodes into a big list

· menus.menu_pool.MenuPool.apply_modifiers()

menus.menu_pool.MenuPool._mark_selected()

loops over each node, comparing its URL with the request.path_info, and marks the
best match as selected

loops over the Modifiers in self.modifiers calling each one’s modify(post_cut=False)(). The default Modifiers are:

cms.menu.NavExtender

cms.menu.SoftRootCutter removes all nodes below the appropriate soft
root

menus.modifiers.Marker loops over all nodes; finds selected, marks its
ancestors, siblings and children

menus.modifiers.AuthVisibility removes nodes that require autho-
risation to see

menus.modifiers.Level loops over all nodes; for each one that is a root node (level = 0) passes it to:

menus.modifiers.Level.mark_levels() recurses over a node’s
descendants marking their levels

* we’re now back in menus.templatetags.menu_tags.ShowMenu.get_context()
again

* if we have been provided a root_id, get rid of any nodes other than its descendants

* menus.templatetags.menu_tags.cut_levels() removes nodes from the
menu according to the arguments provided by the template tag

* menu_pool.MenuPool.apply_modifiers(post_cut = True)() loops over all the Modifiers again

· cms.menu.NavExtender

· cms.menu.SoftRootCutter

· menus.modifiers.Marker

· menus.modifiers.AuthVisibility

· menus.modifiers.Level:

menus.modifiers.Level.mark_levels()

* return the nodes to the context in the variable children

5.3. Key topics 93

django cms Documentation, Release 3.2.5.post1

5.3.3 Publishing

Each published page in the CMS exists in as two cms.Page instances: public and draft.

Until it’s published, only the draft version exists.

The staff users generally use the draft version to edit content and change settings for the pages. None of these
changes are visible on the public site until the page is published.

When a page is published, the page must also have all parent pages published in order to become available on
the web site. If a parent page is not yet published, the page goes into a “pending” state. It will be automatically
published once the parent page is published.

This enables you to edit an entire subsection of the website, publishing it only once all the work is complete.

Code and Pages

When handling cms.Page in code, you’ll generally want to deal with draft instances.

Draft pages are the ones you interact with in the admin, and in draft mode in the CMS frontend. When a draft page
is published, a public version is created and all titles, placeholders and plugins are copied to the public version.

The cms.Page model has a publisher_is_draft field, that’s True for draft versions. Use a filter:

``publisher_is_draft=True``

to get hold of these draft Page instances.

5.3.4 Serving content in multiple languages

Basic concepts

django CMS has a sophisticated multilingual capability. It is able to serve content in multiple languages, with
fallbacks into other languages where translations have not been provided. It also has the facility for the user to set
the preferred language and so on.

How django CMS determines the user’s preferred language

django CMS determines the user’s language the same way Django does it.

• the language code prefix in the URL

• the language set in the session

• the language in the language cookie

• the language that the browser says its user prefers

It uses the django built in capabilities for this.

By default no session and cookie are set. If you want to enable this use the
cms.middleware.language.LanguageCookieMiddleware to set the cookie on every request.

How django CMS determines what language to serve

Once it has identified a user’s language, it will try to accommodate it using the languages set in
CMS_LANGUAGES.

If fallbacks is set, and if the user’s preferred language is not available for that content, it will use the fallbacks
specified for the language in CMS_LANGUAGES.

94 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

What django CMS shows in your menus

If hide_untranslated is True (the default) then pages that aren’t translated into the desired language will
not appear in the menu.

5.3.5 Internationalisation

Multilingual URLs

If you use more than one language, django CMS urls, including the admin URLS, need to be referenced via
i18n_patterns(). For more information about this see the official Django documentation on the subject.

Here’s an example of urls.py:

from django.conf import settings
from django.conf.urls import include, url
from django.contrib import admin
from django.conf.urls.i18n import i18n_patterns
from django.contrib.staticfiles.urls import staticfiles_urlpatterns

admin.autodiscover()

urlpatterns = [
url(r'^jsi18n/(?P<packages>\S+?)/$', 'django.views.i18n.javascript_catalog'),

]

urlpatterns += staticfiles_urlpatterns()

note the django CMS URLs included via i18n_patterns
urlpatterns += i18n_patterns('',

url(r'^admin/', include(admin.site.urls)),
url(r'^', include('cms.urls')),

)

Language Cookie

If a user comes back to a previously visited page, the language will be same since his last visit.

By default if someone visits a page at http://www.mysite.fr/ django determines the language as follow:

• language in URL

• language in session

• language in cookie

• language in from browser

• LANGUAGE_CODE from settings

More in-depth documentation about this is available at https://docs.djangoproject.com/en/dev/topics/i18n/translation/#how-
django-discovers-language-preference

When visiting a page that is only English and French with a German browser, the language from LAN-
GUAGE_CODE will be used. If this is English, but the visitor only speaks French, the visitor will have to
switch the language. Visiting the same page now again after some time, will show it in English again, because
the browser session which was used to store the language selection doesn’t exist any more. To prevent this issue,
a middleware exists which stores the language selection in a cookie. Add the following middleware to MIDDLE-
WARE_CLASSES:

cms.middleware.language.LanguageCookieMiddleware

5.3. Key topics 95

http://django.readthedocs.io/en/latest/topics/i18n/translation.html#django.conf.urls.i18n.i18n_patterns
https://docs.djangoproject.com/en/dev/topics/i18n/translation/#internationalization-in-url-patterns
https://docs.djangoproject.com/en/dev/topics/i18n/translation/#how-django-discovers-language-preference
https://docs.djangoproject.com/en/dev/topics/i18n/translation/#how-django-discovers-language-preference

django cms Documentation, Release 3.2.5.post1

Language Chooser

The language_chooser template tag will display a language chooser for the current page. You can modify
the template in menu/language_chooser.html or provide your own template if necessary.

Example:

{% load menu_tags %}
{% language_chooser "myapp/language_chooser.html" %}

If you are in an apphook and have a detail view of an object you can set an object to the toolbar in your view. The
cms will call get_absolute_url in the corresponding language for the language chooser:

Example:

class AnswerView(DetailView):
def get(self, *args, **kwargs):

self.object = self.get_object()
if hasattr(self.request, 'toolbar'):

self.request.toolbar.set_object(self.object)
response = super(AnswerView, self).get(*args, **kwargs)
return response

With this you can more easily control what url will be returned on the language chooser.

Note: If you have a multilingual objects be sure that you return the right url if you don’t have a translation for
this language in get_absolute_url

page_language_url

This template tag returns the URL of the current page in another language.

Example:

{% page_language_url "de" %}

hide_untranslated

If you add a default directive to your CMS_LANGUAGES with a hide_untranslated to False all pages will
be displayed in all languages even if they are not translated yet.

If hide_untranslated is True in your CMS_LANGUAGES and you are on a page that doesn’t yet have an English
translation and you view the German version then the language chooser will redirect to /. The same goes for urls
that are not handled by the cms and display a language chooser.

Automated slug generation Unicode characters

If your site has languages which use non-ASCII character sets, you might want to enable
CMS_UNIHANDECODE_HOST and CMS_UNIHANDECODE_VERSION to get automated slugs for those
languages too.

96 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

5.3.6 Permissions

In django CMS you can set three types of permissions:

1. View restrictions for restricting front-end view access to users

2. Page permissions for allowing staff users to only have rights on certain sections of certain sites

3. Mode permission which when left unset, restricts staff users to only editing, not adding new content

To enable features 1. and 2., settings.py requires:

CMS_PERMISSION = True

The third one is controlled by the “Can use Structure mode” Django permission.

View restrictions

View restrictions can be set-up from the View restrictions formset on any cms page. Once a page has at least one
view restriction installed, only users with granted access will be able to see that page. Mind that this restriction is
for viewing the page as an end-user (front-end view), not viewing the page in the admin interface!

View restrictions are also controlled by the CMS_PUBLIC_FOR setting. Possible values are all and staff.
This setting decides if pages without any view restrictions are:

• viewable by everyone – including anonymous users (all)

• viewable by staff users only (staff)

Page permissions

After setting CMS_PERMISSION = True you will have three new models in the admin index:

1. Users (page)

2. User groups (page)

3. Pages global permissions

Users (page) / User groups (page)

Using Users (page) you can easily add users with permissions over CMS pages.

You would be able to create a user with the same set of permissions using the usual Auth.User model, but using
Users (page) is more convenient.

A new user created using Users (page) with given page add/edit/delete rights will not be able to make any changes
to pages straight away. The user must first be assigned to a set of pages over which he may exercise these rights.
This is done using the Page permissions. formset on any page or by using Pages global permissions.

User groups (page) manages the same feature on the group level.

Page permissions

The Page permission formset has multiple checkboxes defining different permissions: can edit, can add, can
delete, can change advanced settings, can publish, can move and can change permission. These define what kind
of actions the user/group can do on the pages on which the permissions are being granted through the Grant on
drop-down.

Can change permission refers to whether the user can change the permissions of his subordinate users. Bob is the
subordinate of Alice if one of:

5.3. Key topics 97

django cms Documentation, Release 3.2.5.post1

• Bob was created by Alice

• Bob has at least one page permission set on one of the pages on which Alice has the Can change permissions
right

Note: Mind that even though a new user has permissions to change a page, that doesn’t give him permissions
to add a plugin within that page. In order to be able to add/change/delete plugins on any page, you will need
to go through the usual Auth.User model and give the new user permissions to each plugin you want him to
have access to. Example: if you want the new user to be able to use the text plugin, you will need to give him
the following rights: text | text | Can add text, text | text | Can change text, text
| text | Can delete text.

Pages global permissions

Using the Pages global permissions model you can give a set of permissions to all pages in a set of sites.

Note: You always must set the sites managed py the global permissions, even if you only have one site.

Edit mode permission

Changed in version 3.1.

django CMS uses Structure and Content modes for different type of content editing; while the former allows
full control over the plugins layout, positioning and to add new plugins to the page, the latter only allow editing
existing plugins.

From version 3.1 the specific permission “Can use Structure mode” exists to permit access to Structure Mode.
This allows defining a different level of permissions on the same content.

This permission also applies to PlaceholderField defined on models.

File Permissions

django CMS does not take care of and no responsibility for controlling access to files. Please make sure to use
either a pre-built solution (like django-filer) or to roll your own.

5.3.7 Some commonly-used plugins

Warning: In version 3 of the CMS we removed all the plugins from the main repository into separate
repositories to continue their development there. you are upgrading from a previous version. Please refer to
Upgrading from previous versions

These are the recommended plugins to use with django CMS.

Important: See the note on The INSTALLED_APPS setting about ordering.

File

Available on GitHub (divio/djangocms-file) and on PyPi (djangocms-file).

Allows you to upload a file. A file-type icon will be assigned based on the file extension.

Please install it using pip or similar and be sure you have the following in the INSTALLED_APPS setting in
your project’s settings.py file:

98 Chapter 5. Table of contents

https://github.com/stefanfoulis/django-filer
http://github.com/divio/djangocms-file
https://pypi.python.org/pypi/djangocms-file
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS

django cms Documentation, Release 3.2.5.post1

INSTALLED_APPS = (
...
'djangocms_file',
...

)

You should take care that the directory defined by the configuration setting CMS_PAGE_MEDIA_PATH (by de-
fault cms_page_media/ relative to MEDIA_ROOT) is writeable by the user under which django will be run-
ning.

You might consider using django-filer with django filer CMS plugin and its cmsplugin_filer_file com-
ponent instead.

Warning: The djangocms_file file plugin only works with local storages. If you need more advanced
solutions, please look at alternative file plugins for the django CMS, such as django-filer.

Flash

Available on GitHub (divio/djangocms-flash) and on PyPi (djangocms-flash).

Allows you to upload and display a Flash SWF file on your page.

Please install it using pip or similar and be sure you have the following in the INSTALLED_APPS setting in
your project’s settings.py file:

INSTALLED_APPS = (
...
'djangocms_flash',
...

)

GoogleMap

Available on GitHub (divio/djangocms-googlemap) and on PyPi (djangocms-googlemap).

Displays a map of an address on your page.

Both address and coordinates are supported to centre the map; zoom level and route planner can be set when
adding/editing plugin in the admin.

New in version 2.3.2: width/height parameter has been added, so it’s no longer required to set plugin container
size in CSS or template.

Changed in version 2.3.2: Zoom level is set via a select field which ensure only legal values are used.

Note: Due to the above change, level field is now marked as NOT NULL, and a data migration has been introduced
to modify existing Googlemap plugin instance to set the default value if level if is NULL.

Please install it using pip or similar and be sure you have the following in the INSTALLED_APPS setting in
your project’s settings.py file:

INSTALLED_APPS = (
...
'djangocms_googlemap',
...

)

5.3. Key topics 99

http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-MEDIA_ROOT
https://github.com/stefanfoulis/django-filer
https://github.com/stefanfoulis/cmsplugin-filer
https://github.com/stefanfoulis/django-filer
http://github.com/divio/djangocms-flash
https://pypi.python.org/pypi/djangocms-flash
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://github.com/divio/djangocms-googlemap
https://pypi.python.org/pypi/djangocms-googlemap
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS

django cms Documentation, Release 3.2.5.post1

Picture

Available on GitHub (divio/djangocms-picture) and on PyPi (djangocms-picture).

Displays a picture in a page.

Please install it using pip or similar and be sure you have the following in the INSTALLED_APPS setting in
your project’s settings.py file:

INSTALLED_APPS = (
...
'djangocms_picture',
...

)

There are several solutions for Python and Django out there to automatically re-size your pictures, you can find
some on Django Packages and compare them there.

In your project template directory create a folder called cms/plugins and in it create a file called
picture.html. Here is an example picture.html template using easy-thumbnails:

{% load thumbnail %}

{% if link %}{% endif %}
{% if placeholder == "content" %}

{% else %}

{% if placeholder == "teaser" %}

{% endif %}
{% endif %}
{% if link %}{% endif %}

In this template the picture is scaled differently based on which placeholder it was placed in.

You should take care that the directory defined by the configuration setting CMS_PAGE_MEDIA_PATH (by de-
fault cms_page_media/ relative to MEDIA_ROOT) is writeable by the user under which django will be run-
ning.

Note: In order to improve clarity, some Picture fields have been omitted in the example template code.

Note: For more advanced use cases where you would like to upload your media to a central location, consider
using django-filer with django filer CMS plugin and its cmsplugin_filer_image component instead.

Teaser

Available on GitHub (divio/djangocms-teaser) and on PyPi (djangocms-teaser).

Displays a teaser box for another page or a URL. A picture and a description can be added.

Please install it using pip or similar and be sure you have the following in the INSTALLED_APPS settings in
your project’s settings.py file:

INSTALLED_APPS = (
...
'djangocms_teaser',
...

)

100 Chapter 5. Table of contents

http://github.com/divio/djangocms-picture
https://pypi.python.org/pypi/djangocms-picture
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://djangopackages.com/grids/g/thumbnails/
https://github.com/SmileyChris/easy-thumbnails
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-MEDIA_ROOT
https://github.com/stefanfoulis/django-filer
https://github.com/stefanfoulis/cmsplugin-filer
http://github.com/divio/djangocms-teaser
https://pypi.python.org/pypi/djangocms-teaser
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS

django cms Documentation, Release 3.2.5.post1

You should take care that the directory defined by the configuration setting CMS_PAGE_MEDIA_PATH (by de-
fault cms_page_media/ relative to MEDIA_ROOT) is writeable by the user under which django will be run-
ning.

Note: For more advanced use cases where you would like to upload your media to a central location, consider
using django-filer with django filer CMS plugin and its cmsplugin_filer_teaser component instead.

Text

Consider using djangocms-text-ckeditor for displaying text. You may of course use your preferred editor; others
are available.

Video

Available on GitHub (divio/djangocms-video) and on PyPi (djangocms-video).

Plays Video Files or YouTube / Vimeo Videos. Uses the OSFlashVideoPlayer. When uploading videos use either
.flv files or H264 encoded video files.

Please install it using pip or similar and be sure you have the following in your project’s INSTALLED_APPS
setting:

INSTALLED_APPS = (
...
'djangocms_video',
...

)

There are some settings you can set in your settings.py to overwrite some default behaviour:

• VIDEO_AUTOPLAY ((default: False)

• VIDEO_AUTOHIDE (default: False)

• VIDEO_FULLSCREEN (default: True)

• VIDEO_LOOP (default: False)

• VIDEO_AUTOPLAY (default: False)

• VIDEO_BG_COLOR (default: "000000")

• VIDEO_TEXT_COLOR (default: "FFFFFF")

• VIDEO_SEEKBAR_COLOR (default: "13ABEC")

• VIDEO_SEEKBARBG_COLOR (default: "333333")

• VIDEO_LOADINGBAR_COLOR (default: "828282")

• VIDEO_BUTTON_OUT_COLOR (default: "333333")

• VIDEO_BUTTON_OVER_COLOR (default: "000000")

• VIDEO_BUTTON_HIGHLIGHT_COLOR (default: "FFFFFF")

You should take care that the directory defined by the configuration setting CMS_PAGE_MEDIA_PATH (by de-
fault cms_page_media/ relative to MEDIA_ROOT) is writeable by the user under which django will be run-
ning.

Note: For more advanced use cases where you would like to upload your media to a central location, consider
using django-filer with django filer CMS plugin and its cmsplugin_filer_video component instead.

5.3. Key topics 101

http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-MEDIA_ROOT
https://github.com/stefanfoulis/django-filer
https://github.com/stefanfoulis/cmsplugin-filer
https://github.com/divio/djangocms-text-ckeditor
http://github.com/divio/djangocms-video
https://pypi.python.org/pypi/djangocms-video
http://github.com/FlashJunior/OSFlashVideoPlayer
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-MEDIA_ROOT
https://github.com/stefanfoulis/django-filer
https://github.com/stefanfoulis/cmsplugin-filer

django cms Documentation, Release 3.2.5.post1

Twitter

We recommend one of the following plugins:

• https://github.com/nephila/djangocms_twitter

• https://github.com/changer/cmsplugin-twitter

Warning: These plugins are not currently compatible with Django 1.7.

Inherit

Available on GitHub (divio/djangocms-inherit) and on PyPi (djangocms-inherit).

Displays all plugins of another page or another language. Great if you always need the same plugins on a lot of
pages.

Please install it using pip or similar and be sure you have the following in your project’s INSTALLED_APPS
setting:

INSTALLED_APPS = (
...
'djangocms_inherit',
...

)

Warning: The inherit plugin cannot be used in non-cms placeholders.

5.3.8 Search and django CMS

For powerful full-text search within the django CMS, we suggest using Haystack together with django-cms-search.

5.4 Reference

Technical reference material.

5.4.1 Configuration

django CMS has a number of settings to configure its behaviour. These should be available in your
settings.py file.

The INSTALLED_APPS setting

The ordering of items in INSTALLED_APPS matters. Entries for applications with plugins should come after
cms.

The MIDDLEWARE_CLASSES setting

cms.middleware.utils.ApphookReloadMiddleware

Adding ApphookReloadMiddleware to the MIDDLEWARE_CLASSES tuple will enable automatic server
restarts when changes are made to apphook configurations. It should be placed as near to the top of the classes as
possible.

102 Chapter 5. Table of contents

https://github.com/nephila/djangocms_twitter
https://github.com/changer/cmsplugin-twitter
http://github.com/divio/djangocms-inherit
https://pypi.python.org/pypi/djangocms-inherit
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://haystacksearch.org/
https://github.com/piquadrat/django-cms-search

django cms Documentation, Release 3.2.5.post1

Note: This has been tested and works in many production environments and deployment configurations, but we
haven’t been able to test it with all possible set-ups. Please file an issue if you discover one where it fails.

Custom User Requirements

When using a custom user model (i.e. the AUTH_USER_MODEL Django setting), there are a few requirements
that must be met.

django CMS expects a user model with at minimum the following fields: email, password, is_active,
is_staff, and is_superuser. Additionally, it should inherit from AbstractBaseUser and
PermissionsMixin (or AbstractUser), and must define one field as the USERNAME_FIELD (see Django
documentation for more details) and define a get_full_name() method.

The models must also be editable via Django’s admin and have an admin class registered.

Additionally, the application in which the model is defined must be loaded before cms in INSTALLED_APPS.

Note: In most cases, it is better to create a UserProfile model with a one to one relationship to auth.User
rather than creating a custom user model. Custom user models are only necessary if you intended to alter the
default behaviour of the User model, not simply extend it.

Additionally, if you do intend to use a custom user model, it is generally advisable to do so only at the beginning
of a project, before the database is created.

Required Settings

CMS_TEMPLATES

default () (Not a valid setting!)

A list of templates you can select for a page.

Example:

CMS_TEMPLATES = (
('base.html', gettext('default')),
('2col.html', gettext('2 Column')),
('3col.html', gettext('3 Column')),
('extra.html', gettext('Some extra fancy template')),

)

Note: All templates defined in CMS_TEMPLATES must contain at least the js and css sekizai namespaces.
For more information, see Static files handling with sekizai.

Note: Alternatively you can use CMS_TEMPLATES_DIR to define a directory containing templates for django
CMS.

Warning: django CMS requires some special templates to function correctly. These are provided within
cms/templates/cms. You are strongly advised not to use cms as a directory name for your own project
templates.

5.4. Reference 103

django cms Documentation, Release 3.2.5.post1

Basic Customisation

CMS_TEMPLATE_INHERITANCE

default True

Enables the inheritance of templates from parent pages.

When enabled, pages’ Template options will include a new default: Inherit from the parent page (unless the
page is a root page).

CMS_TEMPLATES_DIR

default None

Instead of explicitly providing a set of templates via CMS_TEMPLATES a directory can be provided using this
configuration.

CMS_TEMPLATES_DIR can be set to the (absolute) path of the templates directory, or set to a dictionary with
SITE_ID: template path items:

CMS_TEMPLATES_DIR: {
1: '/absolute/path/for/site/1/',
2: '/absolute/path/for/site/2/',

}

The provided directory is scanned and all templates in it are loaded as templates for django CMS.

Template loaded and their names can be customised using the templates dir as a python module, by creating a
__init__.py file in the templates directory. The file contains a single TEMPLATES dictionary with the list of
templates as keys and template names as values:::

-*- coding: utf-8 -*-
from django.utils.translation import ugettext_lazy as _
TEMPLATES = {

'col_two.html': _('Two columns'),
'col_three.html': _('Three columns'),

}

Being a normal python file, templates labels can be passed through gettext for translation.

Note: As templates are still loaded by the Django template loader, the given directory must be reachable by the
template loading system. Currently filesystem and app_directory loader schemas are tested and supported.

CMS_PLACEHOLDER_CONF

default {}

Used to configure placeholders. If not given, all plugins will be available in all placeholders.

Example:

CMS_PLACEHOLDER_CONF = {
'content': {

'plugins': ['TextPlugin', 'PicturePlugin'],
'text_only_plugins': ['LinkPlugin'],
'extra_context': {"width":640},
'name': gettext("Content"),
'language_fallback': True,

104 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

'default_plugins': [
{

'plugin_type': 'TextPlugin',
'values': {

'body':'<p>Lorem ipsum dolor sit amet...</p>',
},

},
],
'child_classes': {

'TextPlugin': ['PicturePlugin', 'LinkPlugin'],
},
'parent_classes': {

'LinkPlugin': ['TextPlugin'],
},

},
'right-column': {

"plugins": ['TeaserPlugin', 'LinkPlugin'],
"extra_context": {"width": 280},
'name': gettext("Right Column"),
'limits': {

'global': 2,
'TeaserPlugin': 1,
'LinkPlugin': 1,

},
'plugin_modules': {

'LinkPlugin': 'Extra',
},
'plugin_labels': {

'LinkPlugin': 'Add a link',
},

},
'base.html content': {

"plugins": ['TextPlugin', 'PicturePlugin', 'TeaserPlugin'],
'inherit': 'content',

},
}

You can combine template names and placeholder names to define plugins in a granular fashion, as shown above
with base.html content.

plugins A list of plugins that can be added to this placeholder. If not supplied, all plugins can be selected.

text_only_plugins A list of additional plugins available only in the TextPlugin, these plugins can’t be
added directly to this placeholder.

extra_context Extra context that plugins in this placeholder receive.

name The name displayed in the Django admin. With the gettext stub, the name can be internationalised.

limits Limit the number of plugins that can be placed inside this placeholder. Dictionary keys are plugin names
and the values are their respective limits. Special case: global - Limit the absolute number of plugins in
this placeholder regardless of type (takes precedence over the type-specific limits).

language_fallback When True, if the placeholder has no plugin for the current language it falls back to
the fallback languages as specified in CMS_LANGUAGES. Defaults to True since version 3.1.

default_plugins You can specify the list of default plugins which will be automatically added when the
placeholder will be created (or rendered). Each element of the list is a dictionary with following keys :

plugin_type The plugin type to add to the placeholder Example : TextPlugin

values Dictionary to use for the plugin creation. It depends on the plugin_type. See the
documentation of each plugin type to see which parameters are required and available. Ex-
ample for a text plugin: {’body’:’<p>Lorem ipsum</p>’} Example for a link plugin:
{’name’:’Django-CMS’,’url’:’https://www.django-cms.org’}

5.4. Reference 105

django cms Documentation, Release 3.2.5.post1

children It is a list of dictionaries to configure default plugins to add as children for the current plugin (it
must accepts children). Each dictionary accepts same args than dictionaries of default_plugins
: plugin_type, values, children (yes, it is recursive).

Complete example of default_plugins usage:

CMS_PLACEHOLDER_CONF = {
'content': {

'name' : _('Content'),
'plugins': ['TextPlugin', 'LinkPlugin'],
'default_plugins':[

{
'plugin_type':'TextPlugin',
'values':{

'body':'<p>Great websites : %(_tag_child_1)s and %(_tag_child_2)s</p>'
},
'children':[

{
'plugin_type':'LinkPlugin',
'values':{

'name':'django',
'url':'https://www.djangoproject.com/'

},
},
{

'plugin_type':'LinkPlugin',
'values':{

'name':'django-cms',
'url':'https://www.django-cms.org'

},
If using LinkPlugin from djangocms-link which
accepts children, you could add some grandchildren :
'children' : [
...
]

},
]

},
]

}
}

plugin_modules A dictionary of plugins and custom module names to group plugin in the toolbar UI.

plugin_labels A dictionary of plugins and custom labels to show in the toolbar UI.

child_classes A dictionary of plugin names with lists describing which plugins may be placed inside each
plugin. If not supplied, all plugins can be selected.

parent_classes A dictionary of plugin names with lists describing which plugins may contain each plugin.
If not supplied, all plugins can be selected.

require_parent A Boolean indication whether that plugin requires another plugin as parent or not.

inherit Placeholder name or template name + placeholder name which inherit. In the example, the config-
uration for base.html content inherits from content and just overwrites the plugins setting to
allow TeaserPlugin, thus you have not to duplicate the configuration of content.

CMS_PLUGIN_CONTEXT_PROCESSORS

default []

A list of plugin context processors. Plugin context processors are callables that modify all plugins’ context before
rendering. See Custom Plugins for more information.

106 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

CMS_PLUGIN_PROCESSORS

default []

A list of plugin processors. Plugin processors are callables that modify all plugins’ output after rendering. See
Custom Plugins for more information.

CMS_APPHOOKS

default: ()

A list of import paths for cms.app_base.CMSApp sub-classes.

By default, apphooks are auto-discovered in applications listed in all INSTALLED_APPS, by trying to import
their cms_app module.

When CMS_APPHOOKS is set, auto-discovery is disabled.

Example:

CMS_APPHOOKS = (
'myapp.cms_app.MyApp',
'otherapp.cms_app.MyFancyApp',
'sampleapp.cms_app.SampleApp',

)

I18N and L10N

CMS_LANGUAGES

default Value of LANGUAGES converted to this format

Defines the languages available in django CMS.

Example:

CMS_LANGUAGES = {
1: [

{
'code': 'en',
'name': gettext('English'),
'fallbacks': ['de', 'fr'],
'public': True,
'hide_untranslated': True,
'redirect_on_fallback':False,

},
{

'code': 'de',
'name': gettext('Deutsch'),
'fallbacks': ['en', 'fr'],
'public': True,

},
{

'code': 'fr',
'name': gettext('French'),
'public': False,

},
],
2: [

{
'code': 'nl',

5.4. Reference 107

http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-LANGUAGES

django cms Documentation, Release 3.2.5.post1

'name': gettext('Dutch'),
'public': True,
'fallbacks': ['en'],

},
],
'default': {

'fallbacks': ['en', 'de', 'fr'],
'redirect_on_fallback':True,
'public': True,
'hide_untranslated': False,

}
}

Note: Make sure you only define languages which are also in LANGUAGES.

Warning: Make sure you use language codes (en-us) and not locale names (en_US) here and in
LANGUAGES. Use check command to check for correct syntax.

CMS_LANGUAGES has different options where you can define how different languages behave, with granular
control.

On the first level you can set values for each SITE_ID. In the example above we define two sites. The first site
has 3 languages (English, German and French) and the second site has only Dutch.

The default node defines default behaviour for all languages. You can overwrite the default settings with
language-specific properties. For example we define hide_untranslated as False globally, but the English
language overwrites this behaviour.

Every language node needs at least a code and a name property. code is the ISO 2 code for the language, and
name is the verbose name of the language.

Note: With a gettext() lambda function you can make language names translatable. To enable this add
gettext = lambda s: s at the beginning of your settings file.

What are the properties a language node can have?

code String. RFC5646 code of the language.

example "en".

Note: Is required for every language.

name String. The verbose name of the language.

Note: Is required for every language.

public Determines whether this language is accessible in the frontend. You may want for example to keep a
language private until your content has been fully translated.

type Boolean

default True

108 Chapter 5. Table of contents

http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-LANGUAGES
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-LANGUAGES

django cms Documentation, Release 3.2.5.post1

fallbacks A list of alternative languages, in order of preference, that are to be used if a page is not translated
yet..

example [’de’, ’fr’]

default []

hide_untranslated Hide untranslated pages in menus

type Boolean

default True

redirect_on_fallback Determines behaviour when the preferred language is not available. If True, will redirect
to the URL of the same page in the fallback language. If False, the content will be displayed in the fallback
language, but there will be no redirect.

