

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django cms 2.3.8 documentation

Welcome to django CMS’s documentation!

This document refers to version 2.3.8

Install

	Installation

	2.3.8 release notes

	2.3.7 release notes

	2.3.4 release notes

	2.3.3 release notes

	2.3.2 release notes

	2.3 release notes

	2.2 release notes

	Upgrading from 2.1.x and Django 1.2.x

Getting Started

	1. Introductory Tutorial
	1.1. Getting help

	1.2. Configuration and setup

	1.3. Creating templates

	1.4. Creating your first CMS Page!

	2. Using South with django CMS
	2.1. Installation

	2.2. Basic usage

	2.3. More information about South

	3. Configuration
	3.1. Required Settings

	3.2. Basic Customization

	3.3. Editor configuration

	3.4. I18N and L10N

	3.5. Media Settings

	3.6. URLs

	3.7. Advanced Settings

	4. Navigation
	4.1. show_menu

	4.2. show_menu_below_id

	4.3. show_sub_menu

	4.4. show_breadcrumb

	4.5. Properties of Navigation Nodes in templates

	4.6. Soft Roots

	4.7. Modifying & Extending the menu

	5. Plugins reference
	5.1. File

	5.2. Flash

	5.3. GoogleMap

	5.4. Link

	5.5. Picture

	5.6. Snippet

	5.7. Teaser

	5.8. Text

	5.9. Video

	5.10. Twitter

	5.11. Inherit

	6. Common issues
	6.1. Caught MultipleObjectsReturned while rendering

Advanced

	1. Internationalization
	1.1. Multilingual URL Middleware

	1.2. Language Chooser

	1.3. page_language_url

	1.4. CMS_HIDE_UNTRANSLATED

	2. Sitemap Guide
	2.1. Sitemap

	2.2. Configuration

	2.3. django.contrib.sitemaps

	3. Template Tags
	3.1. placeholder

	3.2. show_placeholder

	3.3. show_uncached_placeholder

	3.4. page_url

	3.5. page_attribute

	3.6. show_menu

	3.7. show_menu_below_id

	3.8. show_sub_menu

	3.9. show_breadcrumb

	3.10. page_language_url

	3.11. language_chooser

	3.12. cms_toolbar

	4. Command Line Interface
	4.1. Informational commands

	4.2. Plugin and apphook management commands

	4.3. Moderator commands

	4.4. MPTT repair command

	5. Permissions
	5.1. View restrictions

	5.2. Page permissions

Extending the CMS

	1. Extending the CMS: Examples
	1.1. My First Plugin

	1.2. My First App (apphook)

	1.3. My First Menu

	2. Custom Plugins
	2.1. Why would you need to write a plugin?

	2.2. Overview

	2.3. The simplest plugin

	2.4. Storing configuration

	2.5. Advanced

	3. App Integration
	3.1. Menus

	3.2. Attach Menus

	3.3. App-Hooks

	3.4. Navigation Modifiers

	3.5. Custom Plugins

	4. API References
	4.1. cms.api

	4.2. cms.plugin_base

	4.3. menus.base

	5. Placeholders outside the CMS
	5.1. Quickstart

	5.2. Adding content to a placeholder

	5.3. Fieldsets

	6. Search and the django CMS

	7. Form and model fields
	7.1. Model fields

	7.2. Form fields

Concepts

	1. Introduction

	2. How the menu system works
	2.1. Basic concepts

	2.2. How does all this work?

	3. Serving content in multiple languages
	3.1. Basic concepts

	3.2. Follow an example

	3.3. Watch out for the bug

Contributing to django CMS

	1. Contributing to django CMS
	1.1. Community

	1.2. In a nutshell

	1.3. Contributing Code

	1.4. Contributing Documentation

	1.5. Translations

Indices and tables

	Index

	Module Index

	Search Page

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

Installation

This document assumes you are familiar with Python and Django. It should
outline the steps necessary for you to follow the Introductory Tutorial.

Requirements

	Python [http://www.python.org] 2.5 (or a higher release of 2.x).

	Django [http://www.djangoproject.com] 1.3.1 or 1.4.

	South [http://south.aeracode.org/] 0.7.2 or higher

	PIL [http://www.pythonware.com/products/pil/] 1.1.6 or higher

	django-classy-tags [https://github.com/ojii/django-classy-tags] 0.3.4.1 or higher

	django-mptt [https://github.com/django-mptt/django-mptt] 0.5.2 (strict due to API compatibility issues)

	django-sekizai [https://github.com/ojii/django-sekizai] 0.6.1 or higher

	html5lib [http://code.google.com/p/html5lib/] 0.90 or higher

	An installed and working instance of one of the databases listed in the
Databases section.

Note

When installing the django CMS using pip, Django, django-mptt
django-classy-tags, django-sekizai, south and html5lib will be
installed automatically.

Recommended

	django-filer [https://github.com/stefanfoulis/django-filer] with its django CMS plugins [https://github.com/stefanfoulis/cmsplugin-filer], file and image management
application to use instead of some core plugins

	django-reversion [https://github.com/etianen/django-reversion] 1.6, to support versions of your content

On Ubuntu

Warning

The instructions here install certain packages, such as PIL, Django, South
and django CMS globally, which is not recommended. We recommend you use
virtualenv [http://www.virtualenv.org/] instead. If you choose to do so, install Django,
django CMS and South inside a virtualenv.

If you’re using Ubuntu (tested with 10.10), the following should get you
started:

sudo aptitude install python2.6 python-setuptools python-imaging
sudo easy_install pip
sudo pip install Django==1.4 django-cms south

Additionally, you need the Python driver for your selected database:

sudo aptitude python-psycopg2

or

sudo aptitude install python-mysql

This will install PIL and your database’s driver globally.

You have now everything that is needed for you to follow the Introductory Tutorial.

On Mac OSX

TODO (Should setup everything up to but not including
“pip install django-cms” like the above)

On Microsoft Windows

TODO.

Databases

We recommend using PostgreSQL [http://www.postgresql.org/] or MySQL [http://www.mysql.com] with django CMS. Installing and
maintaining database systems is outside the scope of this documentation, but is
very well documented on the systems’ respective websites.

To use django CMS efficiently, we recommend:

	Creating a separate set of credentials for django CMS.

	Creating a separate database for django CMS to use.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

2.3.8 release notes

What’s new in 2.3.8

Fixture loading in Postgres

Placeholder rescan is skipped when loading fixtures.

Fix placeholder primary keys formatting

Fixed a bug when the Django setting USE_THOUSAND_SEPARATOR = True, which caused
placeholders primary keys to be formatted according to locale, breaking frontend
editing.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

2.3.7 release notes

Warning

Upgrading from previous versions

2.3.7 now requires django-sekizai>=0.7 (up from 0.6.1) due to a
cache-related fix backported from 2.4.
The correct django-sekizai version should be automatically installed
(if not already present), but please do check when upgrading.

What’s new in 2.3.7

Cache-related plugin template fix

Plugin templates may suffer for incorrect caching when using django-sekizai
(which may cause css and javascript files not to be served to the users).
This backported fix resolve this, as the whole context is now saved in cache
along with the rendered templates.

Permissions cache performance issue fix backported

When a page is saved and cache is enabled, an explicit cache clear used to be
called, causing performance issues when you have thousand of users on your
website. This is no longer the case: cache is now versioned and as a result
massive cache invalidation is not needed anymore

Fix MPTT Management command backported

Backported from 2.4 a management command for fixing MPTT tree data.

The command can be run with:

manage.py cms fix-mptt

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

2.3.4 release notes

What’s new in 2.3.4

WymEditor fixed

2.3.4 fixes a critical issue with WymEditor that prevented it from load it’s
JavaScript assets correctly.

Moved Norwegian translations

The Norwegian translations are now available as nb, which is the new
(since 2003) official language code for Norwegian, replacing the older and
deprecated no code.

If your site runs in Norwegian, you need to change your LANGUAGES settings!

Added support for timezones

On Django 1.4, and with USE_TZ=True the django CMS now uses timezone aware
date and time objects.

Fixed slug clashing

In earlier versions, publishing a page that has the same slug (URL) as another
(published) page could lead to errors. Now, when a page which would have the
same URL as another (published) page is published, the user is shown an error
and they’re prompted to change the slug for the page.

Prevent unnamed related names for PlaceholderField

cms.models.fields.PlaceholderField no longer allows the related name
to be suppressed. Trying to do so will lead to a ValueError. This change
was done to allow the django CMS to properly check permissions on Placeholder
Fields.

Two fixes to page change form

The change form for pages would throw errors if the user editing the page does
not have the permission to publish this page. This issue was resolved.

Further the page change form would not correctly pre-popluate the slug field if
DEBUG was set to False. Again, this issue is now resolved.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

2.3.3 release notes

What’s new in 2.3.3

Restored Python 2.5 support

2.3.3 restores Python 2.5 suppport for the django CMS.

Pending deprecations

Python 2.5 support will be dropped in django CMS 2.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

2.3.2 release notes

What’s new in 2.3.2

Google map plugin

Google map plugin now supports width and height fields so that plugin size
can be modified in the page admin or frontend editor.

Zoom level is now set via a select field which ensure only legal values are used.

Warning

Due to the above change, level field is now marked as NOT NULL,
and a datamigration has been introduced to modify existing googlemap plugin
instance to set the default value if level if is NULL.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

2.3 release notes

What’s new in 2.3

Introducing Django 1.4 support, dropped support for Django 1.2

In django CMS 2.3 we dropped support for Django 1.2. Django 1.3.1 is now the
minimum required Django version. Django CMS 2.3 also introduces Django 1.4
support.

Lazy page tree loading in admin

Thanks to the work by Andrew Schoen the page tree in the admin now loads lazily,
significantly improving the performance of that view for large sites.