Note that this applies to the fallback behaviour of pages. Starting for 3.1 placeholders will default to the
same behaviour. If you do not want a placeholder to follow a page’s fallback behaviour, you must set its
language_fallback to False in CMS_PLACEHOLDER_CONF, above.

type Boolean

default True

Unicode support for automated slugs

django CMS supports automated slug generation from page titles that contain Unicode characters via the
unihandecode.js project. To enable support for unihandecode.js, at least CMS_UNIHANDECODE_HOST and
CMS_UNIHANDECODE_VERSION must be set.

CMS_UNIHANDECODE_HOST

default None

Must be set to the URL where you host your unihandecode.js files. For licensing reasons, django CMS does not
include unihandecode.js.

If set to None, the default, unihandecode.js is not used.

Note: Unihandecode.js is a rather large library, especially when loading support for Japanese. It is therefore very
important that you serve it from a server that supports gzip compression. Further, make sure that those files can
be cached by the browser for a very long period.

CMS_UNIHANDECODE_VERSION

default None

Must be set to the version number (eg ’1.0.0’) you want to use. Together with CMS_UNIHANDECODE_HOST
this setting is used to build the full URLs for the JavaScript files. URLs are built like this:
<CMS_UNIHANDECODE_HOST>-<CMS_UNIHANDECODE_VERSION>.<DECODER>.min.js.

CMS_UNIHANDECODE_DECODERS

default [’ja’, ’zh’, ’vn’, ’kr’, ’diacritic’]

If you add additional decoders to your CMS_UNIHANDECODE_HOST, you can add them to this setting.

5.4. Reference 109

django cms Documentation, Release 3.2.5.post1

CMS_UNIHANDECODE_DEFAULT_DECODER

default ’diacritic’

The default decoder to use when unihandecode.js support is enabled, but the current language does not provide
a specific decoder in CMS_UNIHANDECODE_DECODERS. If set to None, failing to find a specific decoder will
disable unihandecode.js for this language.

Example Add these to your project’s settings:

CMS_UNIHANDECODE_HOST = '/static/unihandecode/'
CMS_UNIHANDECODE_VERSION = '1.0.0'
CMS_UNIHANDECODE_DECODERS = ['ja', 'zh', 'vn', 'kr', 'diacritic']

Add the library files from GitHub ojii/unihandecode.js tree/dist to your static folder:

project/
static/

unihandecode/
unihandecode-1.0.0.core.min.js
unihandecode-1.0.0.diacritic.min.js
unihandecode-1.0.0.ja.min.js
unihandecode-1.0.0.kr.min.js
unihandecode-1.0.0.vn.min.js
unihandecode-1.0.0.zh.min.js

More documentation is available on unihandecode.js’ Read the Docs.

Media Settings

CMS_MEDIA_PATH

default cms/

The path from MEDIA_ROOT to the media files located in cms/media/

CMS_MEDIA_ROOT

default MEDIA_ROOT + CMS_MEDIA_PATH

The path to the media root of the cms media files.

CMS_UNESCAPED_RENDER_MODEL_TAGS

default True

Warning: In this version of django CMS, this setting has a default value of True to provide behaviour
consistent with previous releases. However, all developers are encouraged to set this value to False to help
prevent a range of security vulnerabilities stemming from HTML, JavaScript, and CSS Code Injection.

Important: This setting is deprecated and will be removed in a near-future release. Developers are encouraged
to carefully consider the source of any content displayed by the render_model template tag and only add the
optional template filter safe on model fields that are known to be cleansed of any malicious strings.

110 Chapter 5. Table of contents

https://github.com/ojii/unihandecode.js/tree/master/dist
https://unihandecodejs.readthedocs.org/
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-MEDIA_ROOT
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-MEDIA_ROOT

django cms Documentation, Release 3.2.5.post1

When this setting is removed, the render_model template tag will no longer automatically mark as “safe” their
output. Any content that is intended to be displayed as rendered markup will require the safe filter applied when
displaying with the render_model tag.

This setting affects how certain template tags display model-based content. In particular, the template tag:
render_model.

CMS_MEDIA_URL

default MEDIA_URL + CMS_MEDIA_PATH

The location of the media files that are located in cms/media/cms/

CMS_PAGE_MEDIA_PATH

default ’cms_page_media/’

By default, django CMS creates a folder called cms_page_media in your static files folder where all uploaded
media files are stored. The media files are stored in sub-folders numbered with the id of the page.

You need to ensure that the directory to which it points is writeable by the user under which Django will be
running.

Advanced Settings

CMS_PERMISSION

default False

When enabled, 3 new models are provided in Admin:

• Pages global permissions

• User groups - page

• Users - page

In the edit-view of the pages you can now assign users to pages and grant them permissions. In the global
permissions you can set the permissions for users globally.

If a user has the right to create new users he can now do so in the “Users - page”, but he will only see the users
he created. The users he created can also only inherit the rights he has. So if he only has been granted the right
to edit a certain page all users he creates can, in turn, only edit this page. Naturally he can limit the rights of the
users he creates even further, allowing them to see only a subset of the pages to which he is allowed access.

CMS_RAW_ID_USERS

default False

This setting only applies if CMS_PERMISSION is True

The view restrictions and page permissions inlines on the cms.models.Page admin change
forms can cause performance problems where there are many thousands of users being put into simple select
boxes. If set to a positive integer, this setting forces the inlines on that page to use standard Django admin raw
ID widgets rather than select boxes if the number of users in the system is greater than that number, dramatically
improving performance.

Note: Using raw ID fields in combination with limit_choices_to causes errors due to excessively long
URLs if you have many thousands of users (the PKs are all included in the URL of the popup window). For this

5.4. Reference 111

http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-MEDIA_URL

django cms Documentation, Release 3.2.5.post1

reason, we only apply this limit if the number of users is relatively small (fewer than 500). If the number of users
we need to limit to is greater than that, we use the usual input field instead unless the user is a CMS superuser,
in which case we bypass the limit. Unfortunately, this means that non-superusers won’t see any benefit from this
setting.

Changed in version 3.2.1:: CMS_RAW_ID_USERS also applies to cms.model.GlobalPagePermission‘
admin.

CMS_PUBLIC_FOR

default all

Determines whether pages without any view restrictions are public by default or staff only. Possible values are
all and staff.

CMS_CACHE_DURATIONS

This dictionary carries the various cache duration settings.

’content’

default 60

Cache expiration (in seconds) for show_placeholder, page_url, placeholder and
static_placeholder template tags.

Note: This settings was previously called CMS_CONTENT_CACHE_DURATION

’menus’

default 3600

Cache expiration (in seconds) for the menu tree.

Note: This settings was previously called MENU_CACHE_DURATION

’permissions’

default 3600

Cache expiration (in seconds) for view and other permissions.

CMS_CACHE_PREFIX

default cms-

The CMS will prepend the value associated with this key to every cache access (set and get). This is useful when
you have several django CMS installations, and you don’t want them to share cache objects.

Example:

CMS_CACHE_PREFIX = 'mysite-live'

112 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

Note: Django 1.3 introduced a site-wide cache key prefix. See Django’s own docs on cache key prefixing

CMS_PAGE_CACHE

default True

Should the output of pages be cached? Takes the language, and time zone into account. Pages for logged in users
are not cached. If the toolbar is visible the page is not cached as well.

CMS_PLACEHOLDER_CACHE

default True

Should the output of the various placeholder template tags be cached? Takes the current language and time zone
into account. If the toolbar is in edit mode or a plugin with cache=False is present the placeholders will not
be cached.

CMS_PLUGIN_CACHE

default True

Default value of the cache attribute of plugins. Should plugins be cached by default if not set explicitly?

Warning: If you disable the plugin cache be sure to restart the server and clear the cache afterwards.

CMS_MAX_PAGE_HISTORY_REVERSIONS

default 15

Configures how many undo steps are saved in the db excluding publish steps. In the page admin there is a
History button to revert to previous version of a page. In the past, databases using django-reversion could grow
huge. To help address this issue, only a limited number of edit revisions will now be saved.

This setting declares how many edit revisions are saved in the database. By default the newest 15 edit revisions
are kept.

CMS_MAX_PAGE_PUBLISH_REVERSIONS

default 10

If django-reversion is installed everything you do with a page and all plugin changes will be saved in a revision.

In the page admin there is a History button to revert to previous version of a page. In the past, databases using
django-reversion could grow huge. To help address this issue, only a limited number of published revisions will
now be saved.

This setting declares how many published revisions are saved in the database. By default the newest 10 published
revisions are kept; all others are deleted when you publish a page.

If set to 0 all published revisions are kept, but you will need to ensure that the revision table does not grow
excessively large.

5.4. Reference 113

http://django.readthedocs.io/en/latest/topics/cache.html#cache-key-prefixing
https://github.com/etianen/django-reversion

django cms Documentation, Release 3.2.5.post1

CMS_TOOLBARS

default None

If defined, specifies the list of toolbar modifiers to be used to populate the toolbar as import paths. Otherwise, all
available toolbars from both the CMS and the third-party apps will be loaded.

Example:

CMS_TOOLBARS = [
CMS Toolbars
'cms.cms_toolbar.PlaceholderToolbar',
'cms.cms_toolbar.BasicToolbar',
'cms.cms_toolbar.PageToolbar',

third-party Toolbar
'aldryn_blog.cms_toolbar.BlogToolbar',

]

CMS_TOOLBAR_ANONYMOUS_ON

default True

This setting controls if anonymous users can see the CMS toolbar with a login form when ?edit is appended to
a URL. The default behaviour is to show the toolbar to anonymous users.

CMS_TOOLBAR_HIDE

default False

If True, the toolbar is hidden in the pages out django CMS.

Changed in version 3.2.1:: CMS_APP_NAME has been removed as it’s no longer required.

CMS_DEFAULT_X_FRAME_OPTIONS

default Page.X_FRAME_OPTIONS_INHERIT

This setting is the default value for a Page’s X Frame Options setting. This should be an integer preferably taken
from the Page object e.g.

• X_FRAME_OPTIONS_INHERIT

• X_FRAME_OPTIONS_ALLOW

• X_FRAME_OPTIONS_SAMEORIGIN

• X_FRAME_OPTIONS_DENY

CMS_TOOLBAR_SIMPLE_STRUCTURE_MODE

default: True

The new structure board operates by default in “simple” mode. The older mode used absolute positioning. Setting
this attribute to False will allow the absolute positioning used in versions prior to 3.2. This setting will be
removed in 3.3.

Example:

CMS_TOOLBAR_SIMPLE_STRUCTURE_MODE = False

114 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

CMS_PAGE_WIZARD_DEFAULT_TEMPLATE

default TEMPLATE_INHERITANCE_MAGIC

This is the path of the template used to create pages in the wizard. It must be one of the templates in
CMS_TEMPLATES.

CMS_PAGE_WIZARD_CONTENT_PLACEHOLDER

default None

When set to an editable, non-static placeholder that is available on the page template, the CMS page wizards will
target the specified placeholder when adding any content supplied in the wizards’ “Content” field. If this is left
unset, then the content will target the first suitable placeholder found on the page’s template.

CMS_PAGE_WIZARD_CONTENT_PLUGIN

default TextPlugin

This is the name of the plugin created in the Page Wizard when the “Content” field is filled in. There should be no
need to change it, unless you don’t use djangocms-text-ckeditor in your project.

CMS_PAGE_WIZARD_CONTENT_PLUGIN_BODY

default body

This is the name of the body field in the plugin created in the Page Wizard when the “Content” field is filled in.
There should be no need to change it, unless you don’t use djangocms-text-ckeditor in your project
and your custom plugin defined in CMS_PAGE_WIZARD_CONTENT_PLUGIN have a body field different than
body.

5.4.2 Navigation

There are four template tags for use in the templates that are connected to the menu:

• show_menu

• show_menu_below_id

• show_sub_menu

• show_breadcrumb

To use any of these template tags, you need to have {% load menu_tags %} in your template before the line
on which you call the template tag.

Note: Please note that menus live in the menus application, which though tightly coupled to the cms application
exists independently of it. Menus are usable by any application, not just by django CMS.

show_menu

The show_menu tag renders the navigation of the current page. You can overwrite the appearance and
the HTML if you add a menu/menu.html template to your project or edit the one provided with django
CMS. show_menu takes six optional parameters: start_level, end_level, extra_inactive,
extra_active, namespace and root_id.

5.4. Reference 115

django cms Documentation, Release 3.2.5.post1

The first two parameters, start_level (default=0) and end_level (default=100) specify from which level
the navigation should be rendered and at which level it should stop. If you have home as a root node (i.e. level 0)
and don’t want to display the root node(s), set start_level to 1.

The third parameter, extra_inactive (default=0), specifies how many levels of navigation should be dis-
played if a node is not a direct ancestor or descendant of the current active node.

The fourth parameter, extra_active (default=100), specifies how many levels of descendants of the currently
active node should be displayed.

The fifth parameter, namespace specifies the namespace of the menu. if empty will use all namespaces.

The sixth parameter root_id specifies the id of the root node.

You can supply a template parameter to the tag.

Some Examples

Complete navigation (as a nested list):

{% load menu_tags %}

{% show_menu 0 100 100 100 %}

Navigation with active tree (as a nested list):

{% show_menu 0 100 0 100 %}

Navigation with only one active extra level:

{% show_menu 0 100 0 1 %}

Level 1 navigation (as a nested list):

{% show_menu 1 %}

Navigation with a custom template:

{% show_menu 0 100 100 100 "myapp/menu.html" %}

show_menu_below_id

If you have set an id in the advanced settings of a page, you can display the sub-menu of this page with a template
tag. For example, we have a page called meta that is not displayed in the navigation and that has the id “meta”:

{% show_menu_below_id "meta" %}

You can give it the same optional parameters as show_menu:

116 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

{% show_menu_below_id "meta" 0 100 100 100 "myapp/menu.html" %}

Unlike show_menu, however, soft roots will not affect the menu when using show_menu_below_id.

show_sub_menu

Displays the sub menu of the current page (as a nested list).

The first argument, levels (default=100), specifies how many levels deep the sub menu should be displayed.

The second argument, root_level (default=None), specifies at what level, if any, the menu should have its
root. For example, if root_level is 0 the menu will start at that level regardless of what level the current page is on.

The third argument, nephews (default=100), specifies how many levels of nephews (children of siblings)
are shown.

Fourth argument, template (default=menu/sub_menu.html), is the template used by the tag; if you
want to use a different template you must supply default values for root_level and nephews.

Examples:

{% show_sub_menu 1 %}

Rooted at level 0:

{% show_sub_menu 1 0 %}

Or with a custom template:

{% show_sub_menu 1 None 100 "myapp/submenu.html" %}

show_breadcrumb

Show the breadcrumb navigation of the current page. The template for the HTML can be found at
menu/breadcrumb.html.:

{% show_breadcrumb %}

Or with a custom template and only display level 2 or higher:

{% show_breadcrumb 2 "myapp/breadcrumb.html" %}

Usually, only pages visible in the navigation are shown in the breadcrumb. To include all pages in the breadcrumb,
write:

{% show_breadcrumb 0 "menu/breadcrumb.html" 0 %}

If the current URL is not handled by the CMS or by a navigation extender, the current menu node can not be
determined. In this case you may need to provide your own breadcrumb via the template. This is mostly needed
for pages like login, logout and third-party apps. This can easily be accomplished by a block you overwrite in
your templates.

5.4. Reference 117

django cms Documentation, Release 3.2.5.post1

For example in your base.html:

{% block breadcrumb %}
{% show_breadcrumb %}
{% endblock %}

And then in your app template:

{% block breadcrumb %}
home
My current page
{% endblock %}

Properties of Navigation Nodes in templates

{{ node.is_leaf_node }}

Is it the last in the tree? If true it doesn’t have any children.

{{ node.level }}

The level of the node. Starts at 0.

{{ node.menu_level }}

The level of the node from the root node of the menu. Starts at 0. If your menu starts at level 1 or you have a “soft
root” (described in the next section) the first node would still have 0 as its menu_level.

{{ node.get_absolute_url }}

The absolute URL of the node, without any protocol, domain or port.

{{ node.title }}

The title in the current language of the node.

{{ node.selected }}

If true this node is the current one selected/active at this URL.

{{ node.ancestor }}

If true this node is an ancestor of the current selected node.

{{ node.sibling }}

If true this node is a sibling of the current selected node.

{{ node.descendant }}

If true this node is a descendant of the current selected node.

{{ node.soft_root }}

If true this node is a soft root. A page can be marked as a soft root in its ‘Advanced Settings’.

118 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

Modifying & Extending the menu

Please refer to the Customising navigation menus documentation

5.4.3 Plugins

CMSPluginBase Attributes and Methods Reference

These are a list of attributes and methods that can (or should) be overridden on your Plugin definition.

Attributes

admin_preview Default: False

If True, displays a preview in the admin.

allow_children Default: False

Can this plugin have child plugins? Or can other plugins be placed inside this plugin? If set to True you are
responsible to render the children in your plugin template.

Please use something like this or something similar:

{% load cms_tags %}
<div class="myplugin">

{{ instance.my_content }}
{% for plugin in instance.child_plugin_instances %}

{% render_plugin plugin %}
{% endfor %}

</div>

Be sure to access instance.child_plugin_instances to get all children. They are pre-filled and ready
to use. To finally render your child plugins use the {% render_plugin %} template tag.

See also: child_classes, parent_classes, require_parent

cache Default: CMS_PLUGIN_CACHE

Is this plugin cacheable? If your plugin displays content based on the user or request or other dynamic properties
set this to False.

Warning: If you disable a plugin cache be sure to restart the server and clear the cache afterwards.

change_form_template Default: admin/cms/page/plugin_change_form.html

The template used to render the form when you edit the plugin.

Example:

class MyPlugin(CMSPluginBase):
model = MyModel
name = _("My Plugin")
render_template = "cms/plugins/my_plugin.html"
change_form_template = "admin/cms/page/plugin_change_form.html"

See also: frontend_edit_template

5.4. Reference 119

django cms Documentation, Release 3.2.5.post1

child_classes Default: None

A List of Plugin Class Names. If this is set, only plugins listed here can be added to this plugin.

See also: parent_classes

disable_child_plugins Default: False

Disables dragging of child plugins in structure mode.

frontend_edit_template Default: cms/toolbar/placeholder_wrapper.html

The template used for wrapping the plugin in frontend editing.

See also: change_form_template

model Default: CMSPlugin

If the plugin requires per-instance settings, then this setting must be set to a model that inherits from CMSPlugin.

See also: Storing configuration

page_only Default: False

Can this plugin only be attached to a placeholder that is attached to a page? Set this to True if you always need a
page for this plugin.

See also: child_classes, parent_classes, require_parent,

parent_classes Default: None

A list of Plugin Class Names. If this is set, this plugin may only be added to plugins listed here.

See also: child_classes, require_parent

render_plugin Default: True

Should the plugin be rendered at all, or doesn’t it have any output? If render_plugin is True, then you must also
define render_template()

See also: render_template, get_render_template

render_template Default: None

The path to the template used to render the template. If render_plugin is True either this or
get_render_template must be defined;

See also: render_plugin , get_render_template

require_parent Default: False

Is it required that this plugin is a child of another plugin? Or can it be added to any placeholder, even one attached
to a page.

See also: child_classes, parent_classes

text_enabled Default: False

Can the plugin be inserted inside the text plugin? If this is True then icon_src() must be overridden.

See also: icon_src, icon_alt

120 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

Methods

render The render() method takes three arguments:

• context: The context with which the page is rendered.

• instance: The instance of your plugin that is rendered.

• placeholder: The name of the placeholder that is rendered.

This method must return a dictionary or an instance of django.template.Context, which will be used as
context to render the plugin template.

New in version 2.4.

By default this method will add instance and placeholder to the context, which means for simple plugins,
there is no need to overwrite this method.

If you overwrite this method it’s recommended to always populate the context with default values by calling the
render method of the super class:

def render(self, context, instance, placeholder):
context = super(MyPlugin, self).render(context, instance, placeholder)
...
return context

get_render_template If you need to determine the plugin render model at render time you can implement
get_render_template() method on the plugin class; this method takes the same arguments as render.
The method must return a valid template file path.

Example:

def get_render_template(self, context, instance, placeholder):
if instance.attr = 'one':

return 'template1.html'
else:

return 'template2.html'

See also: render_plugin , render_template

icon_src By default, this returns an empty string, which, if left unoverridden would result in no icon rendered at
all, which, in turn, would render the plugin uneditable by the operator inside a parent text plugin.

Therefore, this should be overridden when the plugin has text_enabled set to True to return the path to an
icon to display in the text of the text plugin.

icon_src takes 1 argument:

• instance: The instance of the plugin model

Example:

def icon_src(self, instance):
return settings.STATIC_URL + "cms/img/icons/plugins/link.png"

See also: text_enabled, icon_alt

5.4. Reference 121

http://django.readthedocs.io/en/latest/ref/templates/api.html#django.template.Context

django cms Documentation, Release 3.2.5.post1

icon_alt Although it is optional, authors of “text enabled” plugins should consider overriding this function as
well.

This function accepts the instance as a parameter and returns a string to be used as the alt text for the plugin’s
icon which will appear as a tooltip in most browsers. This is useful, because if the same plugin is used multiple
times within the same text plugin, they will typically all render with the same icon rendering them visually identical
to one another. This alt text and related tooltip will help the operator distinguish one from the others.

By default icon_alt() will return a string of the form: “[plugin type] - [instance]”, but can be modified to
return anything you like.

icon_alt() takes 1 argument:

• instance: The instance of the plugin model

The default implementation is as follows:

def icon_alt(self, instance):
return "%s - %s" % (force_text(self.name), force_text(instance))

See also: text_enabled, icon_src

text_editor_button_icon When text_enabled is True, this plugin can be added in a text editor and there might
be an icon button for that purpose. This method allows to override this icon.

By default, it returns None and each text editor plugin may have its own fallback icon.

text_editor_button_icon() takes 2 arguments:

• editor_name: The plugin name of the text editor

• icon_context: A dictionary containing information about the needed icon like width, height, theme, etc

Usually this method should return the icon URL. But, it may depends on the text editor because what is needed
may differ. Please consult the documentation of your text editor plugin.

This requires support from the text plugin; support for this is currently planned for djangocms-text-ckeditor 2.5.0.

See also: text_enabled

get_extra_placeholder_menu_items get_extra_placeholder_menu_items(self, request,
placeholder)

Extends the context menu for all placeholders. To add one or more custom context menu items that are displayed
in the context menu for all placeholders when in structure mode, override this method in a related plugin to return
a list of cms.plugin_base.PluginMenuItem instances.

get_extra_global_plugin_menu_items get_extra_global_plugin_menu_items(self,
request, plugin)

Extends the context menu for all plugins. To add one or more custom context menu items that are displayed in
the context menu for all plugins when in structure mode, override this method in a related plugin to return a list of
cms.plugin_base.PluginMenuItem instances.

get_extra_local_plugin_menu_items get_extra_local_plugin_menu_items(self, request,
plugin)

Extends the context menu for a specific plugin. To add one or more custom context menu items that are displayed
in the context menu for a given plugin when in structure mode, override this method in the plugin to return a list
of cms.plugin_base.PluginMenuItem instances.

122 Chapter 5. Table of contents

https://github.com/divio/djangocms-text-ckeditor/

django cms Documentation, Release 3.2.5.post1

CMSPlugin Attributes and Methods Reference

These are a list of attributes and methods that can (or should) be overridden on your plugin’s model definition.

See also: Storing configuration

Attributes

translatable_content_excluded_fields Default: []

A list of plugin fields which will not be exported while using get_translatable_content().

See also: get_translatable_content, set_translatable_content

Methods

copy_relations Handle copying of any relations attached to this plugin. Custom plugins have to do this them-
selves.

copy_relations takes 1 argument:

• old_instance: The source plugin instance

See also: Handling Relations, post_copy

get_translatable_content Get a dictionary of all content fields (field name / field value pairs) from the plugin.

Example:

from djangocms_text_ckeditor.models import Text

plugin = Text.objects.get(pk=1).get_plugin_instance()[0]
plugin.get_translatable_content()
returns {'body': u'<p>I am text!</p>\n'}

See also: translatable_content_excluded_fields, set_translatable_content

post_copy Can (should) be overridden to handle the copying of plugins which contain children plugins after the
original parent has been copied.

post_copy takes 2 arguments:

• old_instance: The old plugin instance instance

• new_old_ziplist: A list of tuples containing new copies and the old existing child plugins.

See also: Handling Relations, copy_relations

set_translatable_content Takes a dictionary of plugin fields (field name / field value pairs) and overwrites the
plugin’s fields. Returns True if all fields have been written successfully, and False otherwise.

set_translatable_content takes 1 argument:

• fields: A dictionary containing the field names and translated content for each.

Example:

from djangocms_text_ckeditor.models import Text

plugin = Text.objects.get(pk=1).get_plugin_instance()[0]
plugin.set_translatable_content({'body': u'<p>This is a different text!</p>\n'})
returns True

5.4. Reference 123

django cms Documentation, Release 3.2.5.post1

See also: translatable_content_excluded_fields, get_translatable_content

add_url Returns the URL to call to add a plugin instance; useful to implement plugin-specific logic in a custom
view

Default: None (cms_page_add_plugin view is used)

edit_url Returns the URL to call to edit a plugin instance; useful to implement plugin-specific logic in a custom
view

Default: None (cms_page_edit_plugin view is used)

move_url Returns the URL to call to move a plugin instance; useful to implement plugin-specific logic in a
custom view

Default: None (cms_page_move_plugin view is used)

delete_url Returns the URL to call to delete a plugin instance; useful to implement plugin-specific logic in a
custom view

Default: None (cms_page_delete_plugin view is used)

copy_url Returns the URL to call to copy a plugin instance; useful to implement plugin-specific logic in a
custom view

Default: None (cms_page_copy_plugins view is used)

5.4.4 API References

cms.api

Python APIs for creating CMS content. This is done in cms.api and not on the models and managers, because
the direct API via models and managers is slightly counterintuitive for developers. Also the functions defined in
this module do sanity checks on arguments.

Warning: None of the functions in this module does any security or permission checks. They verify their
input values to be sane wherever possible, however permission checks should be implemented manually before
calling any of these functions.

Warning: Due to potential circular dependency issues, it’s recommended to import the api in the functions
that uses its function.
e.g. use:

def my_function():
from cms.api import api_function

api_function(...)

instead of:

from cms.api import api_function

def my_function():
api_function(...)

124 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

Functions and constants

cms.api.VISIBILITY_ALL
Used for the limit_menu_visibility keyword argument to create_page(). Does not limit menu
visibility.

cms.api.VISIBILITY_USERS
Used for the limit_menu_visibility keyword argument to create_page(). Limits menu visi-
bility to authenticated users.

cms.api.VISIBILITY_ANONYMOUS
Used for the limit_menu_visibility keyword argument to create_page(). Limits menu visi-
bility to anonymous (not authenticated) users.

cms.api.create_page(title, template, language, menu_title=None, slug=None, apphook=None,
apphook_namespace=None, redirect=None, meta_description=None,
created_by=’python-api’, parent=None, publication_date=None, pub-
lication_end_date=None, in_navigation=False, soft_root=False, re-
verse_id=None, navigation_extenders=None, published=False, site=None,
login_required=False, limit_visibility_in_menu=VISIBILITY_ALL,
position=”last-child”)

Creates a cms.models.pagemodel.Page instance and returns it. Also creates a
cms.models.titlemodel.Title instance for the specified language.

Parameters
• title (string) – Title of the page
• template (string) – Template to use for this page. Must be in
CMS_TEMPLATES

• language (string) – Language code for this page. Must be in LANGUAGES
• menu_title (string) – Menu title for this page
• slug (string) – Slug for the page, by default uses a slugified version of title
• apphook (string or cms.app_base.CMSApp sub-class) – Application to hook

on this page, must be a valid apphook
• apphook_namespace (string) – Name of the apphook namespace
• redirect (string) – URL redirect
• meta_description (string) – Description of this page for SEO
• created_by (string of django.contrib.auth.models.User instance)

– User that is creating this page
• parent (cms.models.pagemodel.Page instance) – Parent page of this

page
• publication_date (datetime) – Date to publish this page
• publication_end_date (datetime) – Date to unpublish this page
• in_navigation (bool) – Whether this page should be in the navigation or not
• soft_root (bool) – Whether this page is a soft root or not
• reverse_id (string) – Reverse ID of this page (for template tags)
• navigation_extenders (string) – Menu to attach to this page. Must be a

valid menu
• published (bool) – Whether this page should be published or not
• site (django.contrib.sites.models.Site instance) – Site to put this

page on
• login_required (bool) – Whether users must be logged in or not to view

this page
• limit_menu_visibility (VISIBILITY_ALL or VISIBILITY_USERS

or VISIBILITY_ANONYMOUS) – Limits visibility of this page in the menu
• position (string) – Where to insert this node if parent is given, must be
’first-child’ or ’last-child’

• overwrite_url (string) – Overwritten path for this page

cms.api.create_title(language, title, page, menu_title=None, slug=None, redirect=None,
meta_description=None, parent=None)

Creates a cms.models.titlemodel.Title instance and returns it.