Toolbar isolation

The toolbar JavaScript dependencies should now be properly isolated and no
longer pollute the global JavaScript namespace.

Plugin cancel button fixed

The cancel button in plugin change forms no longer saves the changes, but
actually cancels.

Tests refactor

Tests can now be run using setup.py test or runtests.py (the latter
should be done in a virtualenv with the proper dependencies installed).

Check runtests.py -h for options.

Moving text plugins to different placeholders no longer loses inline plugins

A serious bug where a text plugin with inline plugins would lose all
the inline plugins when moved to a different placeholder has been fixed.

Minor improvements

	The or clause in the placeholder tag now works correctly on non-cms
pages.

	The icon source URL for inline plugins for text plugins no longer gets double
escaped.

	PageSelectWidget correctly orders pages again.

	Fixed the file plugin which was sometimes causing invalid HTML (unclosed span tag).

	Migration ordering for plugins improved.

	Internationalized strings in JavaScript now get escaped.

Backwards incompatible changes

New minimum requirements for dependencies

	django-reversion must now be at version 1.6

	django-sekizai must be at least at version 0.6.1

	django-mptt version 0.5.1 or 0.5.2 is required

Registering a list of plugins in the plugin pool

This feature was deprecated in version 2.2 and removed in 2.3. Code like this
will not work anymore:

plugin_pool.register_plugin([FooPlugin, BarPlugin])

Instead, use multiple calls to register_plugin:

plugin_pool.register_plugin(FooPlugin)
plugin_pool.register_plugin(BarPlugin)

Pending deprecations

The CMS_FLAT_URLS setting is deprecated and will be removed in version 2.4.
The moderation feature (CMS_MODERATOR = True) will be deprecated in 2.4 and
replaced with a simpler way of handling unpublished changes.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

2.2 release notes

What’s new in 2.2

django-mptt now a proper dependency

django-mptt [https://github.com/django-mptt/django-mptt/] is now used as a
proper dependency and is no longer shipped with the django CMS. This solves the
version conflict issues many people were experiencing when trying to use the django CMS
together with other Django apps that require django-mptt. django CMS 2.2
requires django-mptt 0.5.1.

Warning

Please remove the old mptt package from your Python site-packages
directory before upgrading. The setup.py file will install the
django-mptt [https://github.com/django-mptt/django-mptt/] package as an external dependency!

Django 1.3 support

The django CMS 2.2 supports both Django 1.2.5 and Django 1.3.

View permissions

You can now give view permissions for django CMS pages to groups and users.

Backwards incompatible changes

django-sekizai instead of PluginMedia

Due to the sorry state of the old plugin media framework, it has been dropped in
favor of the more stable and more flexible django-sekizai, which is a new
dependency for the django CMS 2.2.

The following methods and properties of cms.plugins_base.CMSPluginBase
are affected:

	cms.plugins_base.CMSPluginBase.PluginMedia

	cms.plugins_base.CMSPluginBase.pluginmedia

	cms.plugins_base.CMSPluginBase.get_plugin_media()

Accessing those attributes or methods will raise a
cms.exceptions.Deprecated error.

The cms.middleware.media.PlaceholderMediaMiddleware middleware was also
removed in this process and is therefore no longer required. However you are now
required to have the 'sekizai.context_processors.sekizai' context processor
in your TEMPLATE_CONTEXT_PROCESSORS setting.

All templates in CMS_TEMPLATES must at least contain the js and
css sekizai namespaces.

Please refer to the documentation on Handling media in
custom CMS plugins and the
django-sekizai documentation [http://django-sekizai.readthedocs.org/] for
more information.

Toolbar must be enabled explicitly in templates

The toolbar no longer hacks itself into responses in the middleware, but rather
has to be enabled explicitly using the {% cms_toolbar %} template tag from
the cms_tags template tag library in your templates. The template tag
should be placed somewhere within the body of the HTML (within <body>...</body>).

This solves issues people were having with the toolbar showing up in places it
shouldn’t have.

Static files moved to /static/

The static files (css/javascript/images) were moved from /media/ to
/static/ to work with the new django.contrib.staticfiles app in Django
1.3. This means you will have to make sure you serve static files as well as
media files on your server.

Warning

If you use Django 1.2.x you will not have a django.contrib.staticfiles
app. Instead you need the django-staticfiles [http://pypi.python.org/pypi/django-staticfiles/] backport.

Features deprecated in 2.2

django-dbgettext support

The django-dbgettext support has been fully dropped in 2.2 in favor of the
built-in mechanisms to achieve multilinguality.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

Upgrading from 2.1.x and Django 1.2.x

Upgrading dependencies

Upgrade both your version of django CMS and Django by running
the following commands.

pip install --upgrade django-cms==2.2 django==1.3.1

If you are using django-reversion make sure to have at least
version 1.4 installed

pip install --upgrade django-reversion==1.4

Also, make sure that django-mptt stays at a version compatible
with django CMS

pip install --upgrade django-mptt==0.5.1

Updates to settings.py

The following changes will need to be made in your settings.py file:

ADMIN_MEDIA_PREFIX = '/static/admin'
STATIC_ROOT = os.path.join(PROJECT_PATH, 'static')
STATIC_URL = "/static/"

Note

These are not django CMS settings. Refer to the Django documentation on staticfiles [http://readthedocs.org/docs/django/en/latest/ref/contrib/staticfiles.html] for more information.

Note

Please make sure the static subfolder exists in your
project and is writable.

Note

PROJECT_PATH is the absolute path to your project. See Installing and configuring django CMS in your Django project for instructions on how to set PROJECT_PATH.

Remove the following from TEMPLATE_CONTEXT_PROCESSORS:

django.core.context_processors.auth

Add the following to TEMPLATE_CONTEXT_PROCESSORS:

django.contrib.auth.context_processors.auth
django.core.context_processors.static
sekizai.context_processors.sekizai

Remove the following from MIDDLEWARE_CLASSES [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MIDDLEWARE_CLASSES]:

cms.middleware.media.PlaceholderMediaMiddleware

Remove the following from INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS]:

publisher

Add the following to INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS]:

sekizai
django.contrib.staticfiles

Template Updates

Make sure to add sekizai tags and cms_toolbar to your CMS templates.

Note

cms_toolbar is only needed if you wish to use the front-end editing. See Backwards incompatible changes for more information

Here is a simple example for a base template called base.html:

{% load cms_tags sekizai_tags %}
<html>
 <head>
 {% render_block "css" %}
 </head>
 <body>
 {% cms_toolbar %}
 {% placeholder base_content %}
 {% block base_content%}{% endblock %}
 {% render_block "js" %}
 </body>
</html>

Database Updates

Run the following commands to upgrade your database

python manage.py syncdb
python manage.py migrate

Static Media

Add the following to urls.py to serve static media when developing:

if settings.DEBUG:
 urlpatterns = patterns('',
 url(r'^media/(?P<path>.*)$', 'django.views.static.serve',
 {'document_root': settings.MEDIA_ROOT, 'show_indexes': True}),
 url(r'', include('django.contrib.staticfiles.urls')),
) + urlpatterns

Also run this command to collect static files into your STATIC_ROOT [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-STATIC_ROOT]:

python manage.py collectstatic

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

1. Introductory Tutorial

This guide assumes your machine meets the requirements outlined in the
Installation section of this documentation.

1.1. Getting help

Should you run into trouble and can’t figure out how to solve it yourself, you
can get help from either our mailinglist [https://groups.google.com/forum/#!forum/django-cms] or IRC channel #django-cms on
the irc.freenode.net network.

1.2. Configuration and setup

1.2.1. Preparing the environment

Gathering the requirements is a good start, but we now need to give the CMS a
Django project to live in, and configure it.

1.2.1.1. Starting your Django project

The following assumes your project will be in ~/workspace/myproject/.

Set up your Django project:

cd ~/workspace
django-admin.py startproject myproject
cd myproject
python manage.py runserver

Open 127.0.0.1:8000 [http://127.0.0.1:8000] in your browser. You should see a
nice “It Worked” message from Django.

[image: it-worked]

1.2.1.2. Installing and configuring django CMS in your Django project

Open the file ~/workspace/myproject/settings.py.

To make your life easier, add the following at the top of the file:

-*- coding: utf-8 -*-
import os
gettext = lambda s: s
PROJECT_PATH = os.path.abspath(os.path.dirname(__file__))

Add the following apps to your INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS].
This includes django CMS itself as well as its dependenices and
other highly recommended applications/libraries:

	'cms', django CMS itself

	'mptt', utilities for implementing a modified pre-order traversal tree

	'menus', helper for model independent hierarchical website navigation

	'south', intelligent schema and data migrations

	'sekizai', for javascript and css management

Also add any (or all) of the following plugins, depending on your needs:

	'cms.plugins.file'

	'cms.plugins.flash'

	'cms.plugins.googlemap'

	'cms.plugins.link'

	'cms.plugins.picture'

	'cms.plugins.snippet'

	'cms.plugins.teaser'

	'cms.plugins.text'

	'cms.plugins.video'

	'cms.plugins.twitter'

Warning

Adding the 'cms.plugins.snippet' plugin is a potential security hazard.
For more information, refer to Snippet.

The plugins are described in more detail in chapter Plugins reference.
There are even more plugins available on the django CMS extensions page [http://www.django-cms.org/en/extensions/].