5.4. Reference 125

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-LANGUAGES
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
http://django.readthedocs.io/en/latest/ref/contrib/auth.html#django.contrib.auth.models.User
https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/functions.html#bool
http://django.readthedocs.io/en/latest/ref/contrib/sites.html#django.contrib.sites.models.Site
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string

django cms Documentation, Release 3.2.5.post1

Parameters
• language (string) – Language code for this page. Must be in LANGUAGES
• title (string) – Title of the page
• page (cms.models.pagemodel.Page instance) – The page for which to

create this title
• menu_title (string) – Menu title for this page
• slug (string) – Slug for the page, by default uses a slugified version of title
• redirect (string) – URL redirect
• meta_description (string) – Description of this page for SEO
• parent (cms.models.pagemodel.Page instance) – Used for automated

slug generation
• overwrite_url (string) – Overwritten path for this page

cms.api.add_plugin(placeholder, plugin_type, language, position=’last-child’, target=None,
**data)

Adds a plugin to a placeholder and returns it.
Parameters

• placeholder (cms.models.placeholdermodel.Placeholder in-
stance) – Placeholder to add the plugin to

• plugin_type (string or cms.plugin_base.CMSPluginBase sub-class,
must be a valid plugin) – What type of plugin to add

• language (string) – Language code for this plugin, must be in LANGUAGES
• position (string) – Position to add this plugin to the placeholder, must be a

valid django-mptt position
• target – Parent plugin. Must be plugin instance
• data (kwargs) – Data for the plugin type instance

cms.api.create_page_user(created_by, user, can_add_page=True,
can_change_page=True, can_delete_page=True,
can_recover_page=True, can_add_pageuser=True,
can_change_pageuser=True, can_delete_pageuser=True,
can_add_pagepermission=True, can_change_pagepermission=True,
can_delete_pagepermission=True, grant_all=False)

Creates a page user for the user provided and returns that page user.
Parameters

• created_by (django.contrib.auth.models.User instance) – The
user that creates the page user

• user (django.contrib.auth.models.User instance) – The user to cre-
ate the page user from

• can_* (bool) – Permissions to give the user
• grant_all (bool) – Grant all permissions to the user

cms.api.assign_user_to_page(page, user, grant_on=ACCESS_PAGE_AND_DESCENDANTS,
can_add=False, can_change=False, can_delete=False,
can_change_advanced_settings=False, can_publish=False,
can_change_permissions=False, can_move_page=False,
grant_all=False)

Assigns a user to a page and gives them some permissions. Returns the
cms.models.permissionmodels.PagePermission object that gets created.

Parameters
• page (cms.models.pagemodel.Page instance) – The page to assign the

user to
• user (django.contrib.auth.models.User instance) – The user to as-

sign to the page
• grant_on (cms.models.permissionmodels.ACCESS_PAGE,
cms.models.permissionmodels.ACCESS_CHILDREN,
cms.models.permissionmodels.ACCESS_DESCENDANTS or
cms.models.permissionmodels.ACCESS_PAGE_AND_DESCENDANTS)
– Controls which pages are affected

• can_* – Permissions to grant

126 Chapter 5. Table of contents

https://docs.python.org/3/library/string.html#module-string
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-LANGUAGES
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-LANGUAGES
https://docs.python.org/3/library/string.html#module-string
http://django.readthedocs.io/en/latest/ref/contrib/auth.html#django.contrib.auth.models.User
http://django.readthedocs.io/en/latest/ref/contrib/auth.html#django.contrib.auth.models.User
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
http://django.readthedocs.io/en/latest/ref/contrib/auth.html#django.contrib.auth.models.User

django cms Documentation, Release 3.2.5.post1

• grant_all (bool) – Grant all permissions to the user

cms.api.publish_page(page, user, language)
Publishes a page.

Parameters
• page (cms.models.pagemodel.Page instance) – The page to publish
• user (django.contrib.auth.models.User instance) – The user that

performs this action
• language (string) – The target language to publish to

cms.api.publish_pages(include_unpublished=False, language=None, site=None)
Publishes multiple pages defined by parameters.

Parameters
• include_unpublished (bool) – Set to True to publish all drafts, including

unpublished ones; otherwise, only already published pages will be republished
• language (string) – If given, only pages in this language will be published;

otherwise, all languages will be published
• site (django.contrib.sites.models.Site instance) – Specify a site

to publish pages for specified site only; if not specified pages from all sites are
published

get_page_draft(page):
Returns the draft version of a page, regardless if the passed in page is a published version or a draft version.

Parameters page (cms.models.pagemodel.Page instance) – The page to get the draft
version

Return page draft version of the page

copy_plugins_to_language(page, source_language, target_language, only_empty=True):
Copy the plugins to another language in the same page for all the page placeholders.

By default plugins are copied only if placeholder has no plugin for the target language; use
only_empty=False to change this.

Warning: This function skips permissions checks

Parameters
• page (cms.models.pagemodel.Page instance) – the page to copy
• source_language (string) – The source language code, must be in
LANGUAGES

• target_language (string) – The source language code, must be in
LANGUAGES

• only_empty (bool) – if False, plugin are copied even if plugins exists in the
target language (on a placeholder basis).

Return int number of copied plugins

Example workflows

Create a page called ’My Page using the template ’my_template.html’ and add a text plugin with the
content ’hello world’. This is done in English:

from cms.api import create_page, add_plugin

page = create_page('My Page', 'my_template.html', 'en')
placeholder = page.placeholders.get(slot='body')
add_plugin(placeholder, 'TextPlugin', 'en', body='hello world')

cms.constants

cms.constants.TEMPLATE_INHERITANCE_MAGIC
The token used to identify when a user selects “inherit” as template for a page.

5.4. Reference 127

https://docs.python.org/3/library/functions.html#bool
http://django.readthedocs.io/en/latest/ref/contrib/auth.html#django.contrib.auth.models.User
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/string.html#module-string
http://django.readthedocs.io/en/latest/ref/contrib/sites.html#django.contrib.sites.models.Site
https://docs.python.org/3/library/string.html#module-string
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-LANGUAGES
https://docs.python.org/3/library/string.html#module-string
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-LANGUAGES
https://docs.python.org/3/library/functions.html#bool

django cms Documentation, Release 3.2.5.post1

cms.constants.LEFT
Used as a position indicator in the toolbar.

cms.constants.RIGHT
Used as a position indicator in the toolbar.

cms.constants.REFRESH
Constant used by the toolbar.

cms.plugin_base

class cms.plugin_base.CMSPluginBase
Inherits django.contrib.admin.options.ModelAdmin.

admin_preview
Defaults to False, if True, displays a preview in the admin.

change_form_template
Custom template to use to render the form to edit this plugin.

form
Custom form class to be used to edit this plugin.

get_plugin_urls(instance)
Returns URL patterns for which the plugin wants to register views for. They are included under django
CMS PageAdmin in the plugin path (e.g.: /admin/cms/page/plugin/<plugin-name>/ in
the default case). Useful if your plugin needs to asynchronously talk to the admin.

model
Is the CMSPlugin model we created earlier. If you don’t need model because you just want to
display some template logic, use CMSPlugin from cms.models as the model instead.

module
Will group the plugin in the plugin editor. If module is None, plugin is grouped “Generic” group.

name
Will be displayed in the plugin editor.

render_plugin
If set to False, this plugin will not be rendered at all.

render_template
Will be rendered with the context returned by the render function.

text_enabled
Whether this plugin can be used in text plugins or not.

icon_alt(instance)
Returns the alt text for the icon used in text plugins, see icon_src().

icon_src(instance)
Returns the URL to the icon to be used for the given instance when that instance is used inside a text
plugin.

render(context, instance, placeholder)
This method returns the context to be used to render the template specified in render_template.

It’s recommended to always populate the context with default values by calling the render method of
the super class:

def render(self, context, instance, placeholder):
context = super(MyPlugin, self).render(context, instance, placeholder)
...
return context

Parameters

128 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

• context – Current template context.
• instance – Plugin instance that is being rendered.
• placeholder – Name of the placeholder the plugin is in.

Return type dict

cms.toolbar

All methods taking a side argument expect either cms.constants.LEFT or cms.constants.RIGHT for
that argument.

Methods accepting the position argument can insert items at a specific position. This can be either None to
insert at the end, an integer index at which to insert the item, a cms.toolbar.items.ItemSearchResult
to insert it before that search result or a cms.toolbar.items.BaseItem instance to insert it before that
item.

cms.toolbar.toolbar

class cms.toolbar.toolbar.CMSToolbar
The toolbar class providing a Python API to manipulate the toolbar. Note that some internal attributes are
not documented here.

All methods taking a position argument expect either cms.constants.LEFT or
cms.constants.RIGHT for that argument.

This class inherits cms.toolbar.items.ToolbarMixin, so please check that reference as well.

is_staff
Whether the current user is a staff user or not.

edit_mode
Whether the toolbar is in edit mode.

build_mode
Whether the toolbar is in build mode.

show_toolbar
Whether the toolbar should be shown or not.

csrf_token
The CSRF token of this request

toolbar_language
Language used by the toolbar.

watch_models
A list of models this toolbar works on; used for redirection after editing (Detecting URL changes).

add_item(item, position=None)
Low level API to add items.

Adds an item, which must be an instance of cms.toolbar.items.BaseItem, to the toolbar.

This method should only be used for custom item classes, as all built-in item classes have higher level
APIs.

Read above for information on position.

remove_item(item)
Removes an item from the toolbar or raises a KeyError if it’s not found.

get_or_create_menu(key. verbose_name, side=LEFT, position=NOne)
If a menu with key already exists, this method will return that menu. Otherwise it will create a menu
for that key with the given verbose_name on side at position and return it.

5.4. Reference 129

https://docs.python.org/3/library/exceptions.html#KeyError

django cms Documentation, Release 3.2.5.post1

add_button(name, url, active=False, disabled=False, extra_classes=None, ex-
tra_wrapper_classes=None, side=LEFT, position=None)

Adds a button to the toolbar. extra_wrapper_classes will be applied to the wrapping div
while extra_classes are applied to the <a>.

add_button_list(extra_classes=None, side=LEFT, position=None)
Adds an (empty) button list to the toolbar and returns it. See
cms.toolbar.items.ButtonList for further information.

cms.toolbar.items

Important: Overlay and sideframe

Then django CMS sideframe has been replaced with an overlay mechanism. The API still refers to the
sideframe, because it is invoked in the same way, and what has changed is merely the behaviour in the user’s
browser.

In other words, sideframe and the overlay refer to different versions of the same thing.

class cms.toolbar.items.ItemSearchResult
Used for the find APIs in ToolbarMixin. Supports addition and subtraction of numbers. Can be cast to
an integer.

item
The item found.

index
The index of the item.

class cms.toolbar.items.ToolbarMixin
Provides APIs shared between cms.toolbar.toolbar.CMSToolbar and Menu.

The active and disabled flags taken by all methods of this class specify the state of the item added.

extra_classes should be either None or a list of class names as strings.

REFRESH_PAGE
Constant to be used with on_close to refresh the current page when the frame is closed.

LEFT
Constant to be used with side.

RIGHT
Constant to be used with side.

get_item_count()
Returns the number of items in the toolbar or menu.

add_item(item, position=None)
Low level API to add items, adds the item to the toolbar or menu and makes it searchable. item
must be an instance of BaseItem. Read above for information about the position argument.

remove_item(item)
Removes item from the toolbar or menu. If the item can’t be found, a KeyError is raised.

find_items(item_type, **attributes)
Returns a list of ItemSearchResult objects matching all items of item_type, which must be
a sub-class of BaseItem, where all attributes in attributes match.

find_first(item_type, **attributes)
Returns the first ItemSearchResult that matches the search or None. The search strategy is the
same as in find_items(). Since positional insertion allows None, it’s safe to use the return value
of this method as the position argument to insertion APIs.

130 Chapter 5. Table of contents

https://docs.python.org/3/library/exceptions.html#KeyError

django cms Documentation, Release 3.2.5.post1

add_sideframe_item(name, url, active=False, disabled=False, extra_classes=None,
on_close=None, side=LEFT, position=None)

Adds an item which opens url in the sideframe and returns it.

on_close can be set to None to do nothing when the sideframe closes, REFRESH_PAGE to refresh
the page when it closes or a URL to open once it closes.

add_modal_item(name, url, active=False, disabled=False, extra_classes=None,
on_close=REFRESH_PAGE, side=LEFT, position=None)

The same as add_sideframe_item(), but opens the url in a modal dialog instead of the side-
frame.

on_close can be set to None to do nothing when the side modal closes, REFRESH_PAGE to
refresh the page when it closes or a URL to open once it closes.

Note: The default value for on_close is different in add_sideframe_item() then in
add_modal_item()

add_link_item(name, url, active=False, disabled=False, extra_classes=None, side=LEFT, po-
sition=None)

Adds an item that simply opens url and returns it.

add_ajax_item(name, action, active=False, disabled=False, extra_classes=None, data=None,
question=None, side=LEFT, position=None)

Adds an item which sends a POST request to action with data. data should be None or a
dictionary, the CSRF token will automatically be added to it.

If question is set to a string, it will be asked before the request is sent to confirm the user wants to
complete this action.

class cms.toolbar.items.BaseItem(position)
Base item class.

template
Must be set by sub-classes and point to a Django template

side
Must be either cms.constants.LEFT or cms.constants.RIGHT.

render()
Renders the item and returns it as a string. By default calls get_context() and renders
template with the context returned.

get_context()
Returns the context (as dictionary) for this item.

class cms.toolbar.items.Menu(name, csrf_token, side=LEFT, position=None)
The menu item class. Inherits ToolbarMixin and provides the APIs documented on it.

The csrf_token must be set as this class provides high level APIs to add items to it.

get_or_create_menu(key, verbose_name, side=LEFT, position=None)
The same as cms.toolbar.toolbar.CMSToolbar.get_or_create_menu() but adds
the menu as a sub menu and returns a SubMenu.

add_break(identifier=None, position=None)
Adds a visual break in the menu, useful for grouping items, and returns it. identifier may be
used to make this item searchable.

class cms.toolbar.items.SubMenu(name, csrf_token, side=LEFT, position=None)
Same as Menu but without the Menu.get_or_create_menu() method.

class cms.toolbar.items.LinkItem(name, url, active=False, disabled=False, ex-
tra_classes=None, side=LEFT)

Simple link item.

class cms.toolbar.items.SideframeItem(name, url, active=False, disabled=False, ex-
tra_classes=None, on_close=None, side=LEFT)

Item that opens url in sideframe.

5.4. Reference 131

django cms Documentation, Release 3.2.5.post1

class cms.toolbar.items.AjaxItem(name, action, csrf_token, data=None, active=False,
disabled=False, extra_classes=None, question=None,
side=LEFT)

An item which posts data to action.

class cms.toolbar.items.ModalItem(name, url, active=False, disabled=False, ex-
tra_classes=None, on_close=None, side=LEFT)

Item that opens url in the modal.

class cms.toolbar.items.Break(identifier=None)
A visual break for menus. identifier may be provided to make this item searchable. Since breaks can
only be within menus, they have no side attribute.

class cms.toolbar.items.ButtonList(identifier=None, extra_classes=None, side=LEFT)
A list of one or more buttons.

The identifier may be provided to make this item searchable.

add_item(item)
Adds item to the list of buttons. item must be an instance of Button.

add_button(name, url, active=False, disabled=False, extra_classes=None)
Adds a Button to the list of buttons and returns it.

class cms.toolbar.items.Button(name, url, active=False, disabled=False, extra_classes=None)
A button to be used with ButtonList. Opens url when selected.

menus.base

class menus.base.NavigationNode(title, url, id[, parent_id=None][, parent_namespace=None][,
attr=None][, visible=True])

A navigation node in a menu tree.
Parameters

• title (string) – The title to display this menu item with.
• url (string) – The URL associated with this menu item.
• id – Unique (for the current tree) ID of this item.
• parent_id – Optional, ID of the parent item.
• parent_namespace – Optional, namespace of the parent.
• attr (dict) – Optional, dictionary of additional information to store on this

node.
• visible (bool) – Optional, defaults to True, whether this item is visible or

not.
attr

A dictionary of various additional information describing the node. Nodes that represent CMS pages
have the following keys in attr:

•auth_required (bool) – is authentication required to access this page
•is_page (bool) – Always True
•navigation_extenders (list) – navigation extenders connected to this node (including Ap-
phooks)

•redirect_url (str) – redirect URL of page (if any)
•reverse_id (str) – unique identifier for the page
•soft_root (bool) – whether page is a soft root
•visible_for_authenticated (bool) – visible for authenticated users
•visible_for_anonymous (bool) – visible for anonymous users

get_descendants()
Returns a list of all children beneath the current menu item.

get_ancestors()
Returns a list of all parent items, excluding the current menu item.

132 Chapter 5. Table of contents

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

django cms Documentation, Release 3.2.5.post1

get_absolute_url()
Utility method to return the URL associated with this menu item, primarily to follow naming conven-
tion asserted by Django.

get_menu_title()
Utility method to return the associated title, using the same naming convention used by
cms.models.pagemodel.Page.

5.4.5 Form and model fields

Model fields

class cms.models.fields.PageField
This is a foreign key field to the cms.models.pagemodel.Page model that defaults to the
cms.forms.fields.PageSelectFormField form field when rendered in forms. It has the
same API as the django.db.models.fields.related.ForeignKey but does not require the
othermodel argument.

Form fields

class cms.forms.fields.PageSelectFormField
Behaves like a django.forms.models.ModelChoiceField field for the
cms.models.pagemodel.Page model, but displays itself as a split field with a select drop-
down for the site and one for the page. It also indents the page names based on what level
they’re on, so that the page select drop-down is easier to use. This takes the same arguments as
django.forms.models.ModelChoiceField.

class cms.forms.fields.PageSmartLinkField
A field making use of cms.forms.widgets.PageSmartLinkWidget. This field will offer you a
list of matching internal pages as you type. You can either pick one or enter an arbitrary URL to create a
non existing entry. Takes a placeholder_text argument to define the text displayed inside the input before
you type. The widget uses an ajax request to try to find pages match. It will try to find case insensitive
matches amongst public and published pages on the title, path, page_title, menu_title fields.

5.4.6 Template Tags

CMS template tags

To use any of the following template tags you first need to load them at the top of your template:

{% load cms_tags %}

placeholder

Changed in version 2.1: The placeholder name became case sensitive.

The placeholder template tag defines a placeholder on a page. All placeholders in a template will be auto-
detected and can be filled with plugins when editing a page that is using said template. When rendering, the
content of these plugins will appear where the placeholder tag was.

Example:

{% placeholder "content" %}

5.4. Reference 133

django cms Documentation, Release 3.2.5.post1

If you want additional content to be displayed in case the placeholder is empty, use the or argument and an
additional {% endplaceholder %} closing tag. Everything between {% placeholder "..." or %}
and {% endplaceholder %} is rendered in the event that the placeholder has no plugins or the plugins do
not generate any output.

Example:

{% placeholder "content" or %}There is no content.{% endplaceholder %}

If you want to add extra variables to the context of the placeholder, you should use Django’s with tag. For
instance, if you want to re-size images from your templates according to a context variable called width, you can
pass it as follows:

{% with 320 as width %}{% placeholder "content" %}{% endwith %}

If you want the placeholder to inherit the content of a placeholder with the same name on parent pages, simply
pass the inherit argument:

{% placeholder "content" inherit %}

This will walk up the page tree up until the root page and will show the first placeholder it can find with content.

It’s also possible to combine this with the or argument to show an ultimate fallback if the placeholder and none
of the placeholders on parent pages have plugins that generate content:

{% placeholder "content" inherit or %}There is no spoon.{% endplaceholder %}

See also the CMS_PLACEHOLDER_CONF setting where you can also add extra context variables and change
some other placeholder behaviour.

static_placeholder

New in version 3.0.

The static_placeholder template tag can be used anywhere in any template and is not bound to any page or model.
It needs a name and it will create a placeholder that you can fill with plugins afterwards. The static_placeholder
tag is normally used to display the same content on multiple locations or inside of apphooks or other third party
apps. Static_placeholder need to be published to show up on live pages.

Example:

{% load cms_tags %}

{% static_placeholder "footer" %}

Warning: Static_placeholders are not included in the undo/redo and page history pages

If you want additional content to be displayed in case the static placeholder is empty, use the or ar-
gument and an additional {% endstatic_placeholder %} closing tag. Everything between {%
static_placeholder "..." or %} and {% endstatic_placeholder %} is rendered in the event
that the placeholder has no plugins or the plugins do not generate any output.

Example:

{% static_placeholder "footer" or %}There is no content.{% endstatic_placeholder %}

134 Chapter 5. Table of contents

http://django.readthedocs.io/en/latest/ref/templates/builtins.html#std:templatetag-with

django cms Documentation, Release 3.2.5.post1

By default, a static placeholder applies to all sites in a project.

If you want to make your static placeholder site-specific, so that different sites can have their own content in it,
you can add the flag site to the template tag to achieve this.

Example:

{% static_placeholder "footer" site or %}There is no content.{% endstatic_placeholder %}

Note that the Django “sites” framework is required and SITE_ID *must* be set in settings.py for this (not
to mention other aspects of django CMS) to work correctly.

render_placeholder

{% render_placeholder %} is used if you have a PlaceholderField in your own model and want to render it in the
template.

The render_placeholder tag takes the following parameters:

• PlaceholderField instance

• width parameter for context sensitive plugins (optional)

• language keyword plus language-code string to render content in the specified language (optional)

• as keyword followed by varname (optional): the template tag output can be saved as a context variable
for later use.

The following example renders the my_placeholder field from the mymodel_instance and will render
only the English (en) plugins:

{% load cms_tags %}

{% render_placeholder mymodel_instance.my_placeholder language 'en' %}

New in version 3.0.2: This template tag supports the as argument. With this you can assign the result of the
template tag to a new variable that you can use elsewhere in the template.

Example:

{% render_placeholder mymodel_instance.my_placeholder as placeholder_content %}
<p>{{ placeholder_content }}</p>

When used in this manner, the placeholder will not be displayed for editing when the CMS is in edit mode.

render_uncached_placeholder

The same as render_placeholder, but the placeholder contents will not be cached or taken from the cache.

Arguments:

• PlaceholderField instance

• width parameter for context sensitive plugins (optional)

• language keyword plus language-code string to render content in the specified language (optional)

• as keyword followed by varname (optional): the template tag output can be saved as a context variable
for later use.

Example:

{% render_uncached_placeholder mymodel_instance.my_placeholder language 'en' %}

5.4. Reference 135

https://docs.djangoproject.com/en/dev/ref/contrib/sites/

django cms Documentation, Release 3.2.5.post1

show_placeholder

Displays a specific placeholder from a given page. This is useful if you want to have some more or less static
content that is shared among many pages, such as a footer.

Arguments:

• placeholder_name

• page_lookup (see page_lookup for more information)

• language (optional)

• site (optional)

Examples:

{% show_placeholder "footer" "footer_container_page" %}
{% show_placeholder "content" request.current_page.parent_id %}
{% show_placeholder "teaser" request.current_page.get_root %}

show_uncached_placeholder

The same as show_placeholder, but the placeholder contents will not be cached or taken from the cache.

Arguments:

• placeholder_name

• page_lookup (see page_lookup for more information)

• language (optional)

• site (optional)

Example:

{% show_uncached_placeholder "footer" "footer_container_page" %}

page_lookup

The page_lookup argument, passed to several template tags to retrieve a page, can be of any of the following
types:

• str: interpreted as the reverse_id field of the desired page, which can be set in the “Advanced” section
when editing a page.

• int: interpreted as the primary key (pk field) of the desired page

• dict: a dictionary containing keyword arguments to find the desired page (for instance: {’pk’: 1})

• Page: you can also pass a page object directly, in which case there will be no database lookup.

If you know the exact page you are referring to, it is a good idea to use a reverse_id (a string used to uniquely
name a page) rather than a hard-coded numeric ID in your template. For example, you might have a help page
that you want to link to or display parts of on all pages. To do this, you would first open the help page in the
admin interface and enter an ID (such as help) under the ‘Advanced’ tab of the form. Then you could use that
reverse_id with the appropriate template tags:

{% show_placeholder "right-column" "help" %}
Help page

If you are referring to a page relative to the current page, you’ll probably have to use a numeric page ID or a page
object. For instance, if you want the content of the parent page to display on the current page, you can use:

136 Chapter 5. Table of contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

django cms Documentation, Release 3.2.5.post1

{% show_placeholder "content" request.current_page.parent_id %}

Or, suppose you have a placeholder called teaser on a page that, unless a content editor has filled it with content
specific to the current page, should inherit the content of its root-level ancestor:

{% placeholder "teaser" or %}
{% show_placeholder "teaser" request.current_page.get_root %}

{% endplaceholder %}

page_url

Displays the URL of a page in the current language.

Arguments:

• page_lookup (see page_lookup for more information)

• language (optional)

• site (optional)

• as var_name (version 3.0 or later, optional; page_url can now be used to assign the resulting URL to a
context variable var_name)

Example:

Help page
Parent page

If a matching page isn’t found and DEBUG is True, an exception will be raised. However, if DEBUG is False, an
exception will not be raised. Additionally, if SEND_BROKEN_LINK_EMAILS is True and you have specified
some addresses in MANAGERS, an email will be sent to those addresses to inform them of the broken link.

New in version 3.0: page_url now supports the as argument. When used this way, the tag emits nothing, but sets
a variable in the context with the specified name to the resulting value.

When using the as argument PageNotFound exceptions are always suppressed, regardless of the setting of DEBUG
and the tag will simply emit an empty string in these cases.

Example:

{# Emit a 'canonical' tag when the page is displayed on an alternate url #}
{% page_url request.current_page as current_url %}{% if current_url and current_url != request.get_full_path %}<link rel="canonical" href="{% page_url request.current_page %}">{% endif %}

page_attribute

This template tag is used to display an attribute of the current page in the current language.

Arguments:

• attribute_name

• page_lookup (optional; see page_lookup for more information)

Possible values for attribute_name are: "title", "menu_title", "page_title", "slug",
"meta_description", "changed_date", "changed_by" (note that you can also supply that argument
without quotes, but this is deprecated because the argument might also be a template variable).

Example:

{% page_attribute "page_title" %}

5.4. Reference 137

http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-DEBUG
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-DEBUG
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-MANAGERS
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-DEBUG

django cms Documentation, Release 3.2.5.post1

If you supply the optional page_lookup argument, you will get the page attribute from the page found by that
argument.

Example:

{% page_attribute "page_title" "my_page_reverse_id" %}
{% page_attribute "page_title" request.current_page.parent_id %}
{% page_attribute "slug" request.current_page.get_root %}

New in version 2.3.2: This template tag supports the as argument. With this you can assign the result of the
template tag to a new variable that you can use elsewhere in the template.

Example:

{% page_attribute "page_title" as title %}
<title>{{ title }}</title>

It even can be used in combination with the page_lookup argument.

Example:

{% page_attribute "page_title" "my_page_reverse_id" as title %}
{{ title }}

New in version 2.4.

render_plugin

This template tag is used to render child plugins of the current plugin and should be used inside plugin templates.

Arguments:

• plugin

Plugin needs to be an instance of a plugin model.

Example:

{% load cms_tags %}
<div class="multicolumn">
{% for plugin in instance.child_plugin_instances %}

<div style="width: {{ plugin.width }}00px;">
{% render_plugin plugin %}

</div>
{% endfor %}
</div>

Normally the children of plugins can be accessed via the child_plugins attribute of plugins. Plugins need
the allow_children attribute to set to True for this to be enabled.

New in version 3.0.

render_plugin_block

This template tag acts like the template tag render_model_block but with a plugin instead of a model as its
target. This is used to link from a block of markup to a plugin’s change form in edit/preview mode.

This is useful for user interfaces that have some plugins hidden from display in edit/preview mode, but the CMS
author needs to expose a way to edit them. It is also useful for just making duplicate or alternate means of
triggering the change form for a plugin.

138 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

This would typically be used inside a parent-plugin’s render template. In this example code below, there is a parent
container plugin which renders a list of child plugins inside a navigation block, then the actual plugin contents in-
side a DIV.contentgroup-items block. In this example, the navigation block is always shown, but the items
are only shown once the corresponding navigation element is clicked. Adding this render_plugin_block
makes it significantly more intuitive to edit a child plugin’s content, by double-clicking its navigation item in edit
mode.

Arguments:

• plugin

Example:

{% load cms_tags l10n %}

{% block section_content %}
<div class="contentgroup-container">

<nav class="contentgroup">
<div class="inner">

<ul class="contentgroup-items">{% for child in children %}
{% if child.enabled %}
<li class="item{{ forloop.counter0|unlocalize }}">
{% render_plugin_block child %}
{{ child.title|safe }}
{% endrender_plugin_block %}

{% endif %}
{% endfor %}

</div>
</nav>

<div class="contentgroup-items">{% for child in children %}
<div class="contentgroup-item item{{ child.id|unlocalize }}{% if not forloop.counter0 %} active{% endif %}">
{% render_plugin child %}

</div>{% endfor %}
</div>

</div>
{% endblock %}

New in version 3.0.

render_model

Warning: render_model marks as safe the content of the rendered model attribute. This may be a security
risk if used on fields which may contains non-trusted content. Be aware, and use the template tag accordingly.

render_model is the way to add frontend editing to any Django model. It both renders the content of the given
attribute of the model instance and makes it clickable to edit the related model.

If the toolbar is not enabled, the value of the attribute is rendered in the template without further action.

If the toolbar is enabled, click to call frontend editing code is added.

By using this template tag you can show and edit page titles as well as fields in standard django models, see
Frontend editing for Page and Django models for examples and further documentation.

Example:

<h1>{% render_model my_model "title" "title,abstract" %}</h1>

This will render to:

5.4. Reference 139

django cms Documentation, Release 3.2.5.post1

<!-- The content of the H1 is the active area that triggers the frontend editor -->
<h1><div class="cms-plugin cms-plugin-myapp-mymodel-title-1">{{ my_model.title }}</div></h1>

Arguments:

• instance: instance of your model in the template

• attribute: the name of the attribute you want to show in the template; it can be a context variable name;
it’s possible to target field, property or callable for the specified model; when used on a page object this
argument accepts the special titles value which will show the page title field, while allowing editing
title, menu title and page title fields in the same form;

• edit_fields (optional): a comma separated list of fields editable in the popup editor; when template
tag is used on a page object this argument accepts the special changelist value which allows editing the
pages changelist (items list);

• language (optional): the admin language tab to be linked. Useful only for django-hvad enabled models.

• filters (optional): a string containing chained filters to apply to the output content; works the same way
as filter template tag;

• view_url (optional): the name of a URL that will be reversed using the instance pk and the language
as arguments;

• view_method (optional): a method name that will return a URL to a view; the method must accept
request as first parameter.

• varname (optional): the template tag output can be saved as a context variable for later use.

Warning: In this version of django CMS, the setting CMS_UNESCAPED_RENDER_MODEL_TAGS has a
default value of True to provide behaviour consistent with previous releases. However, all developers are
encouraged to set this value to False to help prevent a range of security vulnerabilities stemming from
HTML, JavaScript, and CSS Code Injection.

Warning: render_model is only partially compatible with django-hvad: using it with hvad-translated
fields (say {% render_model object ‘translated_field’ %} return error if the hvad-enabled object does not
exists in the current language. As a workaround render_model_icon can be used instead.