In addition, make sure you uncomment (enable) 'django.contrib.admin'

you may also wish to use django-filer [https://github.com/stefanfoulis/django-filer] and its components with the django CMS plugin [https://github.com/stefanfoulis/cmsplugin-filer]
instead of the cms.plugins.file, cms.plugins.picture,
cms.plugins.teaser and cms.plugins.video core plugins. In this
case you should not add them to INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS] but add the following
instead:

	'filer'

	'cmsplugin_filer_file'

	'cmsplugin_filer_folder'

	'cmsplugin_filer_image'

	'cmsplugin_filer_teaser'

	'cmsplugin_filer_video'

If you opt for the core plugins you should take care that directory to which
the CMS_PAGE_MEDIA_PATH setting points (by default cms_page_media/
relative to MEDIA_ROOT [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MEDIA_ROOT]) is writable by the user under which Django
will be running. If you have opted for django-filer there is a similar requirement
for its configuration.

If you want versioning of your content you should also install django-reversion [https://github.com/etianen/django-reversion]
and add it to INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS]:

	'reversion'

You need to add the django CMS middlewares to your MIDDLEWARE_CLASSES [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MIDDLEWARE_CLASSES]
at the right position:

MIDDLEWARE_CLASSES = (
 'django.middleware.common.CommonMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'cms.middleware.multilingual.MultilingualURLMiddleware',
 'cms.middleware.page.CurrentPageMiddleware',
 'cms.middleware.user.CurrentUserMiddleware',
 'cms.middleware.toolbar.ToolbarMiddleware',
)

You need at least the following TEMPLATE_CONTEXT_PROCESSORS:

TEMPLATE_CONTEXT_PROCESSORS = (
 'django.contrib.auth.context_processors.auth',
 'django.core.context_processors.i18n',
 'django.core.context_processors.request',
 'django.core.context_processors.media',
 'django.core.context_processors.static',
 'cms.context_processors.media',
 'sekizai.context_processors.sekizai',
)

Note

This setting will be missing from automatically generated Django settings
files, so you will have to add it.

Point your STATIC_ROOT [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-STATIC_ROOT] to where the static files should live
(that is, your images, CSS files, Javascript files, etc.):

STATIC_ROOT = os.path.join(PROJECT_PATH, "static")
STATIC_URL = "/static/"

For uploaded files, you will need to set up the MEDIA_ROOT [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MEDIA_ROOT]
setting:

MEDIA_ROOT = os.path.join(PROJECT_PATH, "media")
MEDIA_URL = "/media/"

Note

Please make sure both the static and media subfolders exist in your
project and are writable.

Now add a little magic to the TEMPLATE_DIRS section of the file:

TEMPLATE_DIRS = (
 # The docs say it should be absolute path: PROJECT_PATH is precisely one.
 # Life is wonderful!
 os.path.join(PROJECT_PATH, "templates"),
)

Add at least one template to CMS_TEMPLATES; for example:

CMS_TEMPLATES = (
 ('template_1.html', 'Template One'),
 ('template_2.html', 'Template Two'),
)

We will create the actual template files at a later step, don’t worry about it for
now. Simply paste this code into your settings file.

Note

The templates you define in CMS_TEMPLATES have to exist at runtime and
contain at least one {% placeholder <name> %} template tag to be useful
for django CMS. For more details see Creating templates

The django CMS allows you to edit all languages for which Django has built in
translations. Since these are numerous, we’ll limit it to English for now:

LANGUAGES = [
 ('en', 'English'),
]

Finally, set up the DATABASES [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-DATABASES] part of the file to reflect your
database deployment. If you just want to try out things locally, sqlite3 is the
easiest database to set up, however it should not be used in production. If you
still wish to use it for now, this is what your DATABASES [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-DATABASES]
setting should look like:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(PROJECT_PATH, 'database.sqlite'),
 }
}

1.2.2. URL configuration

You need to include the 'cms.urls' urlpatterns at the end of your
urlpatterns. We suggest starting with the following urls.py:

from django.conf.urls.defaults import *
from django.contrib import admin
from django.conf import settings

admin.autodiscover()

urlpatterns = patterns('',
 (r'^admin/', include(admin.site.urls)),
 url(r'^', include('cms.urls')),
)

if settings.DEBUG:
 urlpatterns = patterns('',
 url(r'^media/(?P<path>.*)$', 'django.views.static.serve',
 {'document_root': settings.MEDIA_ROOT, 'show_indexes': True}),
 url(r'', include('django.contrib.staticfiles.urls')),
) + urlpatterns

1.3. Creating templates

django CMS uses templates to define how a page should look and what parts of
it are editable. Editable areas are called placeholders. These templates are
standard Django templates and you may use them as described in the
official documentation [http://docs.djangoproject.com/en/1.2/topics/templates/].

Templates you wish to use on your pages must be declared in the CMS_TEMPLATES
setting:

CMS_TEMPLATES = (
 ('template_1.html', 'Template One'),
 ('template_2.html', 'Template Two'),
)

If you have followed this tutorial from the beginning, this code should already be in your settings file.

Now, on with the actual template files!

Fire up your favorite editor and create a file called base.html in a folder called templates
in your myproject directory.

Here is a simple example for a base template called base.html:

{% load cms_tags sekizai_tags %}
<html>
 <head>
 {% render_block "css" %}
 </head>
 <body>
 {% cms_toolbar %}
 {% placeholder base_content %}
 {% block base_content %}{% endblock %}
 {% render_block "js" %}
 </body>
</html>

Now, create a file called template_1.html in the same directory. This will use
your base template, and add extra content to it:

{% extends "base.html" %}
{% load cms_tags %}

{% block base_content %}
 {% placeholder template_1_content %}
{% endblock %}

When you set template_1.html as a template on a page you will get two
placeholders to put plugins in. One is template_1_content from the page
template template_1.html and another is base_content from the extended
base.html.

When working with a lot of placeholders, make sure to give descriptive
names to your placeholders so you can identify them more easily in the admin panel.

Now, feel free to experiment and make a template_2.html file! If you don’t
feel creative, just copy template_1 and name the second placeholder something
like “template_2_content”.

1.3.1. Static files handling with sekizai

The django CMS handles media files (css stylesheets and javascript files)
required by CMS plugins using django-sekizai [https://github.com/ojii/django-sekizai]. This requires you to define at
least two sekizai namespaces in your templates: js and css. You can do
so using the render_block template tag from the sekizai_tags template
tag libary. We highly recommended putting the {% render_block "css" %} tag
as the last thing before the closing </head> HTML tag and the
{% render_block "js" %} tag as the last thing before the closing </body>
HTML tag.

1.3.2. Initial database setup

This command depends on whether you upgrade your installation or do a
fresh install. We recommend that you get familiar with the way South [http://south.aeracode.org/] works,
as it is a very powerful, easy and convenient tool. django CMS uses it extensively.

1.3.2.1. Fresh install

Run:

python manage.py syncdb --all
python manage.py migrate --fake

The first command will prompt you to create a super user. Choose ‘yes’ and enter
appropriate values.

1.3.2.2. Upgrade

Run:

python manage.py syncdb
python manage.py migrate

1.3.3. Up and running!

That should be it. Restart your development server using python manage.py runserver
and point a web browser to 127.0.0.1:8000 [http://127.0.0.1:8000] :you should get
the django CMS “It Worked” screen.

[image: it-works-cms]

Head over to the admin panel <http://127.0.0.1:8000/admin/> and log in with
the user you created during the database setup.

To deploy your django CMS project on a production webserver, please refer to the
Django documentation [http://docs.djangoproject.com/en/1.2/howto/deployment/].

1.4. Creating your first CMS Page!

That’s it. Now the best part: you can start using the CMS!
Run your server with python manage.py runserver, then point a web browser to
127.0.0.1:8000/admin/ [http://127.0.0.1:8000/admin/] , and log in using the super
user credentials you defined when you ran syncdb earlier.

Once in the admin part of your site, you should see something like the following:

[image: first-admin]

1.4.1. Adding a page

Adding a page is as simple as clicking “Pages” in the admin view, then the “add page” button
at the top right-hand corner of the screen.

This is where you select which template to use (remember, we created two), as well as
pretty obvious things like which language the page is in (used for internationalisation),
the page’s title, and the url slug it will use.

Hitting the “Save” button, unsurprisingly, saves the page. It will now display in the list of
pages.

[image: my-first-page]

Congratulations! You now have a fully functional django CMS installation!

1.4.2. Publishing a page

The following is a list of parameters that can be changed for each of your pages:

1.4.2.1. Visibility

By default, pages are “invisible”. To let people access them you should mark
them as “published”.

1.4.2.2. Menus

Another option this view lets you tweak is whether or not the page should appear in
your site’s navigation (that is, whether there should be a menu entry to reach it
or not)

1.4.3. Adding content to a page

So far, our page doesn’t do much. Make sure it’s marked as “published”, then
click on the page’s “edit” button.

Ignore most of the interface for now and click the “view on site” button at the
top right-hand corner of the screen. As expected, your page is blank for the
time being, since our template is a really minimal one.

Let’s get to it now then!

Press your browser’s back button, so as to see the page’s admin interface. If you followed
the tutorial so far, your template (template_1.html) defines two placeholders.
The admin interfaces shows you theses placeholders as sub menus:

[image: first-placeholders]

Scroll down the “Available plugins” drop-down list. This displays the plugins you
added to your INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS] settings. Choose the “text” plugin in the drop-down,
then press the “Add” button.

The right part of the plugin area displays a rich text editor (TinyMCE [http://tinymce.moxiecode.com/]).

In the editor, type in some text and then press the “Save” button.

Go back to your website using the top right-hand “View on site” button. That’s it!

[image: hello-cms-world]

1.4.4. Where to go from here

Congratulations, you now have a fully functional CMS! Feel free to play around
with the different plugins provided out of the box and to build great websites!

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

2. Using South with django CMS

South is an incredible piece of software that lets you handle database
migrations. This document is by no means meant to replace the
excellent documentation [http://south.aeracode.org/docs/index.html] available online, but rather to give a quick primer
on why you should use South and how to get started quickly.