New in version 3.0.

render_model_block

render_model_block is the block-level equivalent of render_model:

{% render_model_block my_model %}
<h1>{{ instance.title }}</h1>
<div class="body">

{{ instance.date|date:"d F Y" }}
{{ instance.text }}

</div>
{% endrender_model_block %}

This will render to:

<!-- This whole block is the active area that triggers the frontend editor -->
<div class="cms-plugin cms-plugin-myapp-mymodel-1">

<h1>{{ my_model.title }}</h1>
<div class="body">

{{ my_model.date|date:"d F Y" }}
{{ my_model.text }}

</div>
</div>

140 Chapter 5. Table of contents

https://github.com/kristianoellegaard/django-hvad
http://django.readthedocs.io/en/latest/ref/templates/builtins.html#std:templatetag-filter

django cms Documentation, Release 3.2.5.post1

In the block the my_model is aliased as instance and every attribute and method is available; also template
tags and filters are available in the block.

Warning: If the {% render_model_block %} contains template tags or template code that rely on or
manipulate context data that the {% render_model_block %} also makes use of, you may experience
some unexpected effects. Unless you are sure that such conflicts will not occur it is advised to keep the code
within a {% render_model_block %} as simple and short as possible.

Arguments:

• instance: instance of your model in the template

• edit_fields (optional): a comma separated list of fields editable in the popup editor; when template
tag is used on a page object this argument accepts the special changelist value which allows editing the
pages changelist (items list);

• language (optional): the admin language tab to be linked. Useful only for django-hvad enabled models.

• view_url (optional): the name of a URL that will be reversed using the instance pk and the language
as arguments;

• view_method (optional): a method name that will return a URL to a view; the method must accept
request as first parameter.

• varname (optional): the template tag output can be saved as a context variable for later use.

New in version 3.0.

render_model_icon

render_model_icon is intended for use where the relevant object attribute is not available for user interaction
(for example, already has a link on it, think of a title in a list of items and the titles are linked to the object detail
view); when in edit mode, it renders an edit icon, which will trigger the editing change form for the provided
fields.

<h3>{{ my_model.title }} {% render_model_icon my_model %}</h3>

It will render to something like:

<h3>
{{ my_model.title }}
<div class="cms-plugin cms-plugin-myapp-mymodel-1 cms-render-model-icon">

<!-- The image below is the active area that triggers the frontend editor -->

</div>
</h3>

Note: Icon and position can be customised via CSS by setting a background to the
.cms-render-model-icon img selector.

Arguments:

• instance: instance of your model in the template

• edit_fields (optional): a comma separated list of fields editable in the popup editor; when template
tag is used on a page object this argument accepts the special changelist value which allows editing the
pages changelist (items list);

• language (optional): the admin language tab to be linked. Useful only for django-hvad enabled models.

• view_url (optional): the name of a URL that will be reversed using the instance pk and the language
as arguments;

5.4. Reference 141

https://github.com/kristianoellegaard/django-hvad
https://github.com/kristianoellegaard/django-hvad

django cms Documentation, Release 3.2.5.post1

• view_method (optional): a method name that will return a URL to a view; the method must accept
request as first parameter.

• varname (optional): the template tag output can be saved as a context variable for later use.

New in version 3.0.

render_model_add

render_model_add is similar to render_model_icon but it will enable to create instances of the given
instance class; when in edit mode, it renders an add icon, which will trigger the editing add form for the provided
model.

<h3>{{ my_model.title }} {% render_model_add my_model %}</h3>

It will render to something like:

<h3>
{{ my_model.title }}
<div class="cms-plugin cms-plugin-myapp-mymodel-1 cms-render-model-add">

<!-- The image below is the active area that triggers the frontend editor -->

</div>
</h3>

Note: Icon and position can be customised via CSS by setting a background to the .cms-render-model-add
img selector.

Arguments:

• instance: instance of your model, or model class to be added

• edit_fields (optional): a comma separated list of fields editable in the popup editor;

• language (optional): the admin language tab to be linked. Useful only for django-hvad enabled models.

• view_url (optional): the name of a url that will be reversed using the instance pk and the language as
arguments;

• view_method (optional): a method name that will return a URL to a view; the method must accept
request as first parameter.

• varname (optional): the template tag output can be saved as a context variable for later use.

Warning: If passing a class, instead of an instance, and using view_method, please bear in mind that the
method will be called over an empty instance of the class, so attributes are all empty, and the instance does
not exists on the database.

New in version 3.1.

render_model_add_block

render_model_add_block is similar to render_model_add but instead of emitting an icon that is linked
to the add model form in a modal dialog, it wraps arbitrary markup with the same “link”. This allows the developer
to create front-end editing experiences better suited to the project.

All arguments are identical to render_model_add, but the template tag is used in two parts to wrap the markup
that should be wrapped.

{% render_model_add_block my_model_instance %}<div>New Object</div>{% endrender_model_add_block %}

142 Chapter 5. Table of contents

https://github.com/kristianoellegaard/django-hvad

django cms Documentation, Release 3.2.5.post1

It will render to something like:

<div class="cms-plugin cms-plugin-myapp-mymodel-1 cms-render-model-add">
<div>New Object</div>

</div>

Warning: You must pass an instance of your model as instance parameter. The instance passed could be an
existing models instance, or one newly created in your view/plugin. It does not even have to be saved, it is
introspected by the template tag to determine the desired model class.

Arguments:

• instance: instance of your model in the template

• edit_fields (optional): a comma separated list of fields editable in the popup editor;

• language (optional): the admin language tab to be linked. Useful only for django-hvad enabled models.

• view_url (optional): the name of a URL that will be reversed using the instance pk and the language
as arguments;

• view_method (optional): a method name that will return a URL to a view; the method must accept
request as first parameter.

• varname (optional): the template tag output can be saved as a context variable for later use.

page_language_url

Returns the URL of the current page in an other language:

{% page_language_url de %}
{% page_language_url fr %}
{% page_language_url en %}

If the current URL has no CMS Page and is handled by a navigation extender and the URL changes based on the
language, you will need to set a language_changer function with the set_language_changer function
in menus.utils.

For more information, see Internationalisation.

language_chooser

The language_chooser template tag will display a language chooser for the current page. You can modify
the template in menu/language_chooser.html or provide your own template if necessary.

Example:

{% language_chooser %}

or with custom template:

{% language_chooser "myapp/language_chooser.html" %}

The language_chooser has three different modes in which it will display the languages you can choose from: “raw”
(default), “native”, “current” and “short”. It can be passed as the last argument to the language_chooser
tag as a string. In “raw” mode, the language will be displayed like its verbose name in the settings. In “native”
mode the languages are displayed in their actual language (eg. German will be displayed “Deutsch”, Japanese as
“” etc). In “current” mode the languages are translated into the current language the user is seeing the site in (eg.
if the site is displayed in German, Japanese will be displayed as “Japanisch”). “Short” mode takes the language
code (eg. “en”) to display.

5.4. Reference 143

https://github.com/kristianoellegaard/django-hvad

django cms Documentation, Release 3.2.5.post1

If the current URL has no CMS Page and is handled by a navigation extender and the URL changes based on the
language, you will need to set a language_changer function with the set_language_changer function
in menus.utils.

For more information, see Internationalisation.

Toolbar template tags

The cms_toolbar template tag is included in the cms_tags library and will add the required CSS and
javascript to the sekizai blocks in the base template. The template tag has to be placed after the <body> tag
and before any {% cms_placeholder %} occurrences within your HTML.

Example:

<body>
{% cms_toolbar %}
{% placeholder "home" %}
...

Note: Be aware that you can not surround the cms_toolbar tag with block tags. The toolbar tag will render
everything below it to collect all plugins and placeholders, before it renders itself. Block tags interfere with this.

5.4.7 Command Line Interface

You can invoke the django CMS command line interface using the cms Django command:

python manage.py cms

Informational commands

cms list

The list command is used to display information about your installation.

It has two sub-commands:

• cms list plugins lists all plugins that are used in your project.

• cms list apphooks lists all apphooks that are used in your project.

cms list plugins will issue warnings when it finds orphaned plugins (see cms
delete_orphaned_plugins below).

cms check

Checks your configuration and environment.

Plugin and apphook management commands

cms delete_orphaned_plugins

Warning: The delete_orphaned_plugins command permanently deletes data from your database.
You should make a backup of your database before using it!

144 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

Identifies and deletes orphaned plugins.

Orphaned plugins are ones that exist in the CMSPlugins table, but:

• have a plugin_type that is no longer even installed

• have no corresponding saved instance in that particular plugin type’s table

Such plugins will cause problems when trying to use operations that need to copy pages (and therefore plugins),
which includes cms moderator on as well as page copy operations in the admin.

It is advised to run cms list plugins periodically, and cms delete_orphaned_plugins when re-
quired.

cms uninstall

The uninstall subcommand can be used to make uninstalling a CMS Plugin or an apphook easier.

It has two sub-commands:

• cms uninstall plugins <plugin name> [<plugin name 2> [...]] uninstalls one or
several plugins by removing them from all pages where they are used. Note that the plugin name should be
the name of the class that is registered in the django CMS. If you are unsure about the plugin name, use the
cms list to see a list of installed plugins.

• cms uninstall apphooks <apphook name> [<apphook name 2> [...]] uninstalls
one or several apphooks by removing them from all pages where they are used. Note that the apphook
name should be the name of the class that is registered in the django CMS. If you are unsure about the
apphook name, use the cms list to see a list of installed apphooks.

Warning: The uninstall commands permanently delete data from your database. You should make a backup
of your database before using them!

cms copy-lang

The copy-lang subcommand can be used to copy content (titles and plugins) from one language to another. By
default the subcommand copy content from the current site (e.g. the value of SITE_ID) and only if the target
placeholder has no content for the specified language; using the defined options you can change this.

You must provide two arguments:

• from_language: the language to copy the content from;

• to_language: the language to copy the content to.

It accepts the following options

• force-copy: set to copy content even if a placeholder already has content; if set, copied content will be
appended to the original one;

• site: specify a SITE_ID to operate on sites different from the current one;

• verbose: set for more verbose output.

Example:

cms copy-lang en de force-copy site=2 verbose

5.4. Reference 145

django cms Documentation, Release 3.2.5.post1

cms copy-site

The copy-site subcommand can be used to copy content (pages and plugins) from one site to another. The
subcommand copy content from the from_site to to_site; please note that static placeholders are copied as
they are shared across sites. The whole source tree is copied, in the root of the target website. Existing pages on
the target website are not modified.

You must provide two arguments:

• from_site: the site to copy the content from;

• to_site: the site to copy the content to.

Example:

cms copy-site 1 2

Moderation commands

cms moderator

If you migrate from an earlier version, you should use the cms moderator on command to ensure that your
published pages are up to date, whether or not you used moderation in the past.

Warning: This command alters data in your database. You should make a backup of your database be-
fore using it! Never run this command without first checking for orphaned plugins, using the cms list
plugins command, and if necessary delete_orphaned_plugins. Running cms moderator with
orphaned plugins will fail and leave bad data in your database.

cms publisher_publish

If you want to publish many pages at once, this command can help you. By default, this command publishes drafts
for all public pages.

It accepts the following options

• unpublished: set to publish all drafts, including unpublished ones; if not set, only already published
pages will be republished.

• language: specify a language code to publish pages in only one language; if not specified, this command
publishes all page languages;

• site: specify a site id to publish pages for specified site only; if not specified, this command publishes
pages for all sites;

Example:

#publish drafts for public pages in all languages
publisher_publish

#publish all drafts in all pages
cms publisher_publish --unpublished

#publish drafts for public pages in deutsch
cms publisher_publish --language=de

#publish all drafts in deutsch
cms publisher_publish --unpublished --language=de

146 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

#publish all drafts in deutsch, but only for site with id=2
cms publisher_publish --unpublished --language=de --site=2

Warning: This command publishes drafts. You should review drafts before using this command, because
they will become public.

Maintenance and repair

fix-mptt

Occasionally, the MPTT tree can become corrupted (this is one of the reasons for our move away from MPTT to
MP in django CMS 3.1). Typical symptoms include problems when trying to copy or delete plugins or pages.

Once a database has been migrated from MPTT to MP, there is no use for this command.

New in version 3.2.

5.4.8 Content creation wizards

See the How-to section on wizards for an introduction to creating wizards.

Wizard classes are sub-classes of cms.wizards.wizard_base.Wizard.

They need to be registered with the cms.wizards.wizard_pool.wizard_pool:

wizard_pool.register(my_app_wizard)

Finally, a wizard needs to be instantiated, for example:

my_app_wizard = MyAppWizard(
title="New MyApp",
weight=200,
form=MyAppWizardForm,
description="Create a new MyApp instance",

)

When instantiating a Wizard object, use the keywords:

title The title of the wizard. This will appear in a large font size on the wizard “menu”

weight The “weight” of the wizard when determining the sort-order.

form The form to use for this wizard. This is mandatory, but can be sub-classed from
django.forms.form or django.forms.ModelForm.

model If a Form is used above, this keyword argument must be supplied and should
contain the model class. This is used to determine the unique wizard “signature”
amongst other things.

template_name An optional template can be supplied.

description The description is optional, but if it is not supplied, the CMS will create one
from the pattern: “Create a new «model.verbose_name» instance.”

edit_mode_on_success If set, the CMS will switch the user to edit-mode by adding an
edit param to the query-string of the URL returned by get_success_url.
This is True by default.

5.4. Reference 147

django cms Documentation, Release 3.2.5.post1

Base Wizard

All wizard classes should inherit from cms.wizards.wizard_base.Wizard. This class implements a
number of methods that may be overridden as required.

Base Wizard methods

get_description

Simply returns the description property assigned during instantiation or one derived from the model if de-
scription is not provided during instantiation. Override this method if this needs to be determined programmati-
cally.

get_title

Simply returns the title property assigned during instantiation. Override this method if this needs to be deter-
mined programmatically.

get_success_url

Once the wizard has completed, the user will be redirected to the URL of the new object that was created. By
default, this is done by return the result of calling the get_absolute_url method on the object. This may
then be modified to force the user into edit mode if the wizard property edit_mode_on_success is True.

In some cases, the created content will not implement get_absolute_url or that redirecting the user is
undesirable. In these cases, simply override this method. If get_success_url returns None, the CMS will
just redirect to the current page after the object is created.

This method is called by the CMS with the parameter:

obj The created object

get_weight

Simply returns the weight property assigned during instantiation. Override this method if this needs to be
determined programmatically.

user_has_add_permission

This should return a boolean reflecting whether the user has permission to create the underlying content for the
wizard.

This method is called by the CMS with these parameters:

user The current user

page The current CMS page the user is viewing when invoking the wizard

wizard_pool

wizard_pool includes a read-only property discovered which returns the Boolean True if wizard-
discovery has already occurred and False otherwise.

148 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

Wizard pool methods

is_registered

Sometimes, it may be necessary to check to see if a specific wizard has been registered. To do this, simply call:

value = wizard_pool.is_registered(«wizard»)

register

You may notice from the example above that the last line in the sample code is:

wizard_pool.register(my_app_wizard)

This sort of thing should look very familiar, as a similar approach is used for cms_apps, template tags and even
Django’s admin.

Calling the wizard pool’s register method will register the provided wizard into the pool, unless there
is already a wizard of the same module and class name. In this case, the register method will raise a
cms.wizards.wizard_pool.AlreadyRegisteredException.

unregister

It may be useful to unregister wizards that have already been registered with the pool. To do this, simply call:

value = wizard_pool.unregister(«wizard»)

The value returned will be a Boolean: True if a wizard was successfully unregistered or False otherwise.

get_entry

If you would like to get a reference to a specific wizard in the pool, just call get_entry() as follows:

wizard = wizard_pool.get_entry(my_app_wizard)

get_entries

get_entries() is useful if it is required to have a list of all registered wizards. Typically, this is used to iterate
over them all. Note that they will be returned in the order of their weight: smallest numbers for weight are
returned first.:

for wizard in wizard_pool.get_entries():
do something with a wizard...

5.5 Development & community

django CMS is an open-source project, and relies on its community of users to keep getting better.

5.5. Development & community 149

django cms Documentation, Release 3.2.5.post1

5.5.1 Development of django CMS

django CMS is developed by a community of developers from across the world, with a wide range and levels of
skills and expertise. Every contribution, however small, is valued.

As an open source project, anyone is welcome to contribute in whatever form they are able, which can include
taking part in discussions, filing bug reports, proposing improvements, contributing code or documentation, and
testing the system - amongst others.

Divio AG

django CMS was released under a BSD licence in 2009. It was created at Divio AG of Zürich, Switzerland, by
Patrick Lauber, who led its development for several years.

django CMS represents Divio’s vision for a general-purpose CMS platform able to meet its needs as a web agency
with a large portfolio of different clients. This vision continues to guide the development of django CMS.

Divio’s role in steering the project’s development is formalised in the django CMS technical board, whose mem-
bers are drawn both from key staff at Divio and other members of the django CMS community.

Divio hosts the django CMS project website and maintains overall control of the django CMS repository. As the
chief backer of django CMS, and in order to ensure a consistent and long-term approach to the project, Divio
reserves the right of final say in any decisions concerning its development.

Divio remains thoroughly committed to django CMS both as a high-quality technical product and as a healthy
open source project.

Core developers

Leading this process is a small team of core developers - people who have made and continue to make a significant
contribution to the project, and have a good understanding not only of the code powering django CMS, but also
the longer-term aims and directions of the project.

All core developers are volunteers.

Core developers have commit authority to django CMS’s repository on GitHub. It’s up to a core developer to say
when a particular pull request should be committed to the repository.

Core developers also keep an eye on the #django-cms IRC channel on the Freenode network, and the django
CMS users and django CMS developers email lists.

In addition to leading the development of the project, the core developers have an important role in fostering the
community of developers who work with django CMS, and who create the numerous applications, plugins and
other software that integrates with it.

Finally, the core developers are responsible for setting the tone of the community and helping ensure that it
continues to be friendly and welcoming to all who wish to participate. The values and standards of the community
are set out in its Code of Conduct.

Commit policy for core developers

Except in the case of very minor patches - for example, fixing typos in documentation - core developers are not
expected to merge their own commits, but to follow good practice and have their work reviewed and merged by
another member of the team.

Similarly, substantial patches with significant implications for the codebase from other members of the community
should be reviewed and discussed by more than one core developer before being accepted.

150 Chapter 5. Table of contents

https://divio.ch/
https://github.com/digi604/
http://django-cms.org
https://github.com/divio/django-cms
http://freenode.net
https://groups.google.com/forum/#!forum/django-cms
https://groups.google.com/forum/#!forum/django-cms
https://groups.google.com/forum/#!forum/django-cms-developers

django cms Documentation, Release 3.2.5.post1

Current core developers

• Angelo Dini http://github.com/finalangel

• Daniele Procida http://github.com/evildmp

• Iacopo Spalletti http://github.com/yakky

• Jonas Obrist http://github.com/ojii

• Martin Koistinen http://github.com/mkoistinen

• Patrick Lauber http://github.com/digi604

• Paulo Alvarado http://github.com/czpython

• Stefan Foulis http://github.com/stefanfoulis

• Vadim Sikora https://github.com/vxsx

Core designers django CMS also receives important contributions from core designers, responsible for key
aspects of its visual design:

• Christian Bertschy

• Matthias Nüesch

Retired core developers

• Chris Glass http://github.com/chrisglass

• Øyvind Saltvik http://github.com/fivethreeo

• Benjamin Wohlwend http://github.com/piquadrat

Following a year or so of inactivity, a core developer will be moved to the “Retired” list, with the understanding
that they can rejoin the project in the future whenever they choose.

Becoming a core developer

Anyone can become a core developer. You don’t need to be an expert developer, or know more than anyone else
about the internals of the CMS. You just have to be a regular contributor, who makes a sustained and valuable
contribution to the project.

This contribution can take many forms - not just commits to our codebase. For example, documentation is a
valuable contribution, and so is simply being a member of the community who spends time assisting others.

Any member of the core team can nominate a new person for membership. The nomination will be discussed by
the technical board, and assuming there are no objections raised, approved.

Technical board

Historically, django CMS’s development has been led by members of staff from Divio. It has been (and will
continue to be) a requirement of the CMS that it meet Divio’s needs.

However, as the software has matured and its user-base has dramatically expanded, it has become increasingly
important also to reflect a wider range of perspectives in the development process. The technical board exists to
help guarantee this.

5.5. Development & community 151

http://github.com/finalangel
http://github.com/evildmp
http://github.com/yakky
http://github.com/ojii
http://github.com/mkoistinen
http://github.com/digi604
http://github.com/czpython
http://github.com/stefanfoulis
https://github.com/vxsx
http://github.com/chrisglass
http://github.com/fivethreeo
http://github.com/piquadrat

django cms Documentation, Release 3.2.5.post1

Role

The role of the board is to maintain oversight of the work of the core team, to set key goals for the project and to
make important decisions about the development of the software.

In the vast majority of cases, the team of core developers will be able to resolve questions and make decisions
without the formal input of the technical board; where a disagreement with no clear consensus exists however, the
board will make the necessary definitive decision.

The board is also responsible for making final decisions on the election of new core developers to the team, and -
should it be necessary - the removal of developers who have retired, or for other reasons.

Composition of the board

The the technical board will include key developers from Divio and others in the django CMS development
community - developers who work with django CMS, as well as developers of django CMS - in order to help
ensure that all perspectives are represented in important decisions about the software and the project.

The board may also include representatives of the django CMS community who are not developers but who have
a valuable expertise in key fields (user experience, design, content management, etc).

The current members of the technical board are:

• Angelo Dini

• Christian Bertschy

• Daniele Procida (Chair)

• Iacopo Spalletti

• Jonas Obrist

• Martin Koistinen

• Matteo Larghi

The board will co-opt new members as appropriate.

5.5.2 Contributing code

Like every open-source project, django CMS is always looking for motivated individuals to contribute to its source
code.

In a nutshell

Here’s what the contribution process looks like in brief:

1. django CMS is hosted on GitHub, at https://github.com/divio/django-cms

2. The best method to contribute back is to create an account there, then fork the project. You can use this fork
as if it was your own project, and should push your changes to it.

3. When you feel your code is good enough for inclusion, “send us a pull request”, by using the nice GitHub
web interface.

See the Contributing a patch how-to document for a walk-through of this process.

152 Chapter 5. Table of contents

http://www.github.com
https://github.com/divio/django-cms
http://help.github.com/send-pull-requests/

django cms Documentation, Release 3.2.5.post1

Basic requirements and standards

If you’re interested in developing a new feature for the CMS, it is recommended that you first discuss it on the
django-cms-developers mailing list so as not to do any work that will not get merged in anyway.

• Code will be reviewed and tested by at least one core developer, preferably by several. Other community
members are welcome to give feedback.

• Code must be tested. Your pull request should include unit-tests (that cover the piece of code you’re sub-
mitting, obviously)

• Documentation should reflect your changes if relevant. There is nothing worse than invalid documentation.

• Usually, if unit tests are written, pass, and your change is relevant, then it’ll be merged.

Since we’re hosted on GitHub, django CMS uses git as a version control system.

The GitHub help is very well written and will get you started on using git and GitHub in a jiffy. It is an invaluable
resource for newbies and old timers alike.

Syntax and conventions

Python We try to conform to PEP8 as much as possible. A few highlights:

• Indentation should be exactly 4 spaces. Not 2, not 6, not 8. 4. Also, tabs are evil.

• We try (loosely) to keep the line length at 79 characters. Generally the rule is “it should look good in a
terminal-base editor” (eg vim), but we try not be too inflexible about it.

HTML, CSS and JavaScript As of django CMS 3.2, we are using the same guidelines as described in Aldryn
Boilerplate

Frontend code should be formatted for readability. If in doubt, follow existing examples, or ask.

JS Linting JavaScript is linted using JSHint and JSCS. In order to run the linters you need to do this:

gulp lint

Or you can also run the watcher by just running gulp.

JS Bundling JavaScript files are split up for easier development, but in the end they are bundled together and
minified to decrease amount of requests made and improve performance. In order to do that we use gulp task
runner, where bundle command is available. Configuration and list of dependencies for each bundle are stored
inside the gulpfile.js.

Process

This is how you fix a bug or add a feature:

1. fork us on GitHub.

2. Checkout your fork.

3. Hack hack hack, test test test, commit commit commit, test again.

4. Push to your fork.

5. Open a pull request.

5.5. Development & community 153

http://groups.google.com/group/django-cms-developers
http://git-scm.com/
http://help.github.com
http://www.python.org/dev/peps/pep-0008/
http://aldryn-boilerplate-bootstrap3.readthedocs.org/en/latest/guidelines/index.html
http://aldryn-boilerplate-bootstrap3.readthedocs.org/en/latest/guidelines/index.html
http://jshint.com/
http://jscs.info
http://github.com/divio/django-cms

django cms Documentation, Release 3.2.5.post1

And at any point in that process, you can add: discuss discuss discuss, because it’s always useful for everyone to
pass ideas around and look at things together.

Running and writing tests is really important: a pull request that lowers our testing coverage will only be accepted
with a very good reason; bug-fixing patches must demonstrate the bug with a test to avoid regressions and to
check that the fix works.

We have an IRC channel, our django-cms-developers email list, and of course the code reviews mechanism on
GitHub - do use them.

If you don’t have an IRC client, you can join our IRC channel using the KiwiIRC web client, which works pretty
well.

Frontend

Important: When we refer to the frontend here, we only mean the frontend of django CMS’s admin/editor
interface.

The frontend of a django CMS website, as seen by its visitors (i.e. the published site), is wholly indepen-
dent of this. django CMS places almost no restrictions at all on the frontend - if a site can be described in
HTML/CSS/JavaScript, it can be developed in django CMS.

In order to be able to work with the frontend tooling contributing to the django CMS you need to have the following
dependencies installed:

1. Node (will install npm as well).

2. Globally installed gulp

3. Local dependencies npm install

Styles

We use Sass for our styles. The files are located within cms/static/cms/sass and can be compiled using
the libsass implementation of Sass compiler through Gulp.

In order to compile the stylesheets you need to run this command from the repo root:

gulp sass

While developing it is also possible to run a watcher that compiles Sass files on change:

gulp

By default, source maps are not included in the compiled files. In order to turn them on while developing just add
the --debug option:

gulp --debug

Icons

We are using gulp-iconfont to generate icon web fonts into cms/static/cms/fonts/. This also creates
_iconography.scss within cms/static/cms/sass/components which adds all the icon classes and
ultimately compiles to CSS.

In order to compile the web font you need to run:

gulp icons

154 Chapter 5. Table of contents

http://groups.google.com/group/django-cms-developers
https://kiwiirc.com/client/irc.freenode.net/django-cms
https://nodejs.org/
https://github.com/gulpjs/gulp/blob/master/docs/getting-started.md#1-install-gulp-globally
http://sass-lang.com/
http://libsass.org/
http://gulpjs.com/
https://github.com/backflip/gulp-iconfont

django cms Documentation, Release 3.2.5.post1

This simply takes all SVGs within cms/static/cms/fonts/src and embeds them into the web font. All
classes will be automatically added to _iconography.scss as previously mentioned.

Additionally we created an SVG template within cms/static/cms/font/src/_template.svgz that
you should use when converting or creating additional icons. It is named svgz so it doesn’t get compiled into the
font. When using Adobe Illustrator please mind the following settings.

5.5.3 Contributing documentation

Perhaps considered “boring” by hard-core coders, documentation is sometimes even more important than code!
This is what brings fresh blood to a project, and serves as a reference for old timers. On top of this, documentation
is the one area where less technical people can help most - you just need to write simple, unfussy English. Elegance
of style is a secondary consideration, and your prose can be improved later if necessary.

Contributions to the documentation earn the greatest respect from the core developers and the django CMS com-
munity.

Documentation should be:

• written using valid Sphinx/restructuredText syntax (see below for specifics); the file extension should be
.rst

• wrapped at 100 characters per line

• written in English, using British English spelling and punctuation

• accessible - you should assume the reader to be moderately familiar with Python and Django, but not
anything else. Link to documentation of libraries you use, for example, even if they are “obvious” to you

Merging documentation is pretty fast and painless.

Except for the tiniest of change, we recommend that you test them before submitting.

Building the documentation

Follow the same steps above to fork and clone the project locally. Next, cd into the django-cms/docs and
install the requirements:

make install

Now you can test and run the documentation locally using:

make run

This allows you to review your changes in your local browser using http://localhost:8001/.

Note: What this does

make install is roughly the equivalent of:

virtualenv env
source env/bin/activate
pip install -r requirements.txt
cd docs
make html

make run runs make html, and serves the built documentation on port 8001 (that is, at
http://localhost:8001/.

It then watches the docs directory; when it spots changes, it will automatically rebuild the documentation, and
refresh the page in your browser.

5.5. Development & community 155

http://sphinx-doc.org//
http://docutils.sourceforge.net/docs/ref/rst/introduction.html

django cms Documentation, Release 3.2.5.post1

Spelling

We use sphinxcontrib-spelling, which in turn uses pyenchant and enchant to check the spelling of the documenta-
tion.

You need to check your spelling before submitting documentation.

Important: We use British English rather than US English spellings. This means that we use colour rather than
color, emphasise rather than emphasize and so on.

Install the spelling software

sphinxcontrib-spelling and pyenchant are Python packages that will be installed in the virtualenv
docs/env when you run make install (see above).

You will need to have enchant installed too, if it is not already. The easy way to check is to run make
spelling from the docs directory. If it runs successfully, you don’t need to do anything, but if not you
will have to install enchant for your system. For example, on OS X:

brew install enchant

or Debian Linux:

apt-get install enchant

Check spelling

Run:

make spelling

in the docs directory to conduct the checks.

Note: This script expects to find a virtualenv at docs/env, as installed by make install (see above).

If no spelling errors have been detected, make spelling will report:

build succeeded.

Otherwise:

build finished with problems.
make: *** [spelling] Error 1

It will list any errors in your shell. Misspelt words will be also be listed in build/spelling/output.txt

Words that are not in the built-in dictionary can be added to docs/spelling_wordlist. If you are certain
that a word is incorrectly flagged as misspelt, add it to the spelling_wordlist document, in alphabetical
order. Please do not add new words unless you are sure they should be in there.