2.1. Installation

As always using Django and Python is a joy. Installing South is
as simple as typing:

pip install South

Then, simply add south to the list of INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS] in your
settings.py file.

2.2. Basic usage

For a very short crash course:

	Instead of the initial manage.py syncdb command, simply run
manage.py schemamigration --initial <app name>. This will create a new
migrations package, along with a new migration file (in the form of a python
script).

	Run the migration using manage.py migrate. Your tables will be created
in the database and Django will work as usual.

	Whenever you make changes to your models.py file, run
manage.py schemamigration --auto <app name> to create a new migration
file. Next run manage.py migrate to apply the newly created migration.

2.3. More information about South

Obviously, South is a very powerful tool and this simple crash course is only
the very tip of the iceberg. Readers are highly encouraged to have a quick
glance at the excellent official South documentation [http://south.aeracode.org/docs/index.html].

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

3. Configuration

The django CMS has a lot of settings you can use to customize your installation
so that it is exactly as you’d like it to be.

3.1. Required Settings

3.1.1. CMS_TEMPLATES

Default: () (Not a valid setting!)

A list of templates you can select for a page.

Example:

CMS_TEMPLATES = (
 ('base.html', gettext('default')),
 ('2col.html', gettext('2 Column')),
 ('3col.html', gettext('3 Column')),
 ('extra.html', gettext('Some extra fancy template')),
)

Note

All templates defined in CMS_TEMPLATES must contain at least the
js and css sekizai namespaces, for more information, see
Static files handling with sekizai.

Warning

django CMS internally relies on a number of templates to function correctly.
These exist beneath cms within the templates directory. As such, it
is highly recommended you avoid using the same directory name for your own
project templates.

3.2. Basic Customization

3.2.1. CMS_TEMPLATE_INHERITANCE

Default: True

Optional
Enables the inheritance of templates from parent pages.

If this is enabled, pages have the additional template option to inherit their
template from the nearest ancestor. New pages default to this setting if the
new page is not a root page.

3.2.2. CMS_PLACEHOLDER_CONF

Default: {}
Optional

Used to configure placeholders. If not given, all plugins are available in all
placeholders.

Example:

CMS_PLACEHOLDER_CONF = {
 'content': {
 'plugins': ['TextPlugin', 'PicturePlugin'],
 'text_only_plugins': ['LinkPlugin']
 'extra_context': {"width":640},
 'name':gettext("Content"),
 },
 'right-column': {
 "plugins": ['TeaserPlugin', 'LinkPlugin'],
 "extra_context": {"width":280},
 'name':gettext("Right Column"),
 'limits': {
 'global': 2,
 'TeaserPlugin': 1,
 'LinkPlugin': 1,
 },
 },
 'base.html content': {
 "plugins": ['TextPlugin', 'PicturePlugin', 'TeaserPlugin']
 },
}

You can combine template names and placeholder names to granularly define
plugins, as shown above with ‘’base.html content’‘.

plugins

A list of plugins that can be added to this placeholder. If not supplied, all
plugins can be selected.

text_only_plugins

A list of additional plugins available only in the TextPlugin,
these plugins can’t be added directly to this placeholder.

extra_context

Extra context that plugins in this placeholder receive.

name

The name displayed in the Django admin. With the gettext stub, the name can be
internationalized.

limits

Limit the number of plugins that can be placed inside this placeholder.
Dictionary keys are plugin names and the values are their respective limits. Special
case: “global” - Limit the absolute number of plugins in this placeholder
regardless of type (takes precedence over the type-specific limits).

3.2.3. CMS_PLUGIN_CONTEXT_PROCESSORS

Default: []

A list of plugin context processors. Plugin context processors are callables
that modify all plugins’ context before rendering. See
Custom Plugins for more information.

3.2.4. CMS_PLUGIN_PROCESSORS

Default: []

A list of plugin processors. Plugin processors are callables that modify all
plugin’s output after rendering. See Custom Plugins for
more information.

3.2.5. CMS_APPHOOKS

Default: ()

A list of import paths for cms.app_base.CMSApp subclasses.

Defaults to an empty list which means CMS applications are auto-discovered in
all INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS] by trying to import their cms_app module.

If this setting is set, the auto-discovery is disabled.

Example:

CMS_APPHOOKS = (
 'myapp.cms_app.MyApp',
 'otherapp.cms_app.MyFancyApp',
 'sampleapp.cms_app.SampleApp',
)

3.2.6. PLACEHOLDER_FRONTEND_EDITING

Default: True

If set to False, frontend editing is not available for models using
cms.models.fields.PlaceholderField.

3.3. Editor configuration

The Wymeditor from cms.plugins.text plugin can take the same
configuration as vanilla Wymeditor. Therefore you will need to learn
how to configure that. The best thing to do is to head
over to the Wymeditor examples page [http://files.wymeditor.org/wymeditor/examples/]
in order to understand how Wymeditor works.

The cms.plugins.text plugin exposes several variables named
WYM_* that correspond to the wym configuration. The simplest
way to get started with this is to go to cms/plugins/text/settings.py
and copy over the WYM_* variables and you will realize they
match one to one to Wymeditor’s.

Currently the following variables are available:

	WYM_TOOLS

	WYM_CONTAINERS

	WYM_CLASSES

	WYM_STYLES

	WYM_STYLESHEET

3.4. I18N and L10N

3.4.1. CMS_HIDE_UNTRANSLATED

Default: True

By default django CMS hides menu items that are not yet translated into the
current language. With this setting set to False they will show up anyway.

3.4.2. CMS_LANGUAGES

Default: Value of LANGUAGES [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-LANGUAGES]

Defines the languages available in django CMS.

Example:

CMS_LANGUAGES = (
 ('fr', gettext('French')),
 ('de', gettext('German')),
 ('en', gettext('English')),
)

Note

Make sure you only define languages which are also in LANGUAGES [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-LANGUAGES].

3.4.3. CMS_LANGUAGE_FALLBACK

Default: True

This will redirect the browser to the same page in another language if the
page is not available in the current language.

3.4.4. CMS_LANGUAGE_CONF

Default: {}

Language fallback ordering for each language.

Example:

CMS_LANGUAGE_CONF = {
 'de': ['en', 'fr'],
 'en': ['de'],
}

3.4.5. CMS_SITE_LANGUAGES

Default: {}

If you have more than one site and CMS_LANGUAGES differs between
the sites, you may want to fill this out so that when you switch between sites
in the admin you only get the languages available to that particular site.

Example:

CMS_SITE_LANGUAGES = {
 1:['en','de'],
 2:['en','fr'],
 3:['en'],
}

3.4.6. CMS_FRONTEND_LANGUAGES

Default: Value of CMS_LANGUAGES

A list of languages django CMS uses in the frontend. For example, if
you decide you want to add a new language to your page but don’t want to
show it to the world yet.

Example:

CMS_FRONTEND_LANGUAGES = ("de", "en", "pt-BR")

3.5. Media Settings

3.5.1. CMS_MEDIA_PATH

default: cms/

The path from MEDIA_ROOT [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MEDIA_ROOT] to the media files located in cms/media/

3.5.2. CMS_MEDIA_ROOT

Default: MEDIA_ROOT [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MEDIA_ROOT] + CMS_MEDIA_PATH

The path to the media root of the cms media files.

3.5.3. CMS_MEDIA_URL

default: MEDIA_URL [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MEDIA_URL] + CMS_MEDIA_PATH

The location of the media files that are located in cms/media/cms/

3.5.4. CMS_PAGE_MEDIA_PATH

Default: 'cms_page_media/'

By default, django CMS creates a folder called cms_page_media in your
static files folder where all uploaded media files are stored. The media files
are stored in subfolders numbered with the id of the page.

You should take care that the directory to which it points is writable by the
user under which Django will be running.

3.6. URLs

3.6.1. CMS_URL_OVERWRITE

Default: True

This adds a new field “url overwrite” to the “advanced settings” tab of your
page. With this field you can overwrite the whole relative url of the page.

3.6.2. CMS_MENU_TITLE_OVERWRITE

Default: False

This adds a new “menu title” field beside the title field.

With this field you can overwrite the title that is displayed in the menu.

To access the menu title in the template, use:

{{ page.get_menu_title }}

3.6.3. CMS_REDIRECTS

Default: False

This adds a new “redirect” field to the “advanced settings” tab of the page.

You can set a url here to which visitors will be redirected when the page is
accessed.

Note: Don’t use this too much. django.contrib.redirects [http://readthedocs.org/docs/django/en/latest/ref/contrib/redirects.html#module-django.contrib.redirects] is much more
flexible, handy, and is designed exactly for this purpose.

3.6.4. CMS_FLAT_URLS

Deprecated since version 2.4: CMS_FLAT_URLS will be removed in 2.4.

Default: False

If this is enabled the slugs are not nested in the urls.

So a page with a “world” slug will have a “/world” url, even it is a child of
the “hello” page. If disabled the page would have the url: “/hello/world/”

3.6.5. CMS_SOFTROOT

Default: False

This adds a new “softroot” field to the “advanced settings” tab of the page. If
a page is marked as softroot the menu will only display items until it finds
the softroot.

If you have a huge site you can easily partition the menu with this.

3.7. Advanced Settings

3.7.1. CMS_PERMISSION

Default: False

If this is enabled you get 3 new models in Admin:

	Pages global permissions

	User groups - page

	Users - page

In the edit-view of the pages you can now assign users to pages and grant them
permissions. In the global permissions you can set the permissions for users
globally.

If a user has the right to create new users he can now do so in the “Users -
page”. But he will only see the users he created. The users he created can also
only inherit the rights he has. So if he only has been granted the right to edit
a certain page all users he creates can, in turn, only edit this page. Naturally
he can limit the rights of the users he creates even further, allowing them to see
only a subset of the pages to which he is allowed access.

3.7.2. CMS_PUBLIC_FOR

Default: all

Decides if pages without any view restrictions are public by default or staff
only. Possible values are all and staff.

3.7.3. CMS_MODERATOR

Default: False

If set to True, gives you a new “moderation” column in the tree view.

You can select to moderate pages or whole trees. If a page is under moderation
you will receive an email if somebody changes a page and you will be asked to
approve the changes. Only after you approve the changes will they be updated
on the “live” site. If you make changes to a page you moderate yourself, you
will need to approve it anyway. This allows you to change a lot of pages for
a new version of the site, for example, and go live with all the changes at the
same time.

Note

When switching this value to True on an existing site, you have
to run the cms moderator on command to make the required database
changes.

3.7.4. CMS_SHOW_START_DATE & CMS_SHOW_END_DATE

Default: False for both

This adds two new DateTimeField [http://readthedocs.org/docs/django/en/latest/ref/models/fields.html#django.db.models.DateTimeField] fields in the
“advanced settings” tab of the page. With this option you can limit the time a
page is published.

3.7.5. CMS_SEO_FIELDS

Default: False

This adds a new “SEO Fields” fieldset to the page admin. You can set the
Page Title, Meta Keywords and Meta Description in there.

To access these fields in the template use:

{% load cms_tags %}
<head>
 <title>{% page_attribute page_title %}</title>
 <meta name="description" content="{% page_attribute meta_description %}"/>
 <meta name="keywords" content="{% page_attribute meta_keywords %}"/>
 ...
 ...
</head>

3.7.6. CMS_CACHE_DURATIONS

This dictionary carries the various cache duration settings.

3.7.6.1. 'content'

Default: 60

Cache expiration (in seconds) for show_placeholder and page_url
template tags.

Note

This settings was previously called CMS_CONTENT_CACHE_DURATION

3.7.6.2. 'menus'

Default: 3600

Cache expiration (in seconds) for the menu tree.

Note

This settings was previously called MENU_CACHE_DURATION

3.7.6.3. 'permissions'

Default: 3600

Cache expiration (in seconds) for view and other permissions.

3.7.7. CMS_CACHE_PREFIX

Default: cms-

The CMS will prepend the value associated with this key to every cache access (set and get).
This is useful when you have several django CMS installations, and you don’t want them
to share cache objects.

Example:

CMS_CACHE_PREFIX = 'mysite-live'

Note

Django 1.3 introduced a site-wide cache key prefix. See Django’s own docs on
cache key prefixing [http://readthedocs.org/docs/django/en/latest/topics/cache.html#cache-key-prefixing]

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

4. Navigation

There are four template tags for use in the templates that are connected to the
menu:

	show_menu

	show_menu_below_id

	show_sub_menu

	show_breadcrumb

To use any of these templatetags, you need to have {% load menu_tags %} in
your template before the line on which you call the templatetag.

Note

Please note that menus were originally implemented to be
application-independent and as such, live in the menus application
instead of the cms application.

4.1. show_menu

{% show_menu %} renders the navigation of the current page.
You can overwrite the appearance and the HTML if you add a menu/menu.html
template to your project or edit the one provided with django-cms.
show_menu takes four optional parameters: start_level, end_level,
extra_inactive, and extra_active.

The first two parameters, start_level (default=0) and end_level
(default=100) specify from which level the navigation shoud be rendered
and at which level it should stop.
If you have home as a root node and don’t want to display home you can render
the navigation only after level 1.

The third parameter, extra_inactive (default=0), specifies how many levels
of navigation should be displayed if a node is not a direct ancestor or
descendant of the current active node.

The fourth parameter, extra_active (default=100), specifies how
many levels of descendants of the currently active node should be displayed.

You can supply a template parameter to the tag.

4.1.1. Some Examples

Complete navigation (as a nested list):

{% load menu_tags %}

 {% show_menu 0 100 100 100 %}

Navigation with active tree (as a nested list):

 {% show_menu 0 100 0 100 %}

Navigation with only one active extra level:

 {% show_menu 0 100 0 1 %}

Level 1 navigation (as a nested list):

 {% show_menu 1 %}

Navigation with a custom template:

{% show_menu 0 100 100 100 "myapp/menu.html" %}

4.2. show_menu_below_id

If you have set an id in the advanced settings of a page, you can display the
submenu of this page with a template tag. For example, we have a page called
meta that is not displayed in the navigation and that has the id “meta”:

 {% show_menu_below_id "meta" %}

You can give it the same optional parameters as show_menu:

 {% show_menu_below_id "meta" 0 100 100 100 "myapp/menu.html" %}

4.3. show_sub_menu

Display the sub menu of the current page (as a nested list).
Takes one argument that specifies how many levels deep the submenu should be
displayed. The template can be found at menu/sub_menu.html:

 {% show_sub_menu 1 %}

Or with a custom template:

 {% show_sub_menu 1 "myapp/submenu.html" %}

4.4. show_breadcrumb

Show the breadcrumb navigation of the current page.
The template for the HTML can be found at menu/breadcrumb.html.:

{% show_breadcrumb %}

Or with a custom template and only display level 2 or higher:

{% show_breadcrumb 2 "myapp/breadcrumb.html" %}

If the current URL is not handled by the CMS or you are working in a navigation
extender, you may need to provide your own breadcrumb via the template.
This is mostly needed for pages like login, logout and third-party apps.

4.5. Properties of Navigation Nodes in templates

{{ node.is_leaf_node }}

Is it the last in the tree? If true it doesn’t have any children.
(This normally comes from mptt.)

{{ node.level }}

The level of the node. Starts at 0.

{{ node.menu_level }}

The level of the node from the root node of the menu. Starts at 0.
If your menu starts at level 1 or you have a “soft root” (described
in the next section) the first node would still have 0 as its menu_level.

{{ node.get_absolute_url }}

The absolute URL of the node, without any protocol, domain or port.

{{ node.title }}

The title in the current language of the node.

{{ node.selected }}

If true this node is the current one selected/active at this URL.

{{ node.ancestor }}

If true this node is an ancestor of the current selected node.

{{ node.sibling }}

If true this node is a sibling of the current selected node.

{{ node.descendant }}

If true this node is a descendant of the current selected node.

{{ node.soft_root }}

If true this node is a “soft root”.

4.6. Soft Roots

4.6.1. What Soft Roots do

A soft root is a page that acts as the root for a menu
navigation tree.

Typically, this will be a page that is the root of a significant
new section on your site.

When the soft root feature is enabled, the navigation menu
for any page will start at the nearest soft root, rather than
at the real root of the site’s page hierarchy.

This feature is useful when your site has deep page hierarchies
(and therefore multiple levels in its navigation trees). In such
a case, you usually don’t want to present site visitors with deep
menus of nested items.

For example, you’re on the page “Introduction to Bleeding”, so the menu might look like this:

	
	School of Medicine

	
	Medical Education

	
	Departments

	
	Department of Lorem Ipsum

	Department of Donec Imperdiet

	Department of Cras Eros

	
	Department of Mediaeval Surgery

	
	Theory

	
	Cures

	
	
	Bleeding

	
	Introduction to Bleeding <this is the current page>

	Bleeding - the scientific evidence

	Cleaning up the mess

	Cupping

	Leaches

	Maggots

	Techniques

	Instruments

	Department of Curabitur a Purus

	Department of Sed Accumsan

	Department of Etiam

	Research

	Administration

	Contact us

	Impressum

which is frankly overwhelming.

By making “Department of Mediaeval Surgery” a soft root, the
menu becomes much more manageable:

	
	Department of Mediaeval Surgery

	
	Theory

	
	Cures

	
	
	Bleeding

	
	Introduction to Bleeding <current page>

	Bleeding - the scientific evidence

	Cleaning up the mess

	Cupping

	Leaches

	Maggots

	Techniques

	Instruments

4.6.2. Using Soft Roots

To enable the feature, settings.py requires:

CMS_SOFTROOT = True

Mark a page as soft root in the ‘Advanced’ tab of the its settings
in the admin interface.

4.7. Modifying & Extending the menu

Please refer to the App Integration documentation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

5. Plugins reference

5.1. File

Allows you to upload a file. A filetype icon will be assigned based on the file
extension.

For installation be sure you have the following in the INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS]
setting in your project’s settings.py file:

INSTALLED_APPS = (
 # ...
 'cms.plugins.file',
 # ...
)

You should take care that the directory defined by the configuration setting
CMS_PAGE_MEDIA_PATH (by default cms_page_media/ relative to
MEDIA_ROOT [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MEDIA_ROOT]) is writable by the user under which django will be
running.

You might consider using django-filer [https://github.com/stefanfoulis/django-filer] with django CMS plugin [https://github.com/stefanfoulis/cmsplugin-filer] and its
cmsplugin_filer_file component instead.

Warning

The builtin file plugin only works with local storages. If you need
more advanced solutions, please look at alternative file plugins for the
django CMS, such as django-filer [https://github.com/stefanfoulis/django-filer].

5.2. Flash

Allows you to upload and display a Flash SWF file on your page.

For installation be sure you have the following in the
INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS] setting in your project’s settings.py file:

INSTALLED_APPS = (
 # ...
 'cms.plugins.flash',
 # ...
)

5.3. GoogleMap

Displays a map of an address on your page.

Both address and coordinates are supported to center the map; zoom level and
route planner can be set when adding/editing plugin in the admin.

New in version 2.3.2: width/height parameter has been added, so it’s no longer required to set
plugin container size in CSS or template.