If you find technical terms are being flagged, please check that you have capitalised them correctly - javascript
and css are incorrect spellings for example. Commands and special names (of classes, modules, etc) in double
backticks - ‘‘ - will mean that they are not caught by the spelling checker.

156 Chapter 5. Table of contents

https://pypi.python.org/pypi/sphinxcontrib-spelling/
https://pypi.python.org/pypi/pyenchant/
http://www.abisource.com/projects/enchant/

django cms Documentation, Release 3.2.5.post1

Important: You may well find that some words that pass the spelling test on one system but not on another.
Dictionaries on different systems contain different words and even behave differently. The important thing is that
the spelling tests pass on Travis when you submit a pull request.

Making a pull request

Before you commit any changes, you need to check spellings with make spelling and rebuild the docs using
make html. If everything looks good, then it’s time to push your changes to GitHub and open a pull request in
the usual way.

Documentation structure

Our documentation is divided into the following main sections:

• Tutorials (introduction): step-by-step, beginning-to-end tutorials to get you up and running

• How-to guides (how_to): step-by-step guides covering more advanced development

• Key topics (topics): explanations of key parts of the system

• Reference (reference): technical reference for APIs, key models and so on

• Development & community (contributing)

• Release notes & upgrade information (upgrade)

• Using django CMS (user): guides for using rather than setting up or developing for the CMS

Documentation markup

Sections

We mostly follow the Python documentation conventions for section marking:

##########
Page title
##########

heading

sub-heading
===========

sub-sub-heading

sub-sub-sub-heading
^^^^^^^^^^^^^^^^^^^

sub-sub-sub-sub-heading
"""""""""""""""""""""""

Inline markup

• use backticks - ‘‘ - for:

5.5. Development & community 157

https://travis-ci.org/divio/django-cms

django cms Documentation, Release 3.2.5.post1

– literals:

The ``cms.models.pagemodel`` contains several important methods.

– filenames:

Before you start, edit ``settings.py``.

– names of fields and other specific items in the Admin interface:

Edit the ``Redirect`` field.

• use emphasis - *Home* - around:

– the names of available options in or parts of the Admin:

To hide and show the *Toolbar*, use the...

– the names of important modes or states:

... in order to switch to *Edit mode*.

– values in or of fields:

Enter *Home* in the field.

• use strong emphasis - ** - around:

– buttons that perform an action:

Hit **View published** or **Save as draft**.

Rules for using technical words

There should be one consistent way of rendering any technical word, depending on its context. Please follow these
rules:

• in general use, simply use the word as if it were any ordinary word, with no capitalisation or highlighting:
“Your placeholder can now be used.”

• at the start of sentences or titles, capitalise in the usual way: “Placeholder management guide”

• when introducing the term for the the first time, or for the first time in a document, you may highlight it to
draw attention to it: “Placeholders are special model fields”.

• when the word refers specifically to an object in the code, highlight it as a literal: “Placeholder methods
can be overwritten as required” - when appropriate, link the term to further reference documentation as well
as simply highlighting it.

References

Create:

.. _testing:

and use:

:ref:`testing`

158 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

internal cross-references liberally.

Use absolute links to other documentation pages - :doc:‘/how_to/toolbar‘ - rather than relative links -
:doc:‘/../toolbar‘. This makes it easier to run search-and-replaces when items are moved in the structure.

5.5.4 Contributing translations

For translators we have a Transifex account where you can translate the .po files and don’t need to install git or
mercurial to be able to contribute. All changes there will be automatically sent to the project.

5.5.5 Code and project management

We use our GitHub project for managing both django CMS code and development activity.

This document describes how we manage tickets on GitHub. By “tickets”, we mean GitHub issues and pull
requests (in fact as far as GitHub is concerned, pull requests are simply a species of issue).

Issues

Raising an issue

Attention: If you think you have discovered a security issue in our code, please report it privately, by
emailing us at security@django-cms.org.

Please do not raise it on:
• IRC
• GitHub
• either of our email lists

or in any other public forum until we have had a chance to deal with it.

Except in the case of security matters, of course, you’re welcome to raise issues in any way that suits you - on one
of our email lists, or the IRC channel or in person if you happen to meet another django CMS developer.

It’s very helpful though if you don’t just raise an issue by mentioning it to people, but actually file it too, and that
means creating a new issue on GitHub.

There’s an art to creating a good issue report.

The Title needs to be both succinct and informative. “show_sub_menu displays incorrect nodes when used with
soft_root” is helpful, whereas “Menus are broken” is not.

In the Description of your report, we’d like to see:

• how to reproduce the problem

• what you expected to happen

• what did happen (a traceback is often helpful, if you get one)

Getting your issue accepted

Other django CMS developers will see your issue, and will be able to comment. A core developer may add further
comments, or a label.

The important thing at this stage is to have your issue accepted. This means that we’ve agreed it’s a genuine issue,
and represents something we can or are willing to do in the CMS.

5.5. Development & community 159

https://www.transifex.com/projects/p/django-cms/
http://github.com/divio/django-cms
mailto:security@django-cms.org
https://github.com/divio/django-cms/issues/new

django cms Documentation, Release 3.2.5.post1

You may be asked for more information before it’s accepted, and there may be some discussion before it is. It
could also be rejected as a non-issue (it’s not actually a problem) or won’t fix (addressing your issue is beyond the
scope of the project, or is incompatible with our other aims).

Feel free to explain why you think a decision to reject your issue is incorrect - very few decisions are final, and
we’re always happy to correct our mistakes.

How we process tickets

Tickets should be:

• given a status

• marked with needs

• marked with a kind

• marked with the components they apply to

• marked with miscellaneous other labels

• commented

A ticket’s status and needs are the most important of these. They tell us two key things:

• status: what stage the ticket is at

• needs: what next actions are required to move it forward

Needless to say, these labels need to be applied carefully, according to the rules of this system.

GitHub’s interface means that we have no alternative but to use colours to help identify our tickets. We’re sorry
about this. We’ve tried to use colours that will cause the fewest issues for colour-blind people, so we don’t use
green (since we use red) or yellow (since we use blue) labels, but we are aware it’s not ideal.

django CMS ticket processing system rules

• one and only one status must be applied to each ticket

• a healthy ticket (blue) cannot have any critical needs (red)

• when closed, tickets must have either a healthy (blue) or dead (black) status

• a ticket with critical needs must not have non-critical needs or miscellaneous other labels

• has patch and on hold labels imply a related pull request, which must be linked-to when these labels are
applied

• component, non-critical need and miscellaneous other labels should be applied as seems appropriate

Status

The first thing we do is decide whether we accept the ticket, whether it’s a pull request or an issue. An accepted
status means the ticket is healthy, and will have a blue label.

Basically, it’s good for open tickets to be healthy (blue), because that means they are going somewhere.

Important: Accepting a ticket means marking it as healthy, with one of the blue labels.

issues The bar for status: accepted is high. The status can be revoked at any time, and should be
when appropriate. If the issue needs a design decision, expert opinion or more info, it can’t be
accepted.

160 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

pull requests When a pull request is accepted, it should become work in progress or (more rarely)
ready for review or even ready to be merged, in those rare cases where a perfectly-formed and
unimprovable pull request lands in our laps. As for issues, if it needs a design decision, expert
opinion or more info, it can’t be accepted.

No issue or pull request can have both a blue (accepted) and a red, grey or black label at
the same time.

Preferably, the ticket should either be accepted (blue), rejected (black) or marked as having critical needs (red) as
soon as possible. It’s important that open tickets should have a clear status, not least for the sake of the person
who submitted it so that they know it’s being assessed.

Tickets should not be allowed to linger indefinitely with critical (red) needs. If the opinions or information required
to accept the ticket are not forthcoming, the ticket should be declared unhealthy (grey) with marked for rejection
and rejected (black) at the next release.

Needs

Critical needs (red) affect status.

Non-critical needs labels (pink) can be added as appropriate (and of course, removed as work progresses) to pull
requests.

It’s important that open tickets should have a clear needs labels, so that it’s apparent what needs to be done to
make progress with it.

Kinds and components

Of necessity, these are somewhat porous categories. For example, it’s not always absolutely clear whether a pull
request represents an enhancement or a bug-fix, and tickets can apply to multiple parts of the CMS - so do the best
you can with them.

Other labels

backport, blocker, has patch or easy pickings labels should be applied as appropriate, to healthy (blue) tickets
only.

Comments

At any time, people can comment on the ticket, of course. Although only core maintainers can change labels,
anyone can suggest changing a label.

Label reference

Components and kinds should be self-explanatory, but statuses, needs and miscellaneous other labels are clarified
below.

Statuses

A ticket’s status is its position in the pipeline - its point in our workflow.

Every issue should have a status, and be given one as soon as possible. An issue should have only one status
applied to it.

Many of these statuses apply equally well to both issues and pull requests, but some make sense only for one or
the other:

5.5. Development & community 161

django cms Documentation, Release 3.2.5.post1

accepted (issues only) The issue has been accepted as a genuine issue that needs to be addressed. Note that it
doesn’t necessarily mean we will do what the issue suggests, if it makes a suggestion - simply that we agree
that there is an issue to be resolved.

non-issue The issue or pull request are in some way mistaken - the ‘problem’ is in fact correct and expected
behaviour, or the problems were caused by (for example) misconfiguration.

When this label is applied, an explanation must be provided in a comment.

won’t fix The issue or pull request imply changes to django CMS’s design or behaviour that the core team
consider incompatible with our chosen approach.

When this label is applied, an explanation must be provided in a comment.

marked for rejection We’ve been unable to reproduce the issue, and it has lain dormant for a long time. Or, it’s
a pull request of low significance that requires more work, and looks like it might have been abandoned.
These tickets will be closed when we make the next release.

When this label is applied, an explanation must be provided in a comment.

work in progress (pull requests only) Work is on-going.

The author of the pull request should include “(work in progress)” in its title, and remove this when they
feel it’s ready for final review.

ready for review (pull requests only) The pull request needs to be reviewed. (Anyone can review and make
comments recommending that it be merged (or indeed, any further action) but only a core maintainer can
change the label.)

ready to be merged (pull requests only) The pull request has successfully passed review. Core maintainers
should not mark their own code, except in the simplest of cases, as ready to be merged, nor should they mark
any code as ready to be merged and then merge it themselves - there should be another person involved in
the process.

When the pull request is merged, the label should be removed.

Needs

If an issue or pull request lacks something that needs to be provided for it to progress further, this should be
marked with a “needs” label. A “needs” label indicates an action that should be taken in order to advance the
item’s status.

Critical needs Critical needs (red) mean that a ticket is ‘unhealthy’ and won’t be accepted (issues) or work in
progress, ready for review or ready to be merged until those needs are addressed. In other words, no ticket can
have both a blue and a red label.)

more info Not enough information has been provided to allow us to proceed, for example to reproduce a bug or
to explain the purpose of a pull request.

expert opinion The issue or pull request presents a technical problem that needs to be looked at by a member of
the core maintenance team who has a special insight into that particular aspect of the system.

design decision The issue or pull request has deeper implications for the CMS, that need to be considered care-
fully before we can proceed further.

Non-critical needs A healthy (blue) ticket can have non-critical needs:

patch (issues only) The issue has been given a status: accepted, but now someone needs to write the patch to
address it.

tests, docs (pull requests only) Code without docs or tests?! In django CMS? No way!

162 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

Other

has patch (issues only) A patch intended to address the issue exists. This doesn’t imply that the patch will be
accepted, or even that it contains a viable solution.

When this label is applied, a comment should cross-reference the pull request(s) containing the patch.

easy pickings An easy-to-fix issue, or an easy-to-review pull request - newcomers to django CMS development
are encouraged to tackle easy pickings tickets.

blocker We can’t make the next release without resolving this issue.

backport Any patch will should be backported to a previous release, either because it has security implications
or it improves documentation.

on hold (pull requests only) The pull request has to wait for a higher-priority pull request to land first, to avoid
complex merges or extra work later. Any on hold pull request is by definition work in progress.

When this label is applied, a comment should cross-reference the other pull request(s).

5.5.6 Running and writing tests

Good code needs tests.

A project like django CMS simply can’t afford to incorporate new code that doesn’t come with its own tests.

Tests provide some necessary minimum confidence: they can show the code will behave as it expected, and help
identify what’s going wrong if something breaks it.

Not insisting on good tests when code is committed is like letting a gang of teenagers without a driving licence
borrow your car on a Friday night, even if you think they are very nice teenagers and they really promise to be
careful.

We certainly do want your contributions and fixes, but we need your tests with them too. Otherwise, we’d be
compromising our codebase.

So, you are going to have to include tests if you want to contribute. However, writing tests is not particularly
difficult, and there are plenty of examples to crib from in the code to help you.

Running tests

There’s more than one way to do this, but here’s one to help you get started:

create a virtual environment
virtualenv test-django-cms

activate it
cd test-django-cms/
source bin/activate

get django CMS from GitHub
git clone git@github.com:divio/django-cms.git

install the dependencies for testing
note that requirements files for other Django versions are also provided
pip install -r django-cms/test_requirements/django-1.6.txt

run the test suite
note that you must be in the django-cms directory when you do this,
otherwise you'll get "Template not found" errors
cd django-cms
python manage.py test

5.5. Development & community 163

django cms Documentation, Release 3.2.5.post1

It can take a few minutes to run. Note that the selenium tests included in the test suite require that you have Firefox
installed.

When you run tests against your own new code, don’t forget that it’s useful to repeat them for different versions
of Python and Django.

Problems running the tests

We are working to improve the performance and reliability of our test suite. We’re aware of certain problems,
but need feedback from people using a wide range of systems and configurations in order to benefit from their
experience.

Please use the open issue #3684 Test suite is error-prone on our GitHub repository to report such problems.

If you can help improve the test suite, your input will be especially valuable.

OS X users In some versions of OS X, gettext needs to be installed so that it is avail-
able to Django. If you run the tests and find that various tests in cms.tests.frontend and
cms.tests.reversion_tests.ReversionTestCase raise errors, it’s likely that you have this prob-
lem.

A solution is:

brew install gettext && brew link --force gettext

(This requires the installation of Homebrew)

ERROR: test_copy_to_from_clipboard (cms.tests.frontend.PlaceholderBasicTests)
You may find that a single frontend test raises an error. This sometimes happens, for some users, when the entire
suite is run. To work around this you can invoke the test class on its own:

manage.py test cms.PlaceholderBasicTests

and it should then run without errors.

Advanced testing options

Run manage.py test --help for full list of advanced options.

Use --parallel to distribute the test cases across your CPU cores.

Use --failed to only run the tests that failed during the last run.

Use --retest to run the tests using the same configuration as the last run.

Use --vanilla to bypass the advanced testing system and use the built-in Django test command.

Use --migrate to run migrations during tests.

To use a different database, set the DATABASE_URL environment variable to a dj-database-url compatible value.

Using X virtual framebuffer for headless frontend testing On Linux systems with X you can use X virtual
framebuffer to run frontend tests headless (without the browser window actually showing). To do so, it’s recom-
mended to use the xvfb-run script to run tests.

Important: The frontend tests have a minimum screen size to run successfully. You must set the screen
size of the virtual frame buffer to at least 1280x720x8. You may do so using xvfb-run -s"-screen 0
1280x720x8"

164 Chapter 5. Table of contents

https://github.com/divio/django-cms/issues/3684
http://brew.sh
http://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
http://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml

django cms Documentation, Release 3.2.5.post1

Writing tests

Contributing tests is widely regarded as a very prestigious contribution (you’re making everybody’s future work
much easier by doing so). We’ll always accept contributions of test without code, but not code without test - which
should give you an idea of how important tests are.

What we need

We have a wide and comprehensive library of unit-tests and integration tests with good coverage.

Generally tests should be:

• Unitary (as much as possible). i.e. should test as much as possible only one function/method/class. That’s
the very definition of unit tests. Integration tests are interesting too obviously, but require more time to
maintain since they have a higher probability of breaking.

• Short running. No hard numbers here, but if your one test doubles the time it takes for everybody to run
them, it’s probably an indication that you’re doing it wrong.

• Easy to understand. If your test code isn’t obvious, please add comments on what it’s doing.

5.5.7 Code of Conduct

Participation in the django CMS project is governed by a code of conduct.

The django CMS community is a pleasant one to be involved in for everyone, and we wish to keep it that way.
Participants are expected to behave and communicate with others courteously and respectfully, whether online or
in person, and to be welcoming, friendly and polite.

We will not tolerate abusive behaviour or language or any form of harassment.

Individuals whose behaviour is a cause for concern will be give a warning, and if necessary will be excluded from
participation in official django CMS channels (email lists, IRC channels, etc) and events. The Django Software
Foundation will also be informed of the issue.

Raising a concern

If you have a concern about the behaviour of any member of the django CMS community, please contact one of
the members of the core development team.

Your concerns will be taken seriously, treated as confidential and investigated. You will be informed, in writing
and as promptly as possible, of the outcome.

5.5.8 Community

You can join us online:

• in our IRC channel, #django-cms, on irc.freenode.net. If you don’t have an IRC client, you can join
our IRC channel using the KiwiIRC web client, which works pretty well.

• on our django CMS users email list for general django CMS questions and discussion

• on our django CMS developers email list for discussions about the development of django CMS

You can also follow:

• the Travis Continuous Integration build reports

• the @djangocms Twitter account for general announcements

5.5. Development & community 165

http://djangoproject.com/foundation/
http://djangoproject.com/foundation/
https://kiwiirc.com/client/irc.freenode.net/django-cms
https://kiwiirc.com/client/irc.freenode.net/django-cms
https://groups.google.com/forum/#!forum/django-cms
https://groups.google.com/forum/#!forum/django-cms-developers
https://travis-ci.org/divio/django-cms
https://twitter.com/djangocms

django cms Documentation, Release 3.2.5.post1

You don’t need to be an expert developer to make a valuable contribution - all you need is a little knowledge of
the system, and a willingness to follow the contribution guidelines.

Remember that contributions to the documentation are highly prized, and key to the success of the django CMS
project.

Development is led by a team of core developers, and under the overall guidance of a technical board.

All activity in the community is governed by our Code of Conduct.

5.5.9 Security issues

Attention: If you think you have discovered a security issue in our code, please report it privately, by
emailing us at security@django-cms.org.

Please do not raise it on:
• IRC
• GitHub
• either of our email lists

or in any other public forum until we have had a chance to deal with it.

5.5.10 Development policies

Release schedule & policy

The roadmap can be found on our GitHub wiki page.

We are planning releases according to key principles and aims. Issues within milestones are therefore subject to
change.

The django-cms-developers group serves as gathering point for developers. We submit ideas and proposals prior
to the roadmap goals.

We officially support the current and previous released versions of django CMS. Older versions are maintained
through the community. Divio provides long term support (LTS) through commercial support.

Branch policy

Changed in version 3.3.

We maintain a number of branches on our GitHub repository.

the latest (highest-numbered) release/x.y.z This is the branch that will become the next release on PyPI.

Fixes and backwards-compatible improvements (i.e. most pull requests) will be made against this branch.

develop This is the branch that will become the next release that increments the x or y of the latest
release/x.y.z.

This branch is for new features and backwards-incompatible changes. By their nature, these will require
more substantial team co-ordination.

Older release/x.y.z branches These represent the final point of development (the highest y of older ver-
sions). Releases in the full set of older versions have been tagged (use Git Tags to retrieve them).

These branches will only rarely be patched, with security fixes representing the main reason for a patch.

Commits in release/x.y.z will be merged forward into develop periodically by the core developers.

If in doubt about which branch to work from, ask on the #django-cms IRC channel on freenode or the django-
cms-developers email list!

166 Chapter 5. Table of contents

mailto:security@django-cms.org
https://github.com/divio/django-cms/wiki/Roadmap
http://groups.google.com/group/django-cms-developers
http://divio.ch/en/commercial-support/
https://github.com/divio/django-cms
http://freenode.net/
http://groups.google.com/group/django-cms-developers
http://groups.google.com/group/django-cms-developers

django cms Documentation, Release 3.2.5.post1

Commit policy

New in version 3.3.

Commit messages

Commit messages and their subject lines should be written in the past tense, not present tense, for example:

Updated contribution policies.

• Updated branch policy to clarify purpose of develop/release branches

• Added commit policy.

• Added changelog policy.

Keep lines short, and within 72 characters as far as possible.

Squashing commits

In order to make our Git history more useful, and to make life easier for the core developers, please rebase and
squash your commit history into a single commit representing a single coherent piece of work.

For example, we don’t really need or want a commit history, for what ought to be a single commit, that looks like
(newest last):

2dceb83 Updated contribution policies.
ffe5f2c Fixed spelling mistake in contribution policies.
29168da Fixed typo.
85d925c Updated commit policy based on feedback.

The bottom three commits are just noise. They don’t represent development of the code base. The four commits
should be squashed into a single, meaningful, commit:

85d925c Updated commit policy based on feedback.

How to squash commits In this example above, you’d use git rebase -i HEAD~4 (the 4 refers to the
number of commits being squashed - adjust it as required).

This will open a git-rebase-todo file (showing commits with the newest last):

pick 2dceb83 Updated contribution policies.
pick ffe5f2c Fixed spelling mistake in contribution policies.
pick 29168da Fixed typo.
pick 85d925c Updated commit policy based on feedback.

“Fixup” the last three commits, using f so that they are squashed into the first, and their commit messages dis-
carded:

pick 2dceb83 Updated contribution policies.
f ffe5f2c Fixed spelling mistake in contribution policies.
f 29168da Fixed typo.
f 85d925c Updated commit policy based on feedback.

Save - and this will leave you with a single commit containing all of the changes:

85d925c Updated commit policy based on feedback.

Ask for help if you run into trouble!

5.5. Development & community 167

django cms Documentation, Release 3.2.5.post1

Changelog policy

New in version 3.3.

Every new feature, bugfix or other change of substance must be represented in the CHANGELOG. This in-
cludes documentation, but doesn’t extend to things like reformatting code, tidying-up, correcting typos and so
on.

Each line in the changelog should begin with a verb in the past tense, for example:

* Added CMS_WIZARD_CONTENT_PLACEHOLDER setting

* Renamed the CMS_WIZARD_* settings to CMS_PAGE_WIZARD_*
* Deprecated the old-style wizard-related settings

* Improved handling of uninstalled apphooks

* Fixed an issue which could lead to an apphook without a slug

* Updated contribution policies documentation

New lines should be added to the top of the list.

5.6 Release notes & upgrade information

Some versions of django CMS present more complex upgrade paths than others, and some require you to take
action. It is strongly recommended to read the release notes carefully when upgrading.

It goes without saying that you should backup your database before embarking on any process that makes
changes to your database.

5.6.1 3.2.6 release notes

What’s new in 3.2.6

Bug Fixes

• Adds CMS_WIZARD_CONTENT_PLACEHOLDER setting

• Renames the CMS_WIZARD_* settings to CMS_PAGE_WIZARD_*

• Deprecates the old-style wizard-related settings

Deprecation of Old-Style Page Wizard Settings

In this release, we introduce a new naming scheme for the Page Wizard settings that better reflects that they effect
the CMS’s Page Wizards, rather than all wizards. This will also allow future settings for different wizards with a
smaller chance of confusion or naming-collision.

This release simultaneously deprecates the old naming scheme for these settings. Support for the old naming
scheme will be dropped in version 3.5.0.

Action Required Developers using any of the following settings in their projects should rename them as follows
at their earliest convenience.

CMS_WIZARD_DEFAULT_TEMPLATE => CMS_PAGE_WIZARD_DEFAULT_TEMPLATE
CMS_WIZARD_CONTENT_PLUGIN => CMS_PAGE_WIZARD_CONTENT_PLUGIN
CMS_WIZARD_CONTENT_PLUGIN_BODY => CMS_PAGE_WIZARD_CONTENT_PLUGIN_BODY
CMS_WIZARD_CONTENT_PLACEHOLDER => CMS_PAGE_WIZARD_CONTENT_PLACEHOLDER

The CMS will accept both-schemes until 3.5.0 when support for the old scheme will be dropped. During this
transition period, the CMS prefers the new-style naming if both schemes are used in a project’s settings.

168 Chapter 5. Table of contents

https://github.com/divio/django-cms/blob/develop/CHANGELOG.txt

django cms Documentation, Release 3.2.5.post1

5.6.2 3.2.5 release notes

What’s new in 3.2.5

Note: This release is identical to 3.2.4, but had to be released also as 3.2.4 due to a Python wheel packaging
issue.

Bug Fixes

• Fix cache settings

• Fix user lookup for view restrictions/page permissions when using raw id field

• Fixed regression when page couldn’t be copied if CMS_PERMISSION was False

• Fixes an issue relating to uninstalling a namespaced application

• Adds “Can change page” permission

• Fixes a number of page-tree issues the could lead data corruption under certain conditions

• Addresses security vulnerabilities in the render_model template tag that could lead to escalation of privi-
leges or other security issues.

• Addresses a security vulnerability in the cms’ usage of the messages framework

• Fixes security vulnerabilities in custom FormFields that could lead to escalation of privileges or other secu-
rity issues.

Important: This version of django CMS introduces a new setting:
CMS_UNESCAPED_RENDER_MODEL_TAGS with a default value of True. This default value allows up-
grades to occur without forcing django CMS users to do anything, but, please be aware that this setting continues
to allow known security vulnerabilities to be present. Due to this, the new setting is immediately deprecated and
will be removed in a near-future release.

To immediately improve the security of your project and to prepare for future releases of django CMS and related
addons, the project administrator should carefully review each use of the render_model template tags provided
by django CMS. He or she is encouraged to ensure that all content which is rendered to a page using this template
tag is cleansed of any potentially harmful HTML markup, CSS styles or JavaScript. Once the administrator or
developer is satisfied that the content is clean, he or she can add the “safe” filter parameter to the render_model
template tag if the content should be rendered without escaping. If there is no need to render the content unescaped,
no further action is required.

Once all template tags have been reviewed and adjusted where necessary, the administrator should set
CMS_UNESCAPED_RENDER_MODEL_TAGS = False in the project settings. At that point, the project is
more secure and will be ready for any future upgrades.

DjangoCMS Text CKEditor

Action required CMS 3.2.1 is not compatible with djangocms-text-ckeditor < 2.8.1. If you’re using djangocms-
text-ckeditor, please upgrade to 2.8.1 or later.

5.6. Release notes & upgrade information 169

django cms Documentation, Release 3.2.5.post1

5.6.3 3.2.4 release notes

What’s new in 3.2.4

Bug Fixes

• Fix cache settings

• Fix user lookup for view restrictions/page permissions when using raw id field

• Fixed regression when page couldn’t be copied if CMS_PERMISSION was False

• Fixes an issue relating to uninstalling a namespaced application

• Adds “Can change page” permission

• Fixes a number of page-tree issues the could lead data corruption under certain conditions

• Addresses security vulnerabilities in the render_model template tag that could lead to escalation of privi-
leges or other security issues.

• Addresses a security vulnerability in the cms’ usage of the messages framework

• Fixes security vulnerabilities in custom FormFields that could lead to escalation of privileges or other secu-
rity issues.

Important: This version of django CMS introduces a new setting:
CMS_UNESCAPED_RENDER_MODEL_TAGS with a default value of True. This default value allows up-
grades to occur without forcing django CMS users to do anything, but, please be aware that this setting continues
to allow known security vulnerabilities to be present. Due to this, the new setting is immediately deprecated and
will be removed in a near-future release.

To immediately improve the security of your project and to prepare for future releases of django CMS and related
addons, the project administrator should carefully review each use of the render_model template tags provided
by django CMS. He or she is encouraged to ensure that all content which is rendered to a page using this template
tag is cleansed of any potentially harmful HTML markup, CSS styles or JavaScript. Once the administrator or
developer is satisfied that the content is clean, he or she can add the “safe” filter parameter to the render_model
template tag if the content should be rendered without escaping. If there is no need to render the content unescaped,
no further action is required.

Once all template tags have been reviewed and adjusted where necessary, the administrator should set
CMS_UNESCAPED_RENDER_MODEL_TAGS = False in the project settings. At that point, the project is
more secure and will be ready for any future upgrades.

DjangoCMS Text CKEditor

Action required CMS 3.2.1 is not compatible with djangocms-text-ckeditor < 2.8.1. If you’re using djangocms-
text-ckeditor, please upgrade to 2.8.1 or later.

5.6.4 3.2.3 release notes

What’s new in 3.2.3

Bug Fixes

• Fix the display of hyphenated language codes in the page tree

• Fix a family of issues relating to unescaped translations in the page tree

170 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

5.6.5 3.2.2 release notes

What’s new in 3.2.2

Improvements

• Substantial “under-the-hood” improvements to the page tree resulting in significant reduction of page-tree
reloads and generally cleaner code

• Update jsTree version to 3.2.1 with slight adaptations to the page tree

• Improve the display and usability of the language menu, especially in cases where there are many languages

• Documentation improvements

Bug Fixes

• Fix an issue relating to search fields in plugins

• Fix an issue where the app-resolver would trigger locales into migrations

• Fix cache settings

• Fix ToolbarMiddleware.is_cms_request logic

• Fix numerous Django 1.9 deprecations

• Numerous other improvements to overall stability and code quality

Model Relationship Back-References and Django 1.9

Django 1.9 is lot stricter about collisions in the related_names of relationship fields than previ-
ous versions of Django. This has brought to light issues in django CMS relating to the private field
CMSPlugin.cmsplugin_ptr. The issue becomes apparent when multiple packages are installed that provide
plugins with the same model class name. A good example would be if you have the package djangocms-file
installed, which has a poorly named CMSPlugin model subclass called File, then any other package that has a
plugin with a field named ”file” would most likely cause an issue. Considering that djangocms-file is a very
common plugin to use and a field name of “file” is not uncommon in other plugins, this is less than ideal.

Fortunately, developers can correct these issues in their own projects while they await improvements in django
CMS. There is an internal field that is created when instantiating plugins: CMSPlugin.cmsplugin_ptr. This
private field is declared in the CMSPlugin base class and is populated on instantiation using the lower-cased model
name of the CMSPlugin subclass that is being registered.