Changed in version 2.3.2: Zoom level is set via a select field which ensure only legal values are used.

Note

Due to the above change, level field is now marked as NOT NULL,
and a datamigration has been introduced to modify existing googlemap plugin
instance to set the default value if level if is NULL.

For installation be sure you have the following in the INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS]
setting in your project’s settings.py file:

INSTALLED_APPS = (
 # ...
 'cms.plugins.googlemap',
 # ...
)

5.4. Link

Displays a link to an arbitrary URL or to a page. If a page is moved the URL
will still be correct.

For installation be sure to have the following in the INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS]
setting in your project’s settings.py file:

INSTALLED_APPS = (
 # ...
 'cms.plugins.link',
 # ...
)

Note

As of version 2.2, the link plugin no longer verifies the existence of
link targets.

5.5. Picture

Displays a picture in a page.

For installation be sure you have the following in the INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS]
setting in your project’s settings.py file:

INSTALLED_APPS = (
 # ...
 'cms.plugins.picture',
 # ...
)

There are several solutions for Python and Django out there to automatically
resize your pictures, you can find some on Django Packages [http://djangopackages.com/grids/g/thumbnails/] and compare them
there.

In your project template directory create a folder called cms/plugins and
in it create a file called picture.html. Here is an example
picture.html template using easy-thumbnails [https://github.com/SmileyChris/easy-thumbnails]:

{% load thumbnail %}

{% if link %}{% endif %}
{% if placeholder == "content" %}

{% else %}
 {% if placeholder == "teaser" %}

 {% endif %}
{% endif %}
{% if link %}{% endif %}

In this template the picture is scaled differently based on which placeholder
it was placed in.

You should take care that the directory defined by the configuration setting
CMS_PAGE_MEDIA_PATH (by default cms_page_media/ relative to
MEDIA_ROOT [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MEDIA_ROOT]) is writable by the user under which django will be
running.

Note

In order to improve clarity, some Picture fields have been omitted in
the example template code.

Note

For more advanced use cases where you would like to upload your media
to a central location, consider using django-filer [https://github.com/stefanfoulis/django-filer] with
django CMS plugin [https://github.com/stefanfoulis/cmsplugin-filer] and its cmsplugin_filer_image component
instead.

5.6. Snippet

Renders an HTML snippet from an HTML file in your templates directories or a
snippet given via direct input.

For installation be sure you have the following in the INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS]
setting in your project’s settings.py file:

INSTALLED_APPS = (
 # ...
 'cms.plugins.snippet',
 # ...
)

Note

This plugin should mainly be used during development to quickly test
HTML snippets.

Warning

This plugin is a potential security hazard, since it allows admins to place
custom JavaScript on pages. This may allow administrators with the right to
add snippets to elevate their privileges to superusers. This plugin should
only be used during the initial development phase for rapid prototyping and
should be disabled on production sites.

5.7. Teaser

Displays a teaser box for another page or a URL. A picture and a description
can be added.

For installation be sure you have the following in the INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS]
settings in your project’s settings.py file:

INSTALLED_APPS = (
 # ...
 'cms.plugins.teaser',
 # ...
)

You should take care that the directory defined by the configuration setting
CMS_PAGE_MEDIA_PATH (by default cms_page_media/ relative to
MEDIA_ROOT [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MEDIA_ROOT]) is writable by the user under which django will be
running.

Note

For more advanced use cases where you would like to upload your media
to a central location, consider using django-filer [https://github.com/stefanfoulis/django-filer] with
django CMS plugin [https://github.com/stefanfoulis/cmsplugin-filer] and its cmsplugin_filer_video component
instead.

5.8. Text

Displays text. If plugins are text-enabled they can be placed inside the
text-flow. At this moment the following core plugins are text-enabled:

	cms.plugins.link

	cms.plugins.picture

	cms.plugins.file

	cms.plugins.snippet

The current editor is Wymeditor [http://www.wymeditor.org/]. If you want to
use TinyMce you need to install django-tinymce [http://code.google.com/p/django-tinymce/]. If tinymce is in your
INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS] it will be automatically enabled. If you have tinymce
installed but don’t want to use it in the cms put the following in your
settings.py:

CMS_USE_TINYMCE = False

Note

When using django-tinymce, you also need to configure it. See the
django-tinymce docs [http://django-tinymce.googlecode.com/svn/tags/release-1.5/docs/.build/html/installation.html#id2] for more information.

For installation be sure you have the following in your project’s
INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS] setting:

INSTALLED_APPS = (
 # ...
 'cms.plugins.text',
 # ...
)

5.9. Video

Plays Video Files or Youtube / Vimeo Videos. Uses the OSFlashVideoPlayer [http://github.com/FlashJunior/OSFlashVideoPlayer]. When uploading videos use either
.flv files or h264 encoded video files.

For installation be sure you have the following in your project’s
INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS] setting:

INSTALLED_APPS = (
 # ...
 'cms.plugins.video',
 # ...
)

There are some settings you can set in your settings.py to overwrite some
default behavior:

	VIDEO_AUTOPLAY ((default: False)

	VIDEO_AUTOHIDE (default: False)

	VIDEO_FULLSCREEN (default: True)

	VIDEO_LOOP (default: False)

	VIDEO_AUTOPLAY (default: False)

	VIDEO_BG_COLOR (default: "000000")

	VIDEO_TEXT_COLOR (default: "FFFFFF")

	VIDEO_SEEKBAR_COLOR (default: "13ABEC")

	VIDEO_SEEKBARBG_COLOR (default: "333333")

	VIDEO_LOADINGBAR_COLOR (default: "828282")

	VIDEO_BUTTON_OUT_COLOR (default: "333333")

	VIDEO_BUTTON_OVER_COLOR (default: "000000")

	VIDEO_BUTTON_HIGHLIGHT_COLOR (default: "FFFFFF")

You should take care that the directory defined by the configuration setting
CMS_PAGE_MEDIA_PATH (by default cms_page_media/ relative to
MEDIA_ROOT [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MEDIA_ROOT]) is writable by the user under which django will be
running.

Note

For more advanced use cases where you would like to upload your media
to a central location, consider using django-filer [https://github.com/stefanfoulis/django-filer] with
django CMS plugin [https://github.com/stefanfoulis/cmsplugin-filer] and its cmsplugin_filer_video component
instead.

5.10. Twitter

Display’s a number of a twitter user’s latest posts.

For installation be sure you have the following in your project’s
INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS] setting:

INSTALLED_APPS = (
 # ...
 'cms.plugins.twitter',
 # ...
)

Note

Since avatars are not guaranteed to be available over SSL (HTTPS), by
default the Twitter plugin does not use avatars on secure sites.

5.11. Inherit

Displays all plugins of another page or another language. Great if you always
need the same plugins on a lot of pages.

For installation be sure you have the following in your project’s
INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS] setting:

INSTALLED_APPS = (
 # ...
 'cms.plugins.inherit',
 # ...
)

Warning

The inherit plugin is currently the only core-plugin which
cannot be used in non-cms placeholders.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

6. Common issues

6.1. Caught MultipleObjectsReturned while rendering

After upgrading to a new version with an existing database, you encounter
something like:

Caught MultipleObjectsReturned while rendering: get() returned more than
one CacheKey – it returned 12! Lookup parameters were {‘key’:
‘cms-menu_nodes_en_1_1_user’, ‘language’: ‘en’, ‘site’: 1L}

What has happened is that your database contains some old cache data in
the menus_cachekey table. Just delete all those entries.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

1. Internationalization

1.1. Multilingual URL Middleware

The multilingual URL middleware adds a language prefix to every URL.

Example:

/de/account/login/
/fr/account/login/

It also adds this prefix automatically to every href and form tag.
To install it, include
'cms.middleware.multilingual.MultilingualURLMiddleware' in your project’s
MIDDLEWARE_CLASSES [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MIDDLEWARE_CLASSES] setting.

Note

This middleware must be put before cms.middleware.page.CurrentPageMiddleware

Example:

MIDDLEWARE_CLASSES = (
 ...
 'cms.middleware.multilingual.MultilingualURLMiddleware',
 'cms.middleware.user.CurrentUserMiddleware',
 'cms.middleware.page.CurrentPageMiddleware',
 'cms.middleware.toolbar.ToolbarMiddleware'
 ...
)

1.2. Language Chooser

The language_chooser template tag will display a language chooser for the
current page. You can modify the template in menu/language_chooser.html or
provide your own template if necessary.

Example:

{% load menu_tags %}
{% language_chooser "myapp/language_chooser.html" %}

If the current URL is not handled by the CMS and you have some i18n slugs in the
URL you may use the menus.utils.set_language_changer() function in the
view that handles the current URL.

In the models of the current object add an optional language parameter to the
get_absolute_url() [http://readthedocs.org/docs/django/en/latest/ref/models/instances.html#django.db.models.Model.get_absolute_url] method:

from django.utils.translation import get_language

def get_absolute_url(self, language=None):
 if not language:
 language = get_language()
 return reverse("product_view", args=[self.get_slug(language=language)])

In the view pass the get_absolute_url() method to the
set_language_changer() function:

from menus.utils import set_language_changer

def get_product(request, slug):
 item = get_object_or_404(Product, slug=slug, published=True)
 set_language_changer(request, item.get_absolute_url)
 # ...

This allows the language chooser to have another URL than the current one.
If the current URL is not handled by the CMS and no
set_language_changer() function is provided it will take the
exact same URL as the current one and will only change the language prefix.

For class-based generic views set_language_changer() can be
used as follows:

from menus.utils import set_language_changer

class ProductDetailView(DetailView):
 model = Product

 def get_context_data(self, **kwargs):
 context = super(ProductDetailView, self).get_context_data(**kwargs)
 set_language_changer(self.request, self.object.get_absolute_url)
 return context

For the language chooser to work the
cms.middleware.multilingual.MultilingualURLMiddleware must be enabled.