A subclass to CMSPlugin can declare their own cmsplugin_ptr field to immediately fix this issue. The
easiest solution is to declare this field with a related_name of “+”. In typical Django fashion, this will suppress
the back-reference and prevent any collisions. However, if the back-reference is required for some reason (very
rare), then we recommend using the pattern %(app_label)s_%(class_name)s. In fact, in version 3.3 of
django CMS, this is precisely the string-template that the reference setup will use to create the name. Here’s an
example:

class MyPlugin(CMSPlugin):
class Meta:

app_label = 'my_package'

cmsplugin_ptr = models.OneToOneField(
CMSPlugin,
related_name='my_package_my_plugin',
parent_link=True

)

5.6. Release notes & upgrade information 171

django cms Documentation, Release 3.2.5.post1

other fields, etc.
...

Please note that CMSPlugin.cmsplugin_ptr will remain a private field.

Notice of Upcoming Change in 3.3

As outlined in the section immediately above, the pattern currently used to derive a related_name for the
private field CMSPlugin.cmsplugin_ptr may result in frequent collisions. In django CMS 3.3, this string-
template will be changed to utilise both the app_label and the model class name. In the majority of cases, this
will not affect developers or users, but if your project uses these back-references for some reason, please be aware
of this change and plan accordingly.

Treebeard corruption

Prior to 3.2.1 moving or pasting nested plugins could lead to some non-fatal tree corruptions, raising an error when
adding plugins under the newly pasted plugins.

To fix these problems, upgrade to 3.2.1 or later and then run manage.py cms fix-tree command to repair
the tree.

DjangoCMS Text CKEditor

Action required CMS 3.2.2 is not compatible with djangocms-text-ckeditor < 2.8.1. If you’re using djangocms-
text-ckeditor, please upgrade to 2.8.1 or up.

5.6.6 3.2.1 release notes

What’s new in 3.2.1

Improvements

• Add support for Django 1.9 (with some deprecation warnings).

• Add support for django-reversion 1.10+ (required by Django 1.9+).

• Add placeholder name to the edit tooltip.

• Add attr[’is_page’]=True to CMS Page navigation nodes.

• Add Django and Python versions to debug bar info tooltip

Bug Fixes

• Fix an issue with refreshing the UI when switching CMS language.

• Fix an issue with sideframe urls not being remembered after reload.

• Fix breadcrumb in page revision list.

• Fix clash with Foundation that caused “Add plugin” button to be unusable.

• Fix a tree corruption when pasting a nested plugin under another plugin.

• Fix message with CMS version not showing up on hover in debug mode.

• Fix messages not being positioned correctly in debug mode.

• Fix an issue where plugin parent restrictions where not respected when pasting a plugin.

172 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

• Fix an issue where “Copy all” menu item could have been clicked on empty placeholder.

• Fix a bug where page tree styles didn’t load from STATIC_URL that pointed to a different host.

• Fix an issue where the side-frame wouldn’t refresh under some circumstances.

• Honour CMS_RAW_ID_USERS in GlobalPagePermissionAdmin.

Treebeard corruption

Prior to 3.2.1 moving or pasting nested plugins would lead to some non-fatal tree corruptions, raising an error
when adding plugins under the newly pasted plugins.

To fix these problems, upgrade to 3.2.1 and then run manage.py cms fix-tree command to repair the tree.

DjangoCMS Text CKEditor

Action required CMS 3.2.1 is not compatible with djangocms-text-ckeditor < 2.8.1. If you’re using djangocms-
text-ckeditor, please upgrade to 2.8.1 or up.

5.6.7 3.2 release notes

django CMS 3.2 introduces touch-screen support, significant improvements to the structure-board, and numerous
other updates and fixes for the frontend. Behind the scenes, auto-reloading following apphook configuration
changes will make life simpler for all users.

Warning: Upgrading from previous versions
3.2 introduces some changes that require action if you are upgrading from a previous version. Please read
Upgrading django CMS 3.1 to 3.2 for a step-by-step guide to the process of upgrading from 3.1 to 3.2.

What’s new in 3.2

• new welcome page to help new users

• touch-screen support for most editing interfaces, for sizes from small tablets to table-top devices

• enhanced and polished user interface

• much-needed improvements to the structure-board

• enhancements to components such as the pop-up plugin editor, sideframe (now called the overlay) and the
toolbar

• significant speed improvements on loading, HTTP requests and file sizes

• restarts are no longer required when changing apphook configurations

• a new content wizard system, adaptable to arbitrary content types

Changes that require attention

Touch interface support

For general information about touch interface support, see the touch screen device notes in the documentation.

5.6. Release notes & upgrade information 173

django cms Documentation, Release 3.2.5.post1

Important: These notes about touch interface support apply only to the django CMS admin and editing
interfaces. The visitor-facing published site is wholly independent of this, and the responsibility of the site
developer. A good site should already work well for its visitors, whatever interface they use!

Numerous aspects of the CMS and its interface have been updated to work well with touch-screen devices. There
are some restrictions and warnings that need to be borne in mind.

Device support Smaller devices such as most phones are too small to be adequately usable. For example, your
Apple Watch is sadly unlikely to provide a very good django CMS editing experience.

Older devices will often lack the performance to support a usefully responsive frontend editing/administration
interface.

There are some device-specific issues still to be resolved. Some of these relate to the CKEditor (the default django
CMS text editor). We will continue to work on these and they will be addressed in a future release.

See Device support for information about devices that have been tested and confirmed to work well, and about
known issues affecting touch-screen device support.

Feedback required We’ve tested the CMS interface extensively, but will be very keen to have feedback from
other users - device reports, bug reports and general suggestions and opinions are very welcome.

Bug-fixes

• An issue in which {% placeholder %} template tags ignored the lang parameter has been fixed.

However this may affect the behaviour of your templates, as now a previously-ignored parameter will be
recognised. If you used the lang parameter in these template tags you may be affected: check the behaviour
of your templates after upgrading.

Content wizards

Content creation wizards can help simplify production of content, and can be created to handle non-CMS content
too.

For a quick introduction to using a wizard as a content editor, see the user tutorial.

Renaming cms_app, cms_toolbar, menu modules

cms_app.py, cms_toolbar.py and menu.py have been renamed to cms_apps.py,
cms_toolbars.py and cms_menus.py for consistency.

Old names are still supported but deprecated; support will be removed in 3.4.

Action required In your own applications that use these modules, rename cms_app.py to cms_apps.py,
cms_toolbar.py to cms_toolbars.py and menu.py to cms_menus.py.

New ApphookReloadMiddleware

Until now, changes to apphooks have required a restart of the server in order to take effect. A new optional
middleware class, cms.middleware.utils.ApphookReloadMiddleware, makes this automatic.

174 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

For developers

Various improvements have been implemented to make developing with and for django CMS easier. These in-
clude:

• improvements to frontend code, to comply better with aldryn-boilerplate-bootstrap3

• changes to directory structure for frontend related components such as JavaScript and SASS.

• We no longer use develop.py; we now use manage.py for all development tasks. See Contributing a
patch for examples.

• We’ve moved our widgets.py JavaScript to static/cms/js/widgets.

Code formatting We’ve switched from tabs (in some places) to four spaces everywhere. See Contributing code
for more on formatting.

gulp.js We now use gulp.js for linting, compressing and bundling of frontend files.

Sass-related changes We now use LibSass rather than Compass for building static files (this only affects fron-
tend developers of django CMS - contributors to it, not other users or developers). We’ve also adopted CSSComb.

.editorconfig file We’ve added a .editorconfig (at the root of the project) to provide cues to text
editors.

Automated spelling checks for documentation Documentation is now checked for spelling. A make
spelling command is available now when working on documentation, and our Travis Continuous Integration
server also runs these checks.

See the Spelling section in the documentation.

New structure board

The structure board is cleaner and easier to understand. It now displays its elements in a tree, rather than in a
series of nested boxes.

You can optionally enable the old appearance and behaviour with the
CMS_TOOLBAR_SIMPLE_STRUCTURE_MODE setting (this option will be removed in 3.3).

Replaced the sideframe with an overlay

The sideframe that could be expanded and collapsed to reveal a view of the admin and other controls has been
replaced by a simpler and more elegant overlay mechanism.

The API documentation still refers to the sideframe, because it is invoked in the same way, and what has
changed is merely the behaviour in the user’s browser.

In other words, sideframe and the overlay refer to different versions of the same thing.

New startup page

A new startup mode makes it easier for users (especially new users) to dive straight into editing when launching a
new site. See the Tutorial for more.

5.6. Release notes & upgrade information 175

https://github.com/aldryn/aldryn-boilerplate-bootstrap3
https://github.com/sass/libsass
http://csscomb.com
https://travis-ci.org/divio/django-cms
https://travis-ci.org/divio/django-cms

django cms Documentation, Release 3.2.5.post1

Known issues

The sub-pages of a page with an apphook will be unreachable (404 page not found), due to internal URL
resolution mechanisms in the CMS. Though it’s unlikely that most users will need sub-pages of this kind (typically,
an apphooked page will create its own sub-pages) this issue will be addressed in a forthcoming release.

Backward-incompatible changes

See the Frontend code documentation.

There are no other known backward-incompatible changes.

Upgrading django CMS 3.1 to 3.2

Please note any changes that require action above, and take action accordingly.

A database migration is required (a new model, UrlconfRevision has been added as part of the apphook
reload mechanism):

Note also that any third-party applications you update may have their own migrations, so as always, before up-
grading, please make sure that your current database is consistent and in a healthy state, and make a copy of the
database before proceeding further.

Then run:

python manage.py migrate

to migrate.

Otherwise django CMS 3.2 represents a fairly easy upgrade path.

Pending deprecations

In django CMS 3.3:

Django 1.6, 1.7 and Python 2.6 will no longer be supported. If you still using these versions, you are
strongly encouraged to begin exploring the upgrade process to a newer version.

The CMS_TOOLBAR_SIMPLE_STRUCTURE_MODE setting will be removed.

5.6.8 3.1.5 release notes

What’s new in 3.1.5

Bug Fixes

• Fixed a tree corruption when pasting a nested plugin under another plugin.

• Improve CMSPluginBase.render documentation

• Fix CMSEditableObject context generation which generates to errors with django-classy-tags 0.7.1

• Fix error in toolbar when LocaleMiddleware is not used

• Move templates validation in app.ready

• Fix ExtensionToolbar when language is removed but titles still exists

• Fix pages menu missing on fresh install 3.1

• Fix incorrect language on placeholder text for redirect field

176 Chapter 5. Table of contents

https://github.com/divio/django-cms/issues/4758

django cms Documentation, Release 3.2.5.post1

• Fix PageSelectWidget JS syntax

• Fix redirect when disabling toolbar

• Fix CMS_TOOLBAR_HIDE causes ‘WSGIRequest’ object has no attribute ‘toolbar’

Treebeard corruption

Prior to 3.1.5 moving or pasting nested plugins would lead to some non-fatal tree corruptions, raising an error
when adding plugins under the newly pasted plugins.

To fix these problems, upgrade to 3.1.5 and then run manage.py cms fix-tree command to repair the tree.

DjangoCMS Text CKEditor

Action required CMS 3.1.5 is not compatible with djangocms-text-ckeditor < 2.7.1. If you’re using djangocms-
text-ckeditor, please upgrade to 2.7.1 or up. Keep in mind that djangocms-text-ckeditor >= 2.8 is compatible only
with CMS 3.2.x releases.

5.6.9 3.1.4 release notes - Unreleased - Draft

What’s new in 3.1.4

Bug Fixes

• Fixed a problem in 0010_migrate_use_structure.py that broke some migration paths to Django
1.8

• Fixed fix_tree command

• Removed some warnings for Django 1.9

• Fixed issue causing plugins to move when using scroll bar of plugin menu in Firefox & IE

• Fixed JavaScript error when using PageSelectWidget

• Fixed whitespace markup issues in draft mode

• Added plugin migrations layout detection in tests

• Fixed some treebeard corruption issues

Treebeard corruption

Prior to 3.1.4 deleting pages could lead to some non-fatal tree corruptions, raising an error when publishing,
deleting, or moving pages.

To fix these problems, upgrade to 3.1.4 and then run manage.py cms fix-tree command to repair the tree.

5.6.10 3.1.3 release notes

What’s new in 3.1.3

Bug Fixes

• Add missing migration

• Exclude PageUser manager from migrations

5.6. Release notes & upgrade information 177

django cms Documentation, Release 3.2.5.post1

• Fix check for template instance in Django 1.8.x

• Fix error in PageField for Django 1.8

• Fix some Page tree bugs

• Declare Django 1.6.9 dependency in setup.py

• Make sure cache version returned is an int

• Fix issue preventing migrations to run on a new database (django 1.8)

• Fix get User model in 0010 migration

• Fix support for unpublished language pages

• Add documentation for plugins data migration

• Fix getting request in _show_placeholder_for_page on Django 1.8

• Fix template inheritance order

• Fix xframe options inheritance order

• Fix placeholder inheritance order

• Fix language chooser template

• Relax html5lib versions

• Fix redirect when deleting a page

• Correct South migration error

• Correct validation on numeric fields in modal pop-up dialogs

• Exclude scssc from manifest

• Remove unpublished pages from menu

• Remove page from menu items for performance reason

• Fix access to pages with expired ancestors

• Don’t try to modify an immutable QueryDict

• Only attempt to delete cache keys if there are some to be deleted

• Update documentation section

• Fix language chooser template

• Cast to int cache version

• Fix extensions copy when using duplicate page/create page type

Thanks

Many thanks community members who have submitted issue reports and especially to these GitHub users who
have also submitted pull requests: basilelegal, gigaroby, ikudryavtsev, jokerejoker, josjevv, tomwardill.

5.6.11 3.1.2 release notes

What’s new in 3.1.2

Bug Fixes

• Fix placeholder cache invalidation under some circumstances

• Update translations

178 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

5.6.12 3.1.1 release notes

What’s new in 3.1.1

• Add Django 1.8 support

• Tutorial updates and improvements

• Add copy_site command

• Add setting to disable toolbar for anonymous users

• Add setting to hide toolbar when a URL is not handled by django CMS

• Add editor configuration

Bug Fixes

• Fixed an issue where privileged users could be tricked into performing actions without their knowledge via
a CSRF vulnerability.

• Fix issue with causes menu classes to be duplicated in advanced settings

• Fix issue with breadcrumbs not showing

• Fix issues with show_menu template tags

• Fix an error in placeholder cache

• Fix get_language_from_request if POST and GET exists

• Minor documentation fixes

• Revert whitespace clean-up on flash player to fix it

• Correctly restore previous status of drag bars

• Fix an issue related to “Empty all” Placeholder feature

• Fix plugin sorting in Python 3

• Fix language-related issues when retrieving page URL

• Fix search results number and items alignment in page changelist

• Preserve information regarding the current view when applying the CMS decorator

• Fix errors with toolbar population

• Fix error with watch_models type

• Fix error with plugin breadcrumbs order

• Change the label “Save and close” to “Save as draft”

• Fix X-Frame-Options on top-level pages

• Fix order of which application URLs are injected into urlpatterns

• Fix delete non existing page language

• Fix language fallback for nested plugins

• Fix render_model template tag doesn’t show correct change list

• Fix Scanning for placeholders fails on include tags with a variable as an argument

• Fix handling of plugin position attribute

• Fix for some structureboard issues

• Pin South version to 1.0.2

5.6. Release notes & upgrade information 179

django cms Documentation, Release 3.2.5.post1

• Pin html5lib version to 0.999 until a current bug is fixed

• Make shift tab work correctly in sub-menu

• Fix language chooser template

Potentially backward incompatible changes

The order in which the applications are injected is now based on the page depth, if you use nested apphooks,
you might want to check that this does not change the behaviour of your applications depending on applications
urlconf greediness.

Thanks

Many thanks community members who have submitted issue reports and especially to these GitHub users who
have also submitted pull requests: astagi, dirtycoder, doctormo, douwevandermeij, driesdesmet, furiousdave,
ldgarcia, maqnouch, nikolas, northben, olarcheveque, pa0lin082, peterfarrell, sam-m888, sephii, stefanw, tim-
graham, vstoykov.

A special thank you to vad and nostalgiaz for their support on Django 1.8 support

A special thank to Matt Wilkes and Sylvain Fankhauser for reporting the security issue.

5.6.13 3.1 release notes

django CMS 3.1 has been planned largely as a consolidation release, to build on the progress made in 3.0 and
establish a safe, solid base for more ambitious work in the future.

In this release we have tried to maintain maximum backwards-compatibility, particularly for third-party applica-
tions, and endeavoured to identify and tidy loose ends in the system wherever possible.

Warning: Upgrading from previous versions
3.1 introduces some changes that require action if you are upgrading from a previous version. Please read
Upgrading django CMS 3.0 to 3.1 for a step-by-step guide to the process of upgrading from 3.0 to 3.1.

What’s new in 3.1

Switch from MPTT to MP

Since django CMS 2.0 we have relied on MPTT (Modified Pre-order Tree Traversal) for efficiently handling tree
structures in the database.

In 3.1, Django MPTT has been replaced by django-treebeard, to improve performance and reliability.

Over the years MPTT has proved not to be fast enough for big tree operations (>1000 pages); tree corruption,
because of transactional errors, has also been a problem.

django-treebeard uses MP (Materialised Path). MP is more efficient and has more error resistance then MPTT. It
should make working with and using django CMS better - faster and reliable.

Other than this, end users should not notice any changes.

Note: User feedback required

We require as much feedback as possible about the performance of django-treebeard in this release. Please let us
know your experiences with it, especially if you encounter any problems.

180 Chapter 5. Table of contents

https://github.com/django-mptt/django-mptt
https://github.com/tabo/django-treebeard

django cms Documentation, Release 3.2.5.post1

Note: Backward incompatible change

While most of the low-level interface is very similar between django-mptt and django-treebeard they
are not exactly the same. If any custom code needs to make use of the low-level interfaces of the page or
plugins tree, please see the django-treebeard documentation for information on how to use equivalent calls in
django-treebeard.

Note: Handling plugin data migrations

Please check Plugin data migrations for information on how to create migrations compatible with django CMS
3.0 and 3.1

Action required Run manage.py cms fix-mptt before you upgrade.

Developers who use django CMS will need to run the schema and data migrations that are part of this release.
Developers of third-party applications that relied on the Django MPTT that shipped with django CMS are advised
to update their own applications so that they install it independently.

Dropped support for Django 1.4 and 1.5

Starting from version 3.1, django CMS runs on Django 1.6 (specifically, 1.6.9 and later) and 1.7.

Warning: Django security support
Django 1.6 support is provided as an interim measure only. In accordance with the Django Project’s security
policies, 1.6 no longer receives security updates from the Django Project team. Projects running on Django 1.6
have known vulnerabilities, so you are advised to upgrade your installation to 1.7 or 1.8 as soon as possible.

Action required If you’re still on an earlier version, you will need to install a newer one, and make sure that
your third-party applications are also up-to-date with it before attempting to upgrade django CMS.

South is now an optional dependency

As Django South is now required for Django 1.6 only, it’s marked as an optional dependency.

Action required To install South along with django CMS use pip install django-cms[south].

Migrations moved

Migrations directories have been renamed to conform to the new standard layout:

• Django 1.7 migrations: in the default cms/migrations and menus/migrations directories

• South migrations: in the cms/south_migrations and menus/south_migrations directories

Action required South 1.0.2 or newer is required to handle the new layout correctly, so make sure you have that
installed.

If you are upgrading from django CMS 3.0.x running on Django 1.7 you need to remove the old migration path
from MIGRATION_MODULES settings.

5.6. Release notes & upgrade information 181

https://tabo.pe/projects/django-treebeard/docs/2.0/
https://docs.djangoproject.com/en/dev/internals/security/
https://docs.djangoproject.com/en/dev/internals/security/
https://docs.djangoproject.com/en/1.7/ref/settings/#migration-modules

django cms Documentation, Release 3.2.5.post1

Plugins migrations moving process

Core plugins are being changed to follow the new convention for the migration modules, starting with djan-
gocms_text_ckeditor 2.5 released together with django CMS 3.1.

Action required Check the readme file of each plugin when upgrading to know the actions required.

Structure mode permission

A new Can use Structure mode* permission has been added.

Without this permission, a non-superuser will no longer have access to structure mode. This makes possible a
more strict workflow, in which certain users are able to edit content but not structure.

This change includes a data migration that adds the new permission to any staff user or group with
cms.change_page permission.

Action required You may need to adjust these permissions once you have completed migrating your database.

Note that if you have existing users in your database, but are installing django CMS and running its migrations for
the first time, you will need to grant them these permissions - they will not acquire them automatically.

Simplified loading of view restrictions in the menu

The system that loads page view restrictions into the menu has been improved, simplifying the queries that are
generated, in order to make it faster.

Note: User feedback required

We require as much feedback as possible about the performance of this feature in this release. Please let us know
your experiences with it, especially if you encounter any problems.

Toolbar API extension

The toolbar API has been extended to permit more powerful use of it in future development, including the use of
“clipboard-like” items.

For an example of how this can be used, see the new Aldryn Blueprint application.

Per-namespace apphook configuration

django CMS provides a new API to define namespaced Apphook configurations.

Aldryn Apphooks Config has been created and released as a standard implementation to take advantage of this,
but other implementations can be developed.

Improvements to the toolbar user interface

Some minor changes have been implemented to improve the toolbar user interface. The old Draft/Live switch
has been replaced to achieve a more clear distinction between page states, and Edit and Save as draft buttons are
now available in the toolbar to control the page editing workflow.

182 Chapter 5. Table of contents

https://github.com/aldryn/aldryn-blueprint/
https://github.com/aldryn/aldryn-apphooks-config

django cms Documentation, Release 3.2.5.post1

Placeholder language fallback default to True

language_fallback in CMS_PLACEHOLDER_CONF is True by default.

New template tags

render_model_add_block The family of render_model template tags that allow Django developers to
make any Django model editable in the frontend has been extended with render_model_add_block, which
can offer arbitrary markup as the Edit icon (rather than just an image as previously).

render_plugin_block Some user interfaces have some plugins hidden from display in edit/preview mode.
render_plugin_block provides a way to expose them for editing, and also more generally provides an
alternative means of triggering a plugin’s change form.

Plugin table naming

Old-style plugin table names (for example, cmsplugin_<plugin name> are no longer supported. Relevant
code has been removed.

Action required Any plugin table name must be migrated to the standard (<application name>_<table
name> layout.

cms.context_processors.media replaced by cms.context_processors.cms_settings

Action required Replace the cms.context_processors.media with
cms.context_processors.cms_settings in settings.py.

Upgrading django CMS 3.0 to 3.1

Preliminary steps

Before upgrading, please make sure that your current database is consistent and in a healthy state.

To ensure this, run two commands:

• python manage.py cms delete_orphaned_plugins

• python manage.py cms fix-mptt

Make a copy of the database before proceeding further.

Settings update

• Change cms.context_processors.media to cms.context_processors.cms_settings
in TEMPLATE_CONTEXT_PROCESSORS.

• Add treebeard to INSTALLED_APPS, and remove mptt if not required by other applications.

• If using Django 1.7 remove cms and menus from MIGRATION_MODULES to support the new migration
layout.

• If migrating from Django 1.6 and below to Django 1.7, remove south from installed_apps.

• Eventually set language_fallback to False in CMS_PLACEHOLDER_CONF if you do not want
language fallback behaviour for placeholders.

5.6. Release notes & upgrade information 183

django cms Documentation, Release 3.2.5.post1

Update the database

• Rename plugin table names, to conform to the new naming scheme (see above). Be warned that not all
third-party plugin applications may provide these migrations - in this case you will need to rename the table
manually. Following the upgrade, django CMS will look for the tables for these plugins under their new
name, and will report that they don’t exist if it can’t find them.

• The migration for MPTT to django-treebeard is handled by the django CMS migrations, thus apply
migrations to update your database:

python manage.py migrate

5.6.14 3.0.16 release notes

Bug-fixes

• Fixed JavaScript error when using PageSelectWidget

• Fixed whitespace markup issues in draft mode

• Added plugin migrations layout detection in tests

5.6.15 3.0.15 release notes

What’s new in 3.0.15

Bug Fixes

• Relax html5lib versions

• Fix redirect when deleting a page

• Correct South migration error

• Correct validation on numeric fields in modal pop-up dialogs

• Exclude scssc from manifest

• Remove unpublished pages from menu

• Remove page from menu items for performance reason

• Fix access to pages with expired ancestors

• Don’t try to modify an immutable QueryDict

• Only attempt to delete cache keys if there are some to be deleted

• Update documentation section

• Fix language chooser template

• Cast to int cache version

• Fix extensions copy when using duplicate page/create page type

Thanks

Many thanks community members who have submitted issue reports and especially to these GitHub users who
have also submitted pull requests: basilelegal.

184 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

5.6.16 3.0.14 release notes

What’s new in 3.0.14

Bug Fixes

• Fixed an issue where privileged users could be tricked into performing actions without their knowledge via
a CSRF vulnerability.

• Fix issue with causes menu classes to be duplicated in advanced settings

• Fix issue with breadcrumbs not showing

• Fix issues with show_menu template tags

• Minor documentation fixes

• Fix an issue related to “Empty all” Placeholder feature

• Fix plugin sorting in Python 3

• Fix search results number and items alignment in page changelist

• Preserve information regarding the current view when applying the CMS decorator

• Fix X-Frame-Options on top-level pages

• Fix order of which application URLs are injected into urlpatterns

• Fix delete non existing page language

• Fix language fallback for nested plugins

• Fix render_model template tag doesn’t show correct change list

• Fix Scanning for placeholders fails on include tags with a variable as an argument

• Pin South version to 1.0.2

• Pin html5lib version to 0.999 until a current bug is fixed

• Fix language chooser template

Potentially backward incompatible changes

The order in which the applications are injected is now based on the page depth, if you use nested apphooks,
you might want to check that this does not change the behaviour of your applications depending on applications
urlconf greediness.

Thanks

Many thanks community members who have submitted issue reports and especially to these GitHub users who
have also submitted pull requests: douwevandermeij, furiousdave, nikolas, olarcheveque, sephii, vstoykov.

A special thank to Matt Wilkes and Sylvain Fankhauser for reporting the security issue.

5.6.17 3.0.13 release notes

What’s new in 3.0.13

Bug Fixes

• Numerous documentation including installation and tutorial updates

5.6. Release notes & upgrade information 185

django cms Documentation, Release 3.2.5.post1

• Numerous improvements to translations

• Improves reliability of apphooks

• Improves reliability of Advanced Settings on page when using apphooks

• Allow page deletion after template removal

• Improves upstream caching accuracy

• Improves CMSAttachMenu registration

• Improves handling of mis-typed URLs

• Improves redirection as a result of changes to page slugs, etc.

• Improves performance of “watched models”

• Improves frontend performance relating to re-sizing the sideframe

• Corrects an issue where items might not be visible in structure mode menus

• Limits version of django-mptt used in CMS for 3.0.x

• Prevent accidental upgrades to Django 1.8, which is not yet supported

Many thanks community members who have submitted issue reports and especially to these GitHub users who
have also submitted pull requests: elpaso, jedie, jrief, jsma, treavis.

5.6.18 3.0.12 release notes

What’s new in 3.0.12

Bug Fixes

• Fixes a regression caused by extra whitespace in JavaScript

5.6.19 3.0.11 release notes

What’s new in 3.0.11

• Core support for multiple instances of the same apphooked application

• The template tag render_model_add can now accept a model class as well as a model instance

Bug Fixes

• Fixes an issue with reverting to Live mode when moving plugins

• Fixes a missing migration issue

• Fixes an issue when using the PageField widget

• Fixes an issue where duplicate page slugs is not prevented in some cases

• Fixes an issue where copying a page didn’t copy its extensions

• Fixes an issue where translations where broken when operating on a page

• Fixes an edge-case SQLite issue under Django 1.7

• Fixes an issue where a confirmation dialog shows only some of the plugins to be deleted when using the
“Empty All” context-menu item

• Fixes an issue where deprecated mimetype was used instead of contenttype

186 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

• Fixes an issue where cms check erroneous displays warnings when a plugin uses class inheritance

• Documentation updates

Other

• Updated test CI coverage

5.6.20 3.0.10 release notes

What’s new in 3.0.10

• Improved Python 3 compatibility

• Improved the behaviour when changing the operator’s language

• Numerous documentation updates

Bug Fixes

• Revert a change that caused an issue with saving plugins in some browsers

• Fix an issue where URLs were not refreshed when a page slug changes

• Fix an issue with FR translations

• Fixed an issue preventing the correct rendering of custom contextual menu items for plugins

• Fixed an issue relating to recovering deleted pages

• Fixed an issue that caused the uncached placeholder tag to display cached content

• Fixed an issue where extra slashed would appear in apphooked URLs when APPEND_SLASH=False

• Fixed issues relating to the logout function

5.6.21 3.0.9 release notes

What’s new in 3.0.9

Bug Fixes

• Revert a change that caused a regression in toolbar login

• Fix an error in a translated phrase

• Fix error when moving items in the page tree

5.6.22 3.0.8 release notes

What’s new in 3.0.8

• Add require_parent option to CMS_PLACEHOLDER_CONF

5.6. Release notes & upgrade information 187

django cms Documentation, Release 3.2.5.post1

Bug Fixes

• Fix django-mptt version dependency to be PEP440 compatible

• Fix some Django 1.4 compatibility issues

• Add toolbar sanity check

• Fix behaviour with CMSPluginBase.get_render_template()

• Fix issue on django >= 1.6 with page form fields.

• Resolve jQuery namespace issues in admin page tree and change form

• Fix issues for PageField in Firefox/Safari

• Fix some Python 3.4 compatibility issue when using proxy modules

• Fix corner case in plugin copy

• Documentation fixes

• Minor code clean-ups

Warning: Fix for plugin copy patches a reference leak in
cms.models.pluginmodel.CMSPlugin.copy_plugins, which caused the original plugin
object to be modified in memory. The fixed code leaves the original unaltered and returns a modified copy.
Custom plugins that called cms.utils.plugins.copy_plugins_to or
cms.models.pluginmodel.CMSPlugin.copy_plugins may have relied on the incorrect be-
haviour. Check your code for calls to these methods. Correctly implemented calls should expect the original
plugin instance to remain unaltered.

5.6.23 3.0.7 release notes

What’s new in 3.0.7

• Numerous updates to the documentation

• Numerous updates to the tutorial

• Updates to better support South 1.0

• Adds some new, user-facing documentation

Bug Fixes

• Fixes an issue with placeholderadmin permissions

• Numerous fixes for minor issues with the frontend UI

• Fixes issue where the CMS would not reload pages properly if the URL contained a # symbol

• Fixes an issue relating to limit_choices_to in forms.MultiValueFields

• Fixes PageField to work in Django 1.7 environments

Project & Community Governance

• Updates to community and project governance documentation

• Added list of retired core developers

• Added branch policy documentation

188 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

5.6.24 3.0.6 release notes

What’s new in 3.0.6

Django 1.7 support

As of version 3.0.6 django CMS supports Django 1.7.

Currently our migrations for Django 1.7 are in cms/migrations_django to allow better backward compat-
ibility; in future releases the Django migrations will be moved to the standard migrations directory, with the
South migrations in south_migrations.

To support the current arrangement you need to add the following to your settings:

MIGRATION_MODULES = {
'cms': 'cms.migrations_django',
'menus': 'menus.migrations_django',

}

Warning: Applications migrations
Any application that defines a django CMS plugin or a model that uses a PlaceholderField or depends in any
way on django CMS models must also provide Django 1.7 migrations.

Extended Custom User Support

If you are using custom user models and use CMS_PERMISSION = True then be sure to check that
PageUserAdmin and PageUserGroup is still in working order.

The PageUserAdmin class now extends dynamically from the admin class that handles the user model. This
allows us to use the same search_fields and filters in PageUserAdmin as in the custom user model admin.

CMSPlugin.get_render_template

A new method on plugins, that returns the template during the render phase, allowing you to change the template
based on any plugin attribute or context status. See Custom Plugins for more.

Simplified toolbar API for page extensions

A simpler, more compact way to extend the toolbar for page extensions: Simplified Toolbar API.

5.6.25 3.0.3 release notes

What’s new in 3.0.3

New Alias Plugin

A new Alias plugin has been added. You will find in your plugins and placeholders context menu in structure
mode a new entry called “Create alias”. This will create a new Alias plugin in the clipboard with a reference to the
original. It will render this original plugin/placeholder instead. This is useful for content that is present in more
then one place.

5.6. Release notes & upgrade information 189

django cms Documentation, Release 3.2.5.post1

New Context Menu API

Plugins can now change the context menus of placeholders and plugins. For more details have a look at the docs:

Extending context menus of placeholders or plugins

Apphook Permissions

Apphooks have now by default the same permissions as the page they are attached to. This means if a page has
for example a login required enabled all views in the apphook will have the same behaviour.

Docs on how to disable or customise this behaviour have a look here:

Apphook permissions

5.6.26 3.0 release notes

What’s new in 3.0

Warning: Upgrading from previous versions
3.0 introduces some changes that require action if you are upgrading from a previous version.

Note: See the quick upgrade guide

New Frontend Editing

django CMS 3.0 introduces a new frontend editing system as well as a customisable Django admin skin (djan-
gocms_admin_style).

In the new system, Placeholders and their plugins are no longer managed in the admin site, but only from the
frontend.

In addition, the system now offer two editing views:

• content view, for editing the configuration and content of plugins.

• structure view, in which plugins can be added and rearranged.

Page titles can also be modified directly from the frontend.

New Toolbar

The toolbar’s code has been simplified and its appearance refreshed. The toolbar is now a more consistent man-
agement tool for adding and changing objects. See Extending the Toolbar.

Warning: Upgrading from previous versions
3.0 now requires the django.contrib.messages application for the toolbar to work. See Enable mes-
sages for how to enable it.

New Page Types

You can now save pages as page types. If you then create a new page you may select a page type and all plugins
and contents will be pre-filled.

190 Chapter 5. Table of contents

https://github.com/divio/djangocms-admin-style
https://github.com/divio/djangocms-admin-style

django cms Documentation, Release 3.2.5.post1

Experimental Python 3.3 support

We’ve added experimental support for Python 3.3. Support for Python 2.5 has been dropped.

Better multilingual editing

Improvements in the django CMS environment for managing a multi-lingual site include:

• a built-in language chooser for languages that are not yet public.

• configurable behaviour of the admin site’s language when switching between languages of edited content.

CMS_SEO_FIELDS

The setting has been removed, along with the SEO fieldset in admin.

• meta_description field’s max_length is now 155 for optimal Google integration.

• page_title is default on top.

• meta_keywords field has been removed, as it no longer serves any purpose.

CMS_MENU_TITLE_OVERWRITE

New default for this setting is True.

Plugin fallback languages

It’s now possible to specify fallback languages for a placeholder if the placeholder is empty for the current lan-
guage. This must be activated in CMS_PLACEHOLDER_CONF per placeholder. It defaults to False to maintain
pre-3.0 behaviour.

language_chooser

The language_chooser template tag now only displays languages that are public. Use the toolbar language
chooser to change the language to non-public languages.

Undo and Redo

If you have django-reversion installed you now have undo and redo options available directly in the toolbar.
These can now revert plugin content as well as page content.

Plugins removed

We have removed plugins from the core. This is not because you are not expected to use them, but because django
CMS should not impose unnecessary choices about what to install upon its adopters.

The most significant of these removals is cms.plugins.text.

We provide djangocms-text-ckeditor, a CKEditor-based Text Plugin. It’s available from
https://github.com/divio/djangocms-text-ckeditor. You may of course use your preferred editor; others are avail-
able.

Furthermore, we removed the following plugins from the core and moved them into separate repositories.

5.6. Release notes & upgrade information 191

https://github.com/divio/djangocms-text-ckeditor

django cms Documentation, Release 3.2.5.post1

Note: In order to update from the old cms.plugins.X to the new djangocms_X plugins, simply install the
new plugin, remove the old cms.plugins.X from settings.INSTALLED_APPS and add the new one to
it. Then run the migrations (python manage.py migrate djangocms_X).

File Plugin We removed the file plugin (cms.plugins.file). Its new location is at:

• https://github.com/divio/djangocms-file

As an alternative, you could also use the following (yet you will not be able to keep your existing files from the
old cms.plugins.file!)

• https://github.com/stefanfoulis/django-filer

Flash Plugin We removed the flash plugin (cms.plugins.flash). Its new location is at:

• https://github.com/divio/djangocms-flash

Googlemap Plugin We removed the Googlemap plugin (cms.plugins.googlemap). Its new location is
at:

• https://github.com/divio/djangocms-googlemap

Inherit Plugin We removed the inherit plugin (cms.plugins.inherit). Its new location is at:

• https://github.com/divio/djangocms-inherit

Picture Plugin We removed the picture plugin (cms.plugins.picture). Its new location is at:

• https://github.com/divio/djangocms-picture

Teaser Plugin We removed the teaser plugin (cms.plugins.teaser). Its new location is at:

• https://github.com/divio/djangocms-teaser

Video Plugin We removed the video plugin (cms.plugins.video). Its new location is at:

• https://github.com/divio/djangocms-video

Link Plugin We removed the link plugin (cms.plugins.link). Its new location is at:

• https://github.com/divio/djangocms-link

Snippet Plugin We removed the snippet plugin (cms.plugins.snippet). Its new location is at:

• https://github.com/divio/djangocms-snippet

As an alternative, you could also use the following (yet you will not be able to keep your existing files from the
old cms.plugins.snippet!)

• https://github.com/pbs/django-cms-smartsnippets

192 Chapter 5. Table of contents

https://github.com/divio/djangocms-file
https://github.com/stefanfoulis/django-filer
https://github.com/divio/djangocms-flash
https://github.com/divio/djangocms-googlemap
https://github.com/divio/djangocms-inherit
https://github.com/divio/djangocms-picture
https://github.com/divio/djangocms-teaser
https://github.com/divio/djangocms-video
https://github.com/divio/djangocms-link
https://github.com/divio/djangocms-snippet
https://github.com/pbs/django-cms-smartsnippets

django cms Documentation, Release 3.2.5.post1

Twitter Plugin Twitter disabled V1 of their API, thus we’ve removed the twitter plugin
(cms.plugins.twitter) completely.

For alternatives have a look at these plugins:

• https://github.com/nephila/djangocms_twitter

• https://github.com/changer/cmsplugin-twitter

Plugin Context Processors take a new argument

Plugin Context have had an argument added so that the rest of the context is available to them. If you have existing
plugin context processors you will need to change their function signature to add the extra argument.

Apphooks

Apphooks have moved from the title to the page model. This means you can no longer have separate apphooks
for each language. A new application instance name field has been added.

Note: The reverse id is not used for the namespace any more. If you used namespaced apphooks before, be sure
to update your pages and fill out the namespace fields.

If you use apphook apps with app_name for app namespaces, be sure to fill out the instance namespace field
application instance name as it’s now required to have a namespace defined if you use app namespaces.

For further reading about application namespaces, please refer to the Django documentation on the subject at
https://docs.djangoproject.com/en/dev/topics/http/urls/#url-namespaces

request.current_app has been removed. If you relied on this, use the following code instead in your views:

def my_view(request):
current_app = resolve(request.path_info).namespace
context = RequestContext(request, current_app=current_app)
return render_to_response("my_templace.html", context_instance=context)

Details can be found in Attaching an application multiple times.

PlaceholderAdmin

PlaceholderAdmin now is deprecated. Instead of deriving from admin.ModelAdmin, a new mixin class
PlaceholderAdminMixin has been introduced which shall be used together with admin.ModelAdmin.
Therefore when defining a model admin class containing a placeholder, now add PlaceholderAdminMixin
to the list of parent classes, together with admin.ModelAdmin.

PlaceholderAdmin doesn’t have language tabs any more and the plugin editor is gone. The plugin API has
changed and is now more consistent. PageAdmin uses the same API as PlaceholderAdminMixin now.
If your app talked with the Plugin API directly be sure to read the code and the changed parameters. If you
use PlaceholderFields you should add the mixin PlaceholderAdminMixin as it delivers the API for
editing the plugins and the placeholders.

The workflow in the future should look like this:

1. Create new model instances via a toolbar entry or via the admin.

2. Go to the view that represents the model instance and add content via frontend editing.

5.6. Release notes & upgrade information 193

https://github.com/nephila/djangocms_twitter
https://github.com/changer/cmsplugin-twitter
https://docs.djangoproject.com/en/dev/topics/http/urls/#url-namespaces

django cms Documentation, Release 3.2.5.post1

Placeholder object permissions

In addition to model level permissions, Placeholder now checks if a user has permissions on a specific object
of that model. Details can be found here in Permissions.

Placeholders are pre-fillable with default plugins

In CMS_PLACEHOLDER_CONF, for each placeholder configuration, you can specify via ‘default_plugins’
a list of plugins to automatically add to the placeholder if empty. See default_plugins in
CMS_PLACEHOLDER_CONF.

Custom modules and plugin labels in the toolbar UI

It’s now possible to configure module and plugins labels to show in the toolbar UI. See
CMS_PLACEHOLDER_CONF for details.

New copy-lang subcommand

Added a management command to copy content (titles and plugins) from one language to another.

The command can be run with:

manage.py cms copy_lang from_lang to_lang

Please read cms copy-lang before using.

Frontend editor for Django models

Frontend editor is available for any Django model; see documentation for details.

New Page related_name to Site

The Page object used to have the default related_name (page) to the Sitemodel which may cause clashing
with other Django apps; the related_name is now djangocms_pages.

Warning: Potential backward incompatibility
This change may cause you code to break, if you relied on Site.page_set to access cms pages from a
Site model instance: update it to use Site.djangocms_pages

Moved all template tags to cms_tags

All template tags are now in the cms_tags namespace so to use any cms template tags you can just do:

{% load cms_tags %}

getter and setter for translatable plugin content

A plugin’s translatable content can now be read and set through get_translatable_content() and
set_translatable_content(). See Custom Plugins for more info.

194 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

No more DB table-name magic for plugins

Since django CMS 2.0 plugins had their table names start with cmsplugin_. We removed this behaviour in 3.0
and will display a deprecation warning with the old and new table name. If your plugin uses south for migrations
create a new empty schema migration and rename the table by hand.

Warning: When working in the django shell or coding at low level, you must trigger the backward compatible
behaviour (a.k.a. magical rename checking), otherwise non migrated plugins will fail. To do this execute the
following code:

>>> from cms.plugin_pool import plugin_pool
>>> plugin_pool.set_plugin_meta()

This code can be executed both in the shell or in your python modules.

Added support for custom user models

Since Django 1.5 it has been possible to swap out the default User model for a custom user model. This is now
fully supported by DjangoCMS, and in addition a new option has been added to the test runner to allow specifying
the user model to use for tests (e.g. --user=customuserapp.User)

Page caching

Pages are now cached by default. You can disable this behaviour with CMS_PAGE_CACHE

Placeholder caching

Plugins have a new default property: cache=True. If all plugins in a placeholder have set this to True the whole
placeholder will be cached if the toolbar is not in edit mode.

Warning: If your plugin is dynamic and processes current user or request data be sure to set cache=False

Plugin caching

Plugins have a new attribute: cache=True. Its default value can be configured with CMS_PLUGIN_CACHE.

Per-page Clickjacking protection

An advanced option has been added which controls, on a per-page basis, the X-Frame-Options header. The
default setting is to inherit from the parent page. If no ancestor specifies a value, no header will be set, allowing
Django’s own middleware to handle it (if enabled).

CMS_TEMPLATE context variable

A new CMS_TEMPLATE variable is now available in the context: it contains the path to the current page template.
See CMS_TEMPLATE reference for details.

5.6. Release notes & upgrade information 195

django cms Documentation, Release 3.2.5.post1

Upgrading from 2.4

Note: There are reports that upgrading the CMS from 2.4 to 3.0 may fail if Django Debug Toolbar is installed.
Please remove/disable Django Debug Toolbar and other non-essential apps before attempting to upgrade, then
once complete, re-enable them following the “Explicit setup” instructions.

If you want to upgrade from version 2.4 to 3.0, there’s a few things you need to do. Start of by updating the cms’
package:

pip install django-cms==3.0

Next, you need to make the following changes in your settings.py

• settings.INSTALLED_APPS

– Remove cms.plugin.twitter. This package has been deprecated, see Twitter Plugin.

– Rename all the other cms.plugins.X to djangocms_X, see Plugins removed.

• settings.CONTEXT_PROCESSORS

– Replace cms.context_processors.mediawith cms.context_processors.cms_settings

Afterwards, install all your previously renamed ex-core plugins (djangocms-whatever). Here’s a full list,
but you probably don’t need all of them:

pip install djangocms-file
pip install djangocms-flash
pip install djangocms-googlemap
pip install djangocms-inherit
pip install djangocms-picture
pip install djangocms-teaser
pip install djangocms-video
pip install djangocms-link
pip install djangocms-snippet

Also, please check your templates to make sure that you haven’t put the {% cms_toolbar %} tag into a {%
block %} tag. This is not allowed in 3.0 any more.

To finish up, please update your database:

python manage.py syncdb
python manage.py migrate (answer yes if your prompted to delete stale content types)

Finally, your existing pages will be unpublished, so publish them with the publisher command:

python manage.py publisher_publish

That’s it!

Pending deprecations

placeholder_tags

placeholder_tags is now deprecated, the render_placeholder template tag can now be loaded from
the cms_tags template tag library.

Using placeholder_tags will cause a DeprecationWarning to occur.

placeholder_tags will be removed in version 3.1.

196 Chapter 5. Table of contents

http://django-debug-toolbar.readthedocs.org/en/1.0/installation.html#explicit-setup

django cms Documentation, Release 3.2.5.post1

cms.context_processors.media

cms.context_processors.media is now deprecated, please use cms.context_processors.cms_settings
by updating TEMPLATE_CONTEXT_PROCESSORS in the settings

Using cms.context_processors.media will cause a DeprecationWarning to occur.

cms.context_processors.media will be removed in version 3.1.

5.6.27 2.4 release notes

What’s new in 2.4

Warning: Upgrading from previous versions
2.4 introduces some changes that require action if you are upgrading from a previous version.
You will need to read the sections Migrations overhaul and Added a check command below.

Introducing Django 1.5 support, dropped support for Django 1.3 and Python 2.5

Django CMS 2.4 introduces Django 1.5 support.

In django CMS 2.4 we dropped support for Django 1.3 and Python 2.5. Django 1.4 and Python 2.6 are now the
minimum required versions.

Migrations overhaul

In version 2.4, migrations have been completely rewritten to address issues with newer South releases.

To ease the upgrading process, all the migrations for the cms application have been consolidated into a single
migration file, 0001_initial.py.

• migration 0001 is a real migration, that gets you to the same point migrations 0001-0036 used to

• the migrations 0002 to 0036 inclusive still exist, but are now all dummy migrations

• migrations 0037 and later are new migrations

How this affects you If you’re starting with a new installation, you don’t need to worry about this. Don’t even
bother reading this section; it’s for upgraders.

If you’re using version 2.3.2 or newer, you don’t need to worry about this either.

If you’re using version 2.3.1 or older, you will need to run a two-step process.

First, you’ll need to upgrade to 2.3.3, to bring your migration history up-to-date with the new scheme. Then you’ll
need to perform the migrations for 2.4.

For the two-step upgrade process do the following in your project main directory:

pip install django-cms==2.3.3
python manage.py syncdb
python manage.py migrate
pip install django-cms==2.4
python manage.py migrate

5.6. Release notes & upgrade information 197

django cms Documentation, Release 3.2.5.post1

Added delete orphaned plugins command

Added a management command for deleting orphaned plugins from the database.

The command can be run with:

manage.py cms delete_orphaned_plugins

Please read cms delete_orphaned_plugins before using.

Added a check command

Added a management command to check your configuration and environment.

To use this command, simply run:

manage.py cms check

This replaces the old at-runtime checks.

CMS_MODERATOR

Has been removed since it is no longer in use. From 2.4 onward, all pages exist in a public and draft version.
Users with the publish_page permission can publish changes to the public site.

Management command required

To bring a previous version of your site’s database up-to-date, you’ll need to run manage.py cms
moderator on. Never run this command without first checking for orphaned plugins, using the cms
list plugins command. If it reports problems, run manage.py cms delete_orphaned_plugins.
Running cms moderator with orphaned plugins will fail and leave bad data in your database. See cms list and
cms delete_orphaned_plugins.

Also, check if all your plugins define a copy_relations() method if required. You can do this by run-
ning manage.py cms check and read the Presence of “copy_relations” section. See Handling Relations for
guidance on this topic.

Added Fix MPTT Management command

Added a management command for fixing MPTT tree data.

The command can be run with:

manage.py cms fix-mptt

Removed the MultilingualMiddleware

We removed the MultilingualMiddleware. This removed rather some unattractive monkey-patching of the
reverse() function as well. As a benefit we now support localisation of URLs and apphook URLs with
standard Django helpers.

For django 1.4 more information can be found here:

https://docs.djangoproject.com/en/dev/topics/i18n/translation/#internationalization-in-url-patterns

If you are still running django 1.3 you are able to achieve the same functionality with django-i18nurl. It is a
backport of the new functionality in django 1.4 and can be found here:

198 Chapter 5. Table of contents

https://docs.djangoproject.com/en/dev/topics/i18n/translation/#internationalization-in-url-patterns

django cms Documentation, Release 3.2.5.post1

https://github.com/brocaar/django-i18nurls

What you need to do:

• Remove cms.middleware.multilingual.MultilingualURLMiddleware from your set-
tings.

• Be sure django.middleware.locale.LocaleMiddleware is in your settings, and that it comes
after the SessionMiddleware.

• Be sure that the cms.urls is included in a i18n_patterns:

from django.conf.urls import *
from django.conf.urls.i18n import i18n_patterns
from django.contrib import admin
from django.conf import settings

admin.autodiscover()

urlpatterns = i18n_patterns('',
url(r'^admin/', include(admin.site.urls)),
url(r'^', include('cms.urls')),

)

if settings.DEBUG:
urlpatterns = patterns('',
url(r'^media/(?P<path>.*)$', 'django.views.static.serve',

{'document_root': settings.MEDIA_ROOT, 'show_indexes': True}),
url(r'', include('django.contrib.staticfiles.urls')),

) + urlpatterns

• Change your url and reverse calls to language namespaces. We now support the django way of calling
other language urls either via {% language %} template tag or via activate("de") function call in
views.

Before:

{% url "de:myview" %}

After:

{% load i18n %}{% language "de" %}
{% url "myview_name" %}
{% endlanguage %}

• reverse urls now return the language prefix as well. So maybe there is some code that adds language prefixes.
Remove this code.

Added LanguageCookieMiddleware

To fix the behaviour of django to determine the language every time from new, when you visit / on a page, this
middleware saves the current language in a cookie with every response.

To enable this middleware add the following to your MIDDLEWARE_CLASSES setting:

cms.middleware.language.LanguageCookieMiddleware

CMS_LANGUAGES

CMS_LANGUAGES has be overhauled. It is no longer a list of tuples like the LANGUAGES settings.

An example explains more than thousand words:

5.6. Release notes & upgrade information 199

https://github.com/brocaar/django-i18nurls

django cms Documentation, Release 3.2.5.post1

CMS_LANGUAGES = {
1: [

{
'code': 'en',
'name': gettext('English'),
'fallbacks': ['de', 'fr'],
'public': True,
'hide_untranslated': True,
'redirect_on_fallback':False,

},
{

'code': 'de',
'name': gettext('Deutsch'),
'fallbacks': ['en', 'fr'],
'public': True,

},
{

'code': 'fr',
'name': gettext('French'),
'public': False,

},
],
2: [

{
'code': 'nl',
'name': gettext('Dutch'),
'public': True,
'fallbacks': ['en'],

},
],
'default': {

'fallbacks': ['en', 'de', 'fr'],
'redirect_on_fallback':True,
'public': False,
'hide_untranslated': False,

}
}

For more details on what all the parameters mean please refer to the CMS_LANGUAGES docs.

The following settings are not needed any more and have been removed:

• CMS_HIDE_UNTRANSLATED

• CMS_LANGUAGE_FALLBACK

• CMS_LANGUAGE_CONF

• CMS_SITE_LANGUAGES

• CMS_FRONTEND_LANGUAGES

Please remove them from your settings.py.

CMS_FLAT_URLS

Was marked deprecated in 2.3 and has now been removed.

Plugins in Plugins

We added the ability to have plugins in plugins. Until now only the TextPlugin supported this. For demonstra-
tion purposes we created a MultiColumn Plugin. The possibilities for this are endless. Imagine: StylePlugin,

200 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

TablePlugin, GalleryPlugin etc.

The column plugin can be found here:

https://github.com/divio/djangocms-column

At the moment the limitation is that plugins in plugins is only editable in the frontend.

Here is the MultiColumn Plugin as an example:

class MultiColumnPlugin(CMSPluginBase):
model = MultiColumns
name = _("Multi Columns")
render_template = "cms/plugins/multi_column.html"
allow_children = True
child_classes = ["ColumnPlugin"]

There are 2 new properties for plugins:

allow_children

Boolean If set to True it allows adding Plugins.

child_classes

List A List of Plugin Classes that can be added to this plugin. If not provided you can add all plugins that are
available in this placeholder.

How to render your child plugins in the template We introduce a new template tag in the cms_tags called {%
render_plugin %} Here is an example of how the MultiColumn plugin uses it:

{% load cms_tags %}
<div class="multicolumn">
{% for plugin in instance.child_plugins %}

{% render_plugin plugin %}
{% endfor %}
</div>

As you can see the children are accessible via the plugins children attribute.

New way to handle django CMS settings

If you have code that needs to access django CMS settings (settings prefixed with CMS_ or
PLACEHOLDER_) you would have used for example from django.conf import settings;
settings.CMS_TEMPLATES. This will no longer guarantee to return sane values, instead you should use
cms.utils.conf.get_cms_setting which takes the name of the setting without the CMS_ prefix as
argument and returns the setting.

Example of old, now deprecated style:

from django.conf import settings

settings.CMS_TEMPLATES
settings.PLACEHOLDER_FRONTEND_EDITING

Should be replaced with the new API:

from cms.utils.conf import get_cms_setting

get_cms_setting('TEMPLATES')
get_cms_setting('PLACEHOLDER_FRONTEND_EDITING')

5.6. Release notes & upgrade information 201

https://github.com/divio/djangocms-column

django cms Documentation, Release 3.2.5.post1

Added cms.constants module

This release adds the cms.constants module which will hold generic django CMS constant values. Currently
it only contains TEMPLATE_INHERITANCE_MAGIC which used to live in cms.conf.global_settings
but was moved to the new cms.constants module in the settings overhaul mentioned above.

django-reversion integration changes

django-reversion integration has changed. Because of huge databases after some time we introduce some changes
to the way revisions are handled for pages.

1. Only publish revisions are saved. All other revisions are deleted when you publish a page.

2. By default only the latest 25 publish revisions are kept. You can change this behaviour with the new
CMS_MAX_PAGE_PUBLISH_REVERSIONS setting.

Changes to the show_sub_menu template tag

the show_sub_menu has received two new parameters. The first stays the same and is still: how many levels of
menu should be displayed.

The second: root_level (default=None), specifies at what level, if any, the menu should root at. For example,
if root_level is 0 the menu will start at that level regardless of what level the current page is on.

The third argument: nephews (default=100), specifies how many levels of nephews (children of siblings) are
shown.

PlaceholderAdmin support i18n

If you use placeholders in other apps or models we now support more than one language out of the box. If you
just use the PlaceholderAdmin it will display language tabs like the cms. If you use django-hvad it uses the
hvad language tabs.

If you want to disable this behaviour you can set render_placeholder_language_tabs = False on
your Admin class that extends PlaceholderAdmin. If you use a custom change_form_template be sure
to have a look at cms/templates/admin/placeholders/placeholder/change_form.html for
how to incorporate language tabs.

Added CMS_RAW_ID_USERS

If you have a lot of users (500+) you can set this setting to a number after which admin User fields are displayed
in a raw Id field. This improves performance a lot in the admin as it has not to load all the users into the html.

Backwards incompatible changes

New minimum requirements for dependencies

• Django 1.3 and Python 2.5 are no longer supported.

Pending deprecations

• simple_language_changer will be removed in version 3.0. A bug-fix makes this redundant as every
non-managed URL will behave like this.

202 Chapter 5. Table of contents

https://github.com/etianen/django-reversion
https://github.com/kristianoellegaard/django-hvad

django cms Documentation, Release 3.2.5.post1

5.6.28 2.3.4 release notes

What’s new in 2.3.4

WymEditor fixed

2.3.4 fixes a critical issue with WymEditor that prevented it from load it’s JavaScript assets correctly.

Moved Norwegian translations

The Norwegian translations are now available as nb, which is the new (since 2003) official language code for
Norwegian, replacing the older and deprecated no code.

If your site runs in Norwegian, you need to change your LANGUAGES settings!

Added support for time zones

On Django 1.4, and with USE_TZ=True the django CMS now uses time zone aware date and time objects.

Fixed slug clashing

In earlier versions, publishing a page that has the same slug (URL) as another (published) page could lead to
errors. Now, when a page which would have the same URL as another (published) page is published, the user is
shown an error and they’re prompted to change the slug for the page.

Prevent unnamed related names for PlaceholderField

cms.models.fields.PlaceholderField no longer allows the related name to be suppressed. Trying to
do so will lead to a ValueError. This change was done to allow the django CMS to properly check permissions
on Placeholder Fields.

Two fixes to page change form

The change form for pages would throw errors if the user editing the page does not have the permission to publish
this page. This issue was resolved.

Further the page change form would not correctly pre-populate the slug field if DEBUG was set to False. Again,
this issue is now resolved.

5.6.29 2.3.3 release notes

What’s new in 2.3.3

Restored Python 2.5 support

2.3.3 restores Python 2.5 support for the django CMS.

Pending deprecations

Python 2.5 support will be dropped in django CMS 2.4.

5.6. Release notes & upgrade information 203

https://docs.python.org/3/library/exceptions.html#ValueError

django cms Documentation, Release 3.2.5.post1

5.6.30 2.3.2 release notes

What’s new in 2.3.2

Google map plugin

Google map plugin now supports width and height fields so that plugin size can be modified in the page admin or
frontend editor.

Zoom level is now set via a select field which ensure only legal values are used.

Warning: Due to the above change, level field is now marked as NOT NULL, and a data migration has been
introduced to modify existing Googlemap plugin instance to set the default value if level if is NULL.

5.6.31 2.3 release notes

What’s new in 2.3

Introducing Django 1.4 support, dropped support for Django 1.2

In django CMS 2.3 we dropped support for Django 1.2. Django 1.3.1 is now the minimum required Django
version. Django CMS 2.3 also introduces Django 1.4 support.

Lazy page tree loading in admin

Thanks to the work by Andrew Schoen the page tree in the admin now loads lazily, significantly improving the
performance of that view for large sites.

Toolbar isolation

The toolbar JavaScript dependencies should now be properly isolated and no longer pollute the global JavaScript
namespace.

Plugin cancel button fixed

The cancel button in plugin change forms no longer saves the changes, but actually cancels.

Tests refactor

Tests can now be run using setup.py test or runtests.py (the latter should be done in a virtualenv with
the proper dependencies installed).

Check runtests.py -h for options.

Moving text plugins to different placeholders no longer loses inline plugins

A serious bug where a text plugin with inline plugins would lose all the inline plugins when moved to a different
placeholder has been fixed.

204 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

Minor improvements

• The or clause in the placeholder tag now works correctly on non-cms pages.

• The icon source URL for inline plugins for text plugins no longer gets double escaped.

• PageSelectWidget correctly orders pages again.

• Fixed the file plugin which was sometimes causing invalid HTML (unclosed span tag).

• Migration ordering for plugins improved.

• Internationalised strings in JavaScript now get escaped.

Backwards incompatible changes

New minimum requirements for dependencies

• django-reversion must now be at version 1.6

• django-sekizai must be at least at version 0.6.1

• django-mptt version 0.5.1 or 0.5.2 is required

Registering a list of plugins in the plugin pool

This feature was deprecated in version 2.2 and removed in 2.3. Code like this will not work any more:

plugin_pool.register_plugin([FooPlugin, BarPlugin])

Instead, use multiple calls to register_plugin:

plugin_pool.register_plugin(FooPlugin)
plugin_pool.register_plugin(BarPlugin)

Pending deprecations

The CMS_FLAT_URLS setting is deprecated and will be removed in version 2.4. The moderation feature
(CMS_MODERATOR = True) will be deprecated in 2.4 and replaced with a simpler way of handling unpub-
lished changes.