1.2.1. simple_language_changer

If the URLs of your views don’t actually change besides the language prefix,
you can use the menus.utils.simple_language_changer() view decorator,
instead of manually using set_language_changer():

from menus.utils import simple_language_changer

@simple_language_changer
def get_prodcut(request, slug):
 # ...

1.3. page_language_url

This template tag returns the URL of the current page in another language.

Example:

{% page_language_url "de" %}

1.4. CMS_HIDE_UNTRANSLATED

If you put CMS_HIDE_UNTRANSLATED to False in your
settings.py all pages will be displayed in all languages even if they are
not translated yet.

If CMS_HIDE_UNTRANSLATED is True in your settings.py
and you are on a page that doesn’t yet have an English translation and you view the
German version then the language chooser will redirect to /. The same goes
for URLs that are not handled by the CMS and display a language chooser.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

2. Sitemap Guide

2.1. Sitemap

Sitemaps are XML files used by Google to index your website by using their
Webmaster Tools and telling them the location of your sitemap.

The CMSSitemap will create a sitemap with all the published pages of
your CMS

2.2. Configuration

	Add django.contrib.sitemaps [http://readthedocs.org/docs/django/en/latest/ref/contrib/sitemaps.html#module-django.contrib.sitemaps] to your project’s INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS]
setting.

	Add from cms.sitemaps import CMSSitemap to the top of your main urls.py.

	Add url(r'^sitemap\.xml$', 'django.contrib.sitemaps.views.sitemap', {'sitemaps': {'cmspages': CMSSitemap}}),
to your urlpatterns.

2.3. django.contrib.sitemaps

More information about django.contrib.sitemaps [http://readthedocs.org/docs/django/en/latest/ref/contrib/sitemaps.html#module-django.contrib.sitemaps] can be found in the official
Django documentation [http://docs.djangoproject.com/en/dev/ref/contrib/sitemaps/].

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

3. Template Tags

To use any of the following templatetags you first need to load them at the
top of your template:

{% load cms_tags menu_tags %}

3.1. placeholder

Changed in version 2.1: The placeholder name became case sensitive.

The placeholder templatetag defines a placeholder on a page. All
placeholders in a template will be auto-detected and can be filled with
plugins when editing a page that is using said template. When rendering, the
content of these plugins will appear where the placeholder tag was.

Example:

{% placeholder "content" %}

If you want additional content to be displayed in case the placeholder is
empty, use the or argument and an additional {% endplaceholder %}
closing tag. Everything between {% placeholder "..." or %} and {%
endplaceholder %} is rendered in the event that the placeholder has no plugins or
the plugins do not generate any output.

Example:

{% placeholder "content" or %}There is no content.{% endplaceholder %}

If you want to add extra variables to the context of the placeholder, you
should use Django’s with [http://readthedocs.org/docs/django/en/latest/ref/templates/builtins.html#std:templatetag-with] tag. For instance, if you want to resize images
from your templates according to a context variable called width, you can
pass it as follows:

{% with 320 as width %}{% placeholder "content" %}{% endwith %}

If you want the placeholder to inherit the content of a placeholder with the
same name on parent pages, simply pass the inherit argument:

{% placeholder "content" inherit %}

This will walk up the page tree up until the root page and will show the first
placeholder it can find with content.

It’s also possible to combine this with the or argument to show an
ultimate fallback if the placeholder and none of the placeholders on parent
pages have plugins that generate content:

{% placeholder "content" inherit or %}There is no spoon.{% endplaceholder %}

See also the CMS_PLACEHOLDER_CONF setting where you can also add extra
context variables and change some other placeholder behavior.

3.2. show_placeholder

Displays a specific placeholder from a given page. This is useful if you want
to have some more or less static content that is shared among many pages, such
as a footer.

Arguments:

	placeholder_name

	page_lookup (see Page Lookup for more information)

	language (optional)

	site (optional)

Examples:

{% show_placeholder "footer" "footer_container_page" %}
{% show_placeholder "content" request.current_page.parent_id %}
{% show_placeholder "teaser" request.current_page.get_root %}

3.2.1. Page Lookup

The page_lookup argument, passed to several templatetags to retrieve a
page, can be of any of the following types:

	str: interpreted as the reverse_id field of the desired page, which
can be set in the “Advanced” section when editing a page.

	int: interpreted as the primary key (pk field) of the desired page

	dict [http://docs.python.org/2.6/library/stdtypes.html#dict]: a dictionary containing keyword arguments to find the desired page
(for instance: {'pk': 1})

	Page: you can also pass a page object directly, in which case there will
be no database lookup.

If you know the exact page you are referring to, it is a good idea to use a
reverse_id (a string used to uniquely name a page) rather than a
hard-coded numeric ID in your template. For example, you might have a help
page that you want to link to or display parts of on all pages. To do this,
you would first open the help page in the admin interface and enter an ID
(such as help) under the ‘Advanced’ tab of the form. Then you could use
that reverse_id with the appropriate templatetags:

{% show_placeholder "right-column" "help" %}
Help page

If you are referring to a page relative to the current page, you’ll probably
have to use a numeric page ID or a page object. For instance, if you want the
content of the parent page to display on the current page, you can use:

{% show_placeholder "content" request.current_page.parent_id %}

Or, suppose you have a placeholder called teaser on a page that, unless a
content editor has filled it with content specific to the current page, should
inherit the content of its root-level ancestor:

{% placeholder "teaser" or %}
 {% show_placeholder "teaser" request.current_page.get_root %}
{% endplaceholder %}

3.3. show_uncached_placeholder

The same as show_placeholder, but the placeholder contents will not be
cached.

Arguments:

	placeholder_name

	page_lookup (see Page Lookup for more information)

	language (optional)

	site (optional)

Example:

{% show_uncached_placeholder "footer" "footer_container_page" %}

3.4. page_url

Displays the URL of a page in the current language.

Arguments:

	page_lookup (see Page Lookup for more information)

Example:

Help page
Parent page

3.5. page_attribute

This templatetag is used to display an attribute of the current page in the
current language.

Arguments:

	attribute_name

	page_lookup (optional; see Page Lookup for more
information)

Possible values for attribute_name are: "title", "menu_title",
"page_title", "slug", "meta_description", "meta_keywords"
(note that you can also supply that argument without quotes, but this is
deprecated because the argument might also be a template variable).

Example:

{% page_attribute "page_title" %}

If you supply the optional page_lookup argument, you will get the page
attribute from the page found by that argument.

Example:

{% page_attribute "page_title" "my_page_reverse_id" %}
{% page_attribute "page_title" request.current_page.parent_id %}
{% page_attribute "slug" request.current_page.get_root %}

New in version 2.3.2: This template tag supports the as argument. With this you can assign the result
of the template tag to a new variable that you can use elsewhere in the template.

Example:

{% page_attribute "page_title" as title %}
<title>{{ title }}</title>

It even can be used in combination with the page_lookup argument.

Example:

{% page_attribute "page_title" "my_page_reverse_id" as title %}
{{ title }}

3.6. show_menu

The show_menu tag renders the navigation of the current page. You can
overwrite the appearance and the HTML if you add a cms/menu.html template
to your project or edit the one provided with django-cms. show_menu takes
four optional parameters: start_level, end_level, extra_inactive,
and extra_active.

The first two parameters, start_level (default=0) and end_level
(default=100) specify from which level the navigation shoud be rendered
and at which level it should stop. If you have home as a root node and don’t
want to display home you can render the navigation only after level 1.

The third parameter, extra_inactive (default=0), specifies how many levels
of navigation should be displayed if a node is not a direct ancestor or
descendant of the current active node.

Finally, the fourth parameter, extra_active (default=100), specifies how
many levels of descendants of the currently active node should be displayed.

3.6.1. Some Examples

Complete navigation (as a nested list):

 {% show_menu 0 100 100 100 %}

Navigation with active tree (as a nested list):

 {% show_menu 0 100 0 100 %}

Navigation with only one active extra level:

 {% show_menu 0 100 0 1 %}

Level 1 navigation (as a nested list):

 {% show_menu 1 %}

Navigation with a custom template:

{% show_menu 0 100 100 100 "myapp/menu.html" %}

3.7. show_menu_below_id

If you have set an id in the advanced settings of a page, you can display the
submenu of this page with a template tag. For example, we have a page called
meta that is not displayed in the navigation and that has the id “meta”:

 {% show_menu_below_id "meta" %}

You can give it the same optional parameters as show_menu:

 {% show_menu_below_id "meta" 0 100 100 100 "myapp/menu.html" %}

3.8. show_sub_menu

Displays the sub menu of the current page (as a nested list).
Takes one argument that specifies how many levels deep the submenu should be
displayed. The template can be found at cms/sub_menu.html:

 {% show_sub_menu 1 %}

Or with a custom template:

 {% show_sub_menu 1 "myapp/submenu.html" %}

3.9. show_breadcrumb

Renders the breadcrumb navigation of the current page.
The template for the HTML can be found at cms/breadcrumb.html:

{% show_breadcrumb %}

Or with a custom template and only display level 2 or higher:

{% show_breadcrumb 2 "myapp/breadcrumb.html" %}

Usually, only pages visible in the navigation are shown in the
breadcrumb. To include all pages in the breadcrumb, write:

{% show_breadcrumb 0 "cms/breadcrumb.html" 0 %}

If the current URL is not handled by the CMS or by a navigation extender,
the current menu node can not be determined.
In this case you may need to provide your own breadcrumb via the template.
This is mostly needed for pages like login, logout and third-party apps.
This can easily be accomplished by a block you overwrite in your templates.