5.6.32 2.2 release notes

What’s new in 2.2

django-mptt now a proper dependency

django-mptt is now used as a proper dependency and is no longer shipped with the django CMS. This solves the
version conflict issues many people were experiencing when trying to use the django CMS together with other
Django apps that require django-mptt. django CMS 2.2 requires django-mptt 0.5.1.

Warning: Please remove the old mptt package from your Python site-packages directory before upgrading.
The setup.py file will install the django-mptt package as an external dependency!

5.6. Release notes & upgrade information 205

https://github.com/django-mptt/django-mptt/
https://github.com/django-mptt/django-mptt/

django cms Documentation, Release 3.2.5.post1

Django 1.3 support

The django CMS 2.2 supports both Django 1.2.5 and Django 1.3.

View permissions

You can now give view permissions for django CMS pages to groups and users.

Backwards incompatible changes

django-sekizai instead of PluginMedia

Due to the sorry state of the old plugin media framework, it has been dropped in favour of the more stable and
more flexible django-sekizai, which is a new dependency for the django CMS 2.2.

The following methods and properties of cms.plugins_base.CMSPluginBase are affected:

• cms.plugins_base.CMSPluginBase.PluginMedia

• cms.plugins_base.CMSPluginBase.pluginmedia

• cms.plugins_base.CMSPluginBase.get_plugin_media()

Accessing those attributes or methods will raise a cms.exceptions.Deprecated error.

The cms.middleware.media.PlaceholderMediaMiddleware middleware was also
removed in this process and is therefore no longer required. However you are now re-
quired to have the ’sekizai.context_processors.sekizai’ context processor in your
TEMPLATE_CONTEXT_PROCESSORS setting.

All templates in CMS_TEMPLATES must at least contain the js and css sekizai namespaces.

Please refer to the documentation on Handling media in custom CMS plugins and the django-sekizai documenta-
tion for more information.

Toolbar must be enabled explicitly in templates

The toolbar no longer hacks itself into responses in the middleware, but rather has to be enabled explicitly using the
{% cms_toolbar %} template tag from the cms_tags template tag library in your templates. The template
tag should be placed somewhere within the body of the HTML (within <body>...</body>).

This solves issues people were having with the toolbar showing up in places it shouldn’t have.

Static files moved to /static/

The static files (CSS/JavaScript/images) were moved from /media/ to /static/ to work with the new
django.contrib.staticfiles app in Django 1.3. This means you will have to make sure you serve
static files as well as media files on your server.

Warning: If you use Django 1.2.x you will not have a django.contrib.staticfiles app. Instead
you need the django-staticfiles backport.

206 Chapter 5. Table of contents

http://django-sekizai.readthedocs.org/
http://django-sekizai.readthedocs.org/
http://pypi.python.org/pypi/django-staticfiles/

django cms Documentation, Release 3.2.5.post1

Features deprecated in 2.2

django-dbgettext support

The django-dbgettext support has been fully dropped in 2.2 in favour of the built-in multi-lingual support mecha-
nisms.

5.6.33 Upgrading from 2.1.x and Django 1.2.x

Upgrading dependencies

Upgrade both your version of django CMS and Django by running the following commands.

pip install --upgrade django-cms==2.2 django==1.3.1

If you are using django-reversion make sure to have at least version 1.4 installed

pip install --upgrade django-reversion==1.4

Also, make sure that django-mptt stays at a version compatible with django CMS

pip install --upgrade django-mptt==0.5.1

Updates to settings.py

The following changes will need to be made in your settings.py file:

ADMIN_MEDIA_PREFIX = '/static/admin'
STATIC_ROOT = os.path.join(PROJECT_PATH, 'static')
STATIC_URL = "/static/"

Note: These are not django CMS settings. Refer to the Django documentation on staticfiles for more information.

Note: Please make sure the static sub-folder exists in your project and is writeable.

Note: PROJECT_PATH is the absolute path to your project. See Configuring your project for django CMS for
instructions on how to set PROJECT_PATH.

Remove the following from TEMPLATE_CONTEXT_PROCESSORS:

django.core.context_processors.auth

Add the following to TEMPLATE_CONTEXT_PROCESSORS:

django.contrib.auth.context_processors.auth
django.core.context_processors.static
sekizai.context_processors.sekizai

Remove the following from MIDDLEWARE_CLASSES:

cms.middleware.media.PlaceholderMediaMiddleware

5.6. Release notes & upgrade information 207

http://readthedocs.org/docs/django/en/latest/ref/contrib/staticfiles.html
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-MIDDLEWARE_CLASSES

django cms Documentation, Release 3.2.5.post1

Remove the following from INSTALLED_APPS:

publisher

Add the following to INSTALLED_APPS:

sekizai
django.contrib.staticfiles

Template Updates

Make sure to add sekizai tags and cms_toolbar to your CMS templates.

Note: cms_toolbar is only needed if you wish to use the front-end editing. See Backwards incompatible
changes for more information

Here is a simple example for a base template called base.html:

{% load cms_tags sekizai_tags %}
<html>

<head>
{% render_block "css" %}

</head>
<body>

{% cms_toolbar %}
{% placeholder base_content %}
{% block base_content%}{% endblock %}
{% render_block "js" %}

</body>
</html>

Database Updates

Run the following commands to upgrade your database

python manage.py syncdb
python manage.py migrate

Static Media

Add the following to urls.py to serve static media when developing:

if settings.DEBUG:
urlpatterns = patterns('',
url(r'^media/(?P<path>.*)$', 'django.views.static.serve',

{'document_root': settings.MEDIA_ROOT, 'show_indexes': True}),
url(r'', include('django.contrib.staticfiles.urls')),

) + urlpatterns

Also run this command to collect static files into your STATIC_ROOT:

python manage.py collectstatic

208 Chapter 5. Table of contents

http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-STATIC_ROOT

django cms Documentation, Release 3.2.5.post1

5.7 Using django CMS

Note: This is a new section in the django CMS documentation, and a priority for the project. If you’d like
to contribute to it, we’d love to hear from you - join us on the #django-cms IRC channel on freenode or the
django-cms-developers email list.

If you don’t have an IRC client, you can join our IRC channel using the KiwiIRC web client, which works pretty
well.

The Using django CMS documentation is divided into two parts.

First, there’s a tutorial that takes you step-by-step through key processes. Once you’ve completed this you will be
familiar with the basics of content editing using the system.

The tutorial contains numerous links to items in the reference section.

The documentation in these two sections focuses on the basics of content creation and editing using django CMS’s
powerful front-end editing mode. It’s suitable for non-technical and technical audiences alike.

However, it can only cover the basics that are common to most sites built using django CMS. Your own site will
likely have many custom changes and special purpose plugins which we cannot cover here. Nevertheless, by the
end of this guide you should be comfortable with the content editing process using django CMS. Many of the
skills you’ll learn will be transferable to any custom plugins your site may have.

5.7.1 Tutorial

Note: This is a new section in the django CMS documentation, and a priority for the project. If you’d like
to contribute to it, we’d love to hear from you - join us on the #django-cms IRC channel on freenode or the
django-cms-developers email list.

If you don’t have an IRC client, you can join our IRC channel using the KiwiIRC web client, which works pretty
well.

It’s strongly recommended that you follow this tutorial step-by-step. It has been designed to introduce you to the
system in a methodical way, and each step builds on the previous one.

Log in

When you visit a brand new site for the first time, you will be invited to log in.

5.7. Using django CMS 209

http://freenode.net/
http://groups.google.com/group/django-cms-developers
https://kiwiirc.com/client/irc.freenode.net/django-cms
http://freenode.net/
http://groups.google.com/group/django-cms-developers
https://kiwiirc.com/client/irc.freenode.net/django-cms

django cms Documentation, Release 3.2.5.post1

The developers of your site are responsible for creating and providing the login credentials so consult them if you
are unsure.

Create a page

Create your first page

django CMS’s Create Page wizard will open a new dialog box.

210 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

Select Next, and provide a Title and some basic text content for the new page (you’ll be able to add formatting to
this text in a moment), then hit Create.

Here’s your newly-created page, together with the django CMS toolbar, your primary tool for managing django
CMS content.

5.7. Using django CMS 211

django cms Documentation, Release 3.2.5.post1

Publish a page

Your newly-created page is just a draft, and won’t actually be published until you decide. As an editor, you can see

drafts, but other visitors to your site will only see published pages. Hit to publish
it.

To edit the page further, switch back into editing mode, using the button that appears, and return to

the published version of the page using the button.

In editing mode, double-click on the paragraph of text to change it. This will open the Text plugin containing it.
Make changes, add some formatting, and Save it again.

You can continue making and previewing changes privately until you are ready to publish them.

Create a second page

Hit to create a second page. This opens the Create page dialog:

In django CMS, pages can be arranged hierarchically. This is important for larger sites. Choose whether the new
page should be a sub-page - a child - of the existing page, or be on the same level in the hierarchy - a sibling.

Once again, give the page a Title and some basic text content. Continue making changes to content and formatting,
and the Publish it as you did previously.

212 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

Changing page settings

The django CMS toolbar offers other useful editing tools.

Switch to Edit mode on one of your pages, and from the toolbar select Page > Page settings.... The Change page
dialog that opens allows you to manage key settings for your page.

Some key settings:

• Slug: The page’s slug is used to form its URL. For example, a page Lenses that is a sub-page of Photography
might have a URL that ends photography/lenses. You can change the automatically-generated slug
of a page if you wish to. Keep slugs short and meaningful, as they are useful to human beings and search
engines alike. You can

• Menu Title: If you have a page called Photography: theory and practice, you might not want the whole title
to appear in menus - shortening it to Photography would make more sense.

• Page Title: By default, a page’s <title> element is taken from the Title, but you can override this here.
The <title> element isn’t displayed on the page, but is used by search engines and web browsers - as far
as they are concerned, it’s the page’s real title.

• Description meta tag: A short piece of text that will be used by search engines (and displayed in lists of
search results) and other indexing systems.

There are also some Advanced Settings, but you don’t need to be concerned about these now.

Structure and content modes

The Structure/Content mode control in the toolbar lets you switch between two different editing modes.

You’ve already used Content mode, in which you can double-click on content to edit it.

In Structure mode, you can manage the placement of content within the page structure.

Switch to Structure mode. This reveals the structure board containing the placeholders available on the page, and
the plugins in them:

5.7. Using django CMS 213

django cms Documentation, Release 3.2.5.post1

Here there is just one placeholder, called Content, containing one plugin - a text plugin that begins Lorem ipsum
dolor....

Add a second plugin

Let’s add another plugin.

Select the Add plugin icon (+) and choose Text from the list of available plugin types.

This will open a familiar text editor; add some text and Save. Now in the structure board you’ll see the new Text
plugin - which you can move around within the structure, to re-order the plugins.

Note: You don’t need to save these changes manually - they are saved automatically as soon as you make them.
However, they still need to be published in order for other users to see them.

Each plugin in the structure board is available for editing by double-clicking or selecting the edit icon.

214 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

You can switch back to content mode to see the effect of your changes, and Publish the page to make them public.

Note: Touch-screen users

django CMS supports touch-screen interfaces, though there are currently some limitations in support. You will
be able to complete the tutorial using a touch-screen device, but please consult Using touch-screen devices with
django CMS, and see the notes on Device support.

5.7.2 Reference for content editors

Note: This is a new section in the django CMS documentation, and a priority for the project. If you’d like
to contribute to it, we’d love to hear from you - join us on the #django-cms IRC channel on freenode or the
django-cms-developers email list.

If you don’t have an IRC client, you can join our IRC channel using the KiwiIRC web client, which works pretty
well.

Page admin

The interface

The django CMS toolbar The toolbar is central to your content editing and management work in django CMS.

django CMS Takes you back to home page of your site.

Site menu example.com is the Site menu (and may have a different name for your site). Several options in this
menu open up administration controls in the side-frame:

• Pages ... takes you directly to the pages editing interface

• Users ... takes you directly to the users management panel

• Administration ... takes you to the site-wide administration panel

• User settings ... allows you to switch the language of the admin interface and toolbar

• Disable toolbar allows you to completely disable the toolbar and front-end editing, regardless of login
and staff status. To reactivate them, you need to enter edit mode either manually or through the backend
administration.

You can also Logout from this menu.

5.7. Using django CMS 215

http://freenode.net/
http://groups.google.com/group/django-cms-developers
https://kiwiirc.com/client/irc.freenode.net/django-cms

django cms Documentation, Release 3.2.5.post1

Page menu The Page menu contains options for managing the current page, and are either self-explanatory or
will be described in a forthcoming documentation section.

History menu Allows you to manage publishing and view publishing history of the current page.

Language menu Language allows you to switch to a different language version of the page you’re on, and
manage the various translations.

Here you can:

• Add a missing translation

• Delete an existing translation

• Copy all plugins and their contents from an existing translation to the current one.

The Structure/Content button Allows you to switch between different
editing modes (when you’re looking at a draft only).

Publishing controller The Publishing controller manages the publishing
state of your page - options are:

• Publish page now to publish an
unpublished

• Publish changes to publish changes
made to an existing page

• Edit to open the page for editing

• Save as draft to update the page and
exit editing mode

• View published does the same as “Save as draft”

The disclosure triangle A toggle to hide and reveal the toolbar.

The side-frame The x closes the side-frame. To reopen the side-frame, choose one of the links from
the Site menu (named example.com by default).

The triangle icon expands and collapses the side-frame, and the next expands and collapses the main
frame.

You can also adjust the side-frame’s width by dragging it.

216 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

Admin views & forms

Page list The page list gives you an overview of your pages
and their status. By default you get the basics:

The page you’re currently on is highlighted in grey (in this case, Journalism, the last in the list).

From left to right, items in the list have:

• an expand/collapse control, if the item has children (Home and Cheese above)

• tab that can be used to drag and drop the item to a new place in the list

• the page’s Title

• a soft-root indicator (Cheese has soft-root applied; Home is the menu root anyway)

• language version indicators and controls:

– blank: the translation does not exist; pressing the indicator will open its Basic settings (in
all other cases, hovering will reveal Publish/Unpublish options)

– grey: the translation exists but is unpublished

– green: the translation is published

– blue (pulsing): the translation has an amended draft

If you expand the width of the side-frame, you’ll see more:

• Menu indicates whether the page will appear in navigation menus

• under Actions, options are:

– edit Basic settings

– copy page

– add child (which can be placed before, after or below the page)

– cut page

– delete page

• info displays additional information about the page

5.7. Using django CMS 217

django cms Documentation, Release 3.2.5.post1

Basic page settings To see a
page’s basic settings, select Page
settings... from the Page menu.
If your side-frame is wide enough,
you can also use the page edit icon
that appears in the Actions column
in the page list view.

Required fields The page Title
will typically be used by your site’s
templates, and displayed at the top
of the page and in the browser’s ti-
tle bar and bookmarks. In this case
search engines will use it too.

A Slug is part of the page’s URL,
and you’ll usually want it to reflect
the Title. In fact it will be generated
automatically from the title, in an
appropriate format - but it’s always
worth checking that your slugs are
as short and sweet as possible.

Optional fields Menu title is used
to override what is displayed in
navigation menus - usually when
the full Title is too long to be used
there. For example, if the Title is
“ACME Incorporated: Our story”,
it’s going to be far too long to work
well in the navigation menu, espe-
cially for your mobile users. “Our

218 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

story” would be a more appropriate
Menu title.

Page title is expected to be used
by django CMS templates for the
<title> element of the page (which
will otherwise simply use the Title
field). If provided, it will be the Page title that appears in the browser’s title bar and bookmarks, and in search
engine results.

Description meta tag is expected to be used to populate a <meta> tag in the document <head>. This is not
displayed on the page, but is used for example by search engines for indexing and to show a summary of page
content. It can also be used by other Django applications for similar purposes. Description is restricted to 155
characters, the number of characters search engines typically use to show content.

Advanced settings A page’s advanced settings are available by selecting Advanced settings... from the Page
menu, or from the Advanced settings button at the bottom of the basic settings.

Most of the time it’s not necessary to touch these settings.

• Overwrite URL allows you
to change the URL from
the default. By default, the
URL for the page is the
slug of the current page
prefixed with slugs from
parent pages. For exam-
ple, the default URL for a
page might be /about/acme-
incorporated/our-vision/.
The Overwrite URL field
allows you to shorten this
to /our-vision/ while still
keeping the page and its
children organised under the
About page in the navigation.

• Redirect allows you to redi-
rect users to a different page.
This is useful if you have
moved content to another
page but don’t want to break
URLs your users may have
bookmarked or affect the
rank of the page in search en-
gine results.

• Template lets you set the
template used by the current
page. Your site will likely
have a custom list of avail-
able templates. Templates
are configured by developers
to allow certain types of con-
tent to be entered into the
page while still retaining a
consistent layout.

• Id is an advanced field that
should only be used in con-

5.7. Using django CMS 219

django cms Documentation, Release 3.2.5.post1

sultation with your site’s de-
velopers. Changing this
without consulting develop-
ers may result in a broken
site.

• Soft root allows you to
shorten the navigation
hierarchy to something man-
ageable on sites that have
deeply nested pages. When
selected, this page will act
as the top-level page in the
navigation.

• Attached menu allows you to
add a custom menu to the
page. This is typically used
by developers to add cus-
tom menu logic to the current
page. Changing this requires
a server restart so should only
be changed in consultation
with developers.

• Application allows you to
add custom applications (e.g.
a weblog app) to the current
page. This also is typically
used by developers and re-
quires a server restart to take
effect.

• X Frame Options allows you
to control whether the current
page can be embedded in an
iframe on another web page.

Working with admin in the frontend

The Administration... item in the Site menu, opens the side-frame containing the site’s Django admin. This allows
the usual interaction with the “traditional” Django admin.

Redirection

When an object is created or edited while the user is on the website frontend, a redirection occurs to redirect the
user to the current address of the created/edited instance.

This redirection follows the rules below:

• an anonymous user (for example, after logging out) is always redirected to the home page

• when a model instance has changed (see Detecting URL changes) the frontend is redirected to the instance
URL, and:

– in case of django CMS pages, the publishing state is taken into account, and then

* if the toolbar is in Draft mode the user is redirected to the draft page URL

* if in Live mode:

· the user is redirected to the page if is published

220 Chapter 5. Table of contents

django cms Documentation, Release 3.2.5.post1

· otherwise it’s switched in Draft mode and redirected to the draft page URL

• if the edited object or its URL can’t be retrieved, no redirection occurs

Yes, it’s complex - but there is a logic to it, and it’s actually easier to understand when you’re using it than by
reading about it, so don’t worry too much. The point is that django CMS always tries to redirect you to the most
sensible place when it has to.

5.8 Indices and tables

• genindex

• modindex

• search

5.8. Indices and tables 221

django cms Documentation, Release 3.2.5.post1

222 Chapter 5. Table of contents

Python Module Index

c
cms.api, 125
cms.constants, 127
cms.plugin_base, 128
cms.toolbar.items, 130
cms.toolbar.toolbar, 129

m
menus.base, 132

223

django cms Documentation, Release 3.2.5.post1

224 Python Module Index

Index

A
accepted, 162
add_ajax_item() (cms.toolbar.items.ToolbarMixin

method), 131
add_break() (cms.toolbar.items.Menu method), 131
add_button() (cms.toolbar.items.ButtonList method),

132
add_button() (cms.toolbar.toolbar.CMSToolbar

method), 129
add_button_list() (cms.toolbar.toolbar.CMSToolbar

method), 130
add_item() (cms.toolbar.items.ButtonList method), 132
add_item() (cms.toolbar.items.ToolbarMixin method),

130
add_item() (cms.toolbar.toolbar.CMSToolbar method),

129
add_link_item() (cms.toolbar.items.ToolbarMixin

method), 131
add_modal_item() (cms.toolbar.items.ToolbarMixin

method), 131
add_plugin() (in module cms.api), 126
add_sideframe_item() (cms.toolbar.items.ToolbarMixin

method), 130
admin_preview (cms.plugin_base.CMSPluginBase at-

tribute), 128
AjaxItem (class in cms.toolbar.items), 131
assign_user_to_page() (in module cms.api), 126
attr (menus.base.NavigationNode attribute), 132
AUTH_USER_MODEL

setting, 103

B
backport, 163
BaseItem (class in cms.toolbar.items), 131
blocker, 163
Break (class in cms.toolbar.items), 132
build_mode (cms.toolbar.toolbar.CMSToolbar at-

tribute), 129
Button (class in cms.toolbar.items), 132
ButtonList (class in cms.toolbar.items), 132

C
change_form_template

(cms.plugin_base.CMSPluginBase attribute),
128

cms.api (module), 125
cms.constants (module), 127
cms.forms.fields.PageSelectFormField (built-in class),

133
cms.forms.fields.PageSmartLinkField (built-in class),

133
cms.models.fields.PageField (built-in class), 133
cms.plugin_base (module), 128
cms.toolbar.items (module), 130
cms.toolbar.toolbar (module), 129
CMS_APPHOOKS

setting, 107
CMS_CACHE_DURATIONS

setting, 112
CMS_CACHE_PREFIX

setting, 112
CMS_LANGUAGES

setting, 107
CMS_MAX_PAGE_PUBLISH_REVERSIONS

setting, 113
CMS_MEDIA_PATH

setting, 110
CMS_MEDIA_ROOT

setting, 110
CMS_MEDIA_URL

setting, 110
CMS_PAGE_CACHE

setting, 113
CMS_PAGE_MEDIA_PATH

setting, 111
CMS_PAGE_WIZARD_CONTENT_PLACEHOLDER

setting, 115
CMS_PAGE_WIZARD_CONTENT_PLUGIN

setting, 115
CMS_PAGE_WIZARD_CONTENT_PLUGIN_BODY

setting, 115
CMS_PAGE_WIZARD_DEFAULT_TEMPLATE

setting, 114
CMS_PERMISSION

setting, 111
CMS_PLACEHOLDER_CACHE

setting, 113
CMS_PLACEHOLDER_CONF

setting, 104
CMS_PLUGIN_CACHE

225

django cms Documentation, Release 3.2.5.post1

setting, 113
CMS_PLUGIN_CONTEXT_PROCESSORS

setting, 106
CMS_PLUGIN_PROCESSORS

setting, 106
CMS_PUBLIC_FOR

setting, 112
CMS_RAW_ID_USERS

setting, 111
CMS_TEMPLATE_INHERITANCE

setting, 104
CMS_TEMPLATES

setting, 103
CMS_TEMPLATES_DIR

setting, 104
CMS_TOOLBARS

setting, 113
CMS_UNIHANDECODE_DECODERS

setting, 109
CMS_UNIHANDECODE_DEFAULT_DECODER

setting, 109
CMS_UNIHANDECODE_HOST

setting, 109
CMS_UNIHANDECODE_VERSION

setting, 109
CMSPluginBase (class in cms.plugin_base), 128
CMSToolbar (class in cms.toolbar.toolbar), 129
create_page() (in module cms.api), 125
create_page_user() (in module cms.api), 126
create_title() (in module cms.api), 125
csrf_token (cms.toolbar.toolbar.CMSToolbar attribute),

129

D
design decision, 162
docs, 162

E
easy pickings, 163
edit_mode (cms.toolbar.toolbar.CMSToolbar attribute),

129
expert opinion, 162

F
find_first() (cms.toolbar.items.ToolbarMixin method),

130
find_items() (cms.toolbar.items.ToolbarMixin method),

130
form (cms.plugin_base.CMSPluginBase attribute), 128

G
get_absolute_url() (menus.base.NavigationNode

method), 132
get_ancestors() (menus.base.NavigationNode method),

132
get_context() (cms.toolbar.items.BaseItem method),

131

get_descendants() (menus.base.NavigationNode
method), 132

get_item_count() (cms.toolbar.items.ToolbarMixin
method), 130

get_menu_title() (menus.base.NavigationNode
method), 133

get_or_create_menu() (cms.toolbar.items.Menu
method), 131

get_or_create_menu() (cms.toolbar.toolbar.CMSToolbar
method), 129

get_plugin_urls() (cms.plugin_base.CMSPluginBase
method), 128

H
has patch, 163

I
icon_alt() (cms.plugin_base.CMSPluginBase method),

128
icon_src() (cms.plugin_base.CMSPluginBase method),

128
index (cms.toolbar.items.ItemSearchResult attribute),

130
is_staff (cms.toolbar.toolbar.CMSToolbar attribute),

129
item (cms.toolbar.items.ItemSearchResult attribute),

130
ItemSearchResult (class in cms.toolbar.items), 130

L
language_chooser

template tag, 143
LEFT (cms.toolbar.items.ToolbarMixin attribute), 130
LEFT (in module cms.constants), 128
LinkItem (class in cms.toolbar.items), 131

M
marked for rejection, 162
Menu (class in cms.toolbar.items), 131
menus.base (module), 132
ModalItem (class in cms.toolbar.items), 132
model (cms.plugin_base.CMSPluginBase attribute),

128
module (cms.plugin_base.CMSPluginBase attribute),

128
more info, 162

N
name (cms.plugin_base.CMSPluginBase attribute), 128
NavigationNode (class in menus.base), 132
non-issue, 162

O
on hold, 163

P
page_attribute

226 Index

django cms Documentation, Release 3.2.5.post1

template tag, 137
page_language_url

template tag, 143
page_lookup

template tag, 136
page_url

template tag, 137
patch, 162
publish_page() (in module cms.api), 127
publish_pages() (in module cms.api), 127

R
ready for review, 162
ready to be merged, 162
REFRESH (in module cms.constants), 128
REFRESH_PAGE (cms.toolbar.items.ToolbarMixin at-

tribute), 130
remove_item() (cms.toolbar.items.ToolbarMixin

method), 130
remove_item() (cms.toolbar.toolbar.CMSToolbar

method), 129
render() (cms.plugin_base.CMSPluginBase method),

128
render() (cms.toolbar.items.BaseItem method), 131
render_model

template tag, 139
render_model_add

template tag, 142
render_model_add_block

template tag, 142
render_model_block

template tag, 140
render_model_icon

template tag, 141
render_placeholder

template tag, 135
render_plugin

template tag, 138
render_plugin (cms.plugin_base.CMSPluginBase at-

tribute), 128
render_plugin_block

template tag, 138
render_template (cms.plugin_base.CMSPluginBase at-

tribute), 128
render_uncached_placeholder

template tag, 135
RIGHT (cms.toolbar.items.ToolbarMixin attribute),

130
RIGHT (in module cms.constants), 128

S
setting

AUTH_USER_MODEL, 103
CMS_APPHOOKS, 107
CMS_CACHE_DURATIONS, 112
CMS_CACHE_PREFIX, 112
CMS_LANGUAGES, 107

CMS_MAX_PAGE_PUBLISH_REVERSIONS,
113

CMS_MEDIA_PATH, 110
CMS_MEDIA_ROOT, 110
CMS_MEDIA_URL, 110
CMS_PAGE_CACHE, 113
CMS_PAGE_MEDIA_PATH, 111
CMS_PAGE_WIZARD_CONTENT_PLACEHOLDER,

115
CMS_PAGE_WIZARD_CONTENT_PLUGIN,

115
CMS_PAGE_WIZARD_CONTENT_PLUGIN_BODY,

115
CMS_PAGE_WIZARD_DEFAULT_TEMPLATE,

114
CMS_PERMISSION, 111
CMS_PLACEHOLDER_CACHE, 113
CMS_PLACEHOLDER_CONF, 104
CMS_PLUGIN_CACHE, 113
CMS_PLUGIN_CONTEXT_PROCESSORS, 106
CMS_PLUGIN_PROCESSORS, 106
CMS_PUBLIC_FOR, 112
CMS_RAW_ID_USERS, 111
CMS_TEMPLATE_INHERITANCE, 104
CMS_TEMPLATES, 103
CMS_TEMPLATES_DIR, 104
CMS_TOOLBARS, 113
CMS_UNIHANDECODE_DECODERS, 109
CMS_UNIHANDECODE_DEFAULT_DECODER,

109
CMS_UNIHANDECODE_HOST, 109
CMS_UNIHANDECODE_VERSION, 109

show_menu
template tag, 115

show_placeholder
template tag, 135

show_sub_menu
template tag, 117

show_toolbar (cms.toolbar.toolbar.CMSToolbar at-
tribute), 129

show_uncached_placeholder
template tag, 136

side (cms.toolbar.items.BaseItem attribute), 131
SideframeItem (class in cms.toolbar.items), 131
SubMenu (class in cms.toolbar.items), 131

T
template (cms.toolbar.items.BaseItem attribute), 131
template tag

language_chooser, 143
page_attribute, 137
page_language_url, 143
page_lookup, 136
page_url, 137
render_model, 139
render_model_add, 142
render_model_add_block, 142
render_model_block, 140

Index 227

django cms Documentation, Release 3.2.5.post1

render_model_icon, 141
render_placeholder, 135
render_plugin, 138
render_plugin_block, 138
render_uncached_placeholder, 135
show_menu, 115
show_placeholder, 135
show_sub_menu, 117
show_uncached_placeholder, 136

TEMPLATE_INHERITANCE_MAGIC (in module
cms.constants), 127

tests, 162
text_enabled (cms.plugin_base.CMSPluginBase

attribute), 128
toolbar_language (cms.toolbar.toolbar.CMSToolbar at-

tribute), 129
ToolbarMixin (class in cms.toolbar.items), 130

V
VISIBILITY_ALL (in module cms.api), 125
VISIBILITY_ANONYMOUS (in module cms.api),

125
VISIBILITY_USERS (in module cms.api), 125

W
watch_models (cms.toolbar.toolbar.CMSToolbar

attribute), 129
won’t fix, 162
work in progress, 162

228 Index

	Overview
	Tutorials
	How-to guides
	Key topics
	Reference

	Join us online
	Why django CMS?
	Release Notes
	Table of contents
	Tutorials
	How-to guides
	Key topics
	Reference
	Development & community
	Release notes & upgrade information
	Using django CMS
	Indices and tables

	Python Module Index