For example in your base.html:

 {% block breadcrumb %}
 {% show_breadcrumb %}
 {% endblock %}

And then in your app template:

{% block breadcrumb %}
home
My current page
{% endblock %}

3.10. page_language_url

Returns the url of the current page in an other language:

{% page_language_url de %}
{% page_language_url fr %}
{% page_language_url en %}

If the current url has no cms-page and is handled by a navigation extender and
the url changes based on the language, you will need to set a language_changer
function with the set_language_changer function in cms.utils.

For more information, see Internationalization.

3.11. language_chooser

The language_chooser template tag will display a language chooser for the
current page. You can modify the template in menu/language_chooser.html or
provide your own template if necessary.

Example:

{% language_chooser %}

or with custom template:

{% language_chooser "myapp/language_chooser.html" %}

The language_chooser has three different modes in which it will display the
languages you can choose from: “raw” (default), “native”, “current” and “short”.
It can be passed as the last argument to the language_chooser tag as a string.
In “raw” mode, the language will be displayed like its verbose name in the
settings. In “native” mode the languages are displayed in their actual language
(eg. German will be displayed “Deutsch”, Japanese as “日本語” etc). In “current”
mode the languages are translated into the current language the user is seeing
the site in (eg. if the site is displayed in German, Japanese will be displayed
as “Japanisch”). “Short” mode takes the language code (eg. “en”) to display.

If the current url has no cms-page and is handled by a navigation extender and
the url changes based on the language, you will need to set a language_changer
function with the set_language_changer function in menus.utils.

For more information, see Internationalization.

3.12. cms_toolbar

The cms_toolbar templatetag will add the required css and javascript to the
sekizai blocks in the base template. The templatetag has to be placed after the
<body> tag and before any {% cms_placeholder %} occurrences within your HTML.

Example:

<body>
{% cms_toolbar %}
{% placeholder "home" %}
...

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

4. Command Line Interface

You can invoke the django CMS command line interface using the cms Django
command:

python manage.py cms

4.1. Informational commands

4.1.1. cms list

The list command is used to display information about your installation.

It has two subcommands:

	cms list plugins lists all plugins that are used in your project.

	cms list apphooks lists all apphooks that are used in your project.

4.2. Plugin and apphook management commands

4.2.1. cms uninstall

The uninstall subcommand can be used to make uninstalling a CMS
Plugin or an apphook easier.

It has two subcommands:

	cms uninstall plugins <plugin name> [<plugin name 2> [...]] uninstalls
one or several plugins by removing them from all pages where they are
used. Note that the plugin name should be the name of the class that is
registered in the django CMS. If you are unsure about the plugin name, use
the cms list to see a list of installed plugins.

	cms uninstall apphooks <apphook name> [<apphook name 2> [...]] uninstalls
one or several apphooks by removing them from all pages where they are
used. Note that the apphook name should be the name of the class that is
registered in the django CMS. If you are unsure about the apphook name, use
the cms list to see a list of installed apphooks.

Warning

The uninstall command permanently deletes data from your database.
You should make a backup of your database before using them!

4.3. Moderator commands

4.3.1. cms moderator

If you turn CMS_MODERATOR to True on an existing project, you
should use the cms moderator on command to make the required changes in the
database, otherwise you will have problems with invisible pages.

Warning

This command alters data in your database. You should make a backup of
your database before using it!

4.4. MPTT repair command

4.4.1. cms mptt-repair

Occasionally, the MPTT structure in which pages and plugins are held can
accumulate small errors. These are typically the result of failed operations or
large and complex restructurings of the tree (perhaps even cosmic rays,
planetary alignment or other mysterious conditions).

Usually you won’t even notice them, and they won’t affect the operation of the
system, but when you run into trouble it’s useful to be able to rebuild the tree
- it’s also useful to rebuild it as part of preventative maintenance.

Warning

This command alters data in your database. You should make a backup of
your database before using it!

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

5. Permissions

In django-cms you can set two types of permissions:

	View restrictions for restricting front-end view access to users

	Page permissions for allowing staff users to only have rights on certain sections of certain sites

To enable these features, settings.py requires:

CMS_PERMISSION = True

5.1. View restrictions

View restrictions can be set-up from the View restrictions formset on any cms page.
Once a page has at least one view restriction installed, only users with granted access will be able to see that page.
Mind that this restriction is for viewing the page as an end-user (front-end view), not viewing the page in the admin interface!

View restrictions are also controlled by the CMS_PUBLIC_FOR setting. Possible values are all and staff.
This setting decides if pages without any view restrictions are:

	viewable by everyone – including anonymous users (all)

	viewable by staff users only (staff)

5.2. Page permissions

After setting CMS_PERMISSION = True you will have three new models in the admin index:

	Users (page)

	User groups (page)

	Pages global permissions

Using Users (page) you can easily add users with permissions over cms pages.

You would be able to create an user with the same set of permissions using the usual Auth.User model, but using Users (page) is more convenient.

A new user created using Users (page) with given page add/edit/delete rights will not be able to make any changes to pages straight away.
The user must first be assigned to a set of pages over which he may exercise these rights.
This is done using the Page permissions formset on any page or by using Pages global Permissions.

The Page permission formset has multiple checkboxes defining different permissions: can edit, can add, can delete, can change advanced settings, can publish, can move and can change permission.
These define what kind of actions the user/group can do on the pages on which the permissions are being granted through the Grant on drop-down.

Can change permission refers to whether the user can change the permissions of his subordinate users. Bob is the subordinate of Alice if one of:

	Bob was created by Alice

	Bob has at least one page permission set on one of the pages on which Alice has the Can change permissions right

Note: Mind that even though a new user has permissions to change a page, that doesn’t give him permissions to add a plugin within that page.
In order to be able to add/change/delete plugins on any page, you will need to go through the usual Auth.User model and give the new user permissions to each plugin you want him to have access to.
Example: if you want the new user to be able to use the text plugin, you will need to give him the following rights: text | text | Can add text, text | text | Can change text, text | text | Can delete text.

Using the Pages global permissions model you can give a set of permissions to all pages in a set of sites.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

1. Extending the CMS: Examples

From this point onwards, this tutorial assumes you have done the
Django Tutorial [http://docs.djangoproject.com/en/1.2/intro/tutorial01/] and will show you how to integrate the tutorial’s poll app into the
django CMS. Hereafter, if a poll app is mentioned, we are referring to the one you get
after completing the Django Tutorial [http://docs.djangoproject.com/en/1.2/intro/tutorial01/].
Also, make sure the poll app is in your INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS].

We assume your main urls.py looks something like this:

from django.conf.urls.defaults import *

from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns('',
 (r'^admin/', include(admin.site.urls)),
 (r'^polls/', include('polls.urls')),
 (r'^', include('cms.urls')),
)

1.1. My First Plugin

A Plugin is a small bit of content that you can place on your pages.

1.1.1. The Model

For our polling app we would like to have a small poll plugin which shows a
poll and lets the user vote.

In your poll application’s models.py add the following:

from cms.models import CMSPlugin

class PollPlugin(CMSPlugin):
 poll = models.ForeignKey('polls.Poll', related_name='plugins')

 def __unicode__(self):
 return self.poll.question

Note

django CMS plugins must inherit from cms.models.CMSPlugin
(or a subclass thereof) and not
models.Model [http://readthedocs.org/docs/django/en/latest/ref/models/instances.html#django.db.models.Model].

Run manage.py syncdb to create the database tables for this model or see
Using South with django CMS to see how to do it using South [http://south.aeracode.org/].

1.1.2. The Plugin Class

Now create a file cms_plugins.py in the same folder your models.py is
in. After having followed the Django Tutorial [http://docs.djangoproject.com/en/1.2/intro/tutorial01/] and adding this file your polls
app folder should look like this:

polls/
 __init__.py
 cms_plugins.py
 models.py
 tests.py
 views.py

The plugin class is responsible for providing the django CMS with the necessary
information to render your Plugin.

For our poll plugin, write the following plugin class:

from cms.plugin_base import CMSPluginBase
from cms.plugin_pool import plugin_pool
from polls.models import PollPlugin as PollPluginModel
from django.utils.translation import ugettext as _

class PollPlugin(CMSPluginBase):
 model = PollPluginModel # Model where data about this plugin is saved
 name = _("Poll Plugin") # Name of the plugin
 render_template = "polls/plugin.html" # template to render the plugin with

 def render(self, context, instance, placeholder):
 context.update({'instance':instance})
 return context

plugin_pool.register_plugin(PollPlugin) # register the plugin

Note

All plugin classes must inherit from
cms.plugin_base.CMSPluginBase and must register themselves
with the cms.plugin_pool.plugin_pool.

1.1.3. The Template

You probably noticed the
render_template
attribute in the above plugin class. In order for our plugin to work, that template must
exist and is responsible for rendering the plugin.

The template should look something like this:

<h1>{{ instance.poll.question }}</h1>

<form action="{% url polls.views.vote instance.poll.id %}" method="post">
{% csrf_token %}
{% for choice in instance.poll.choice_set.all %}
 <input type="radio" name="choice" id="choice{{ forloop.counter }}" value="{{ choice.id }}" />
 <label for="choice{{ forloop.counter }}">{{ choice.choice }}</label>

{% endfor %}
<input type="submit" value="Vote" />
</form>

Note

We don’t show the errors here, because when submitting the form you’re
taken off this page to the actual voting page.

1.2. My First App (apphook)

Right now, external apps are statically hooked into the main urls.py. This
is not the preferred approach in the django CMS. Ideally you attach your apps to CMS
pages.

For that purpose you write a CMSApp. That is
just a small class telling the CMS how to include that app.

CMS Apps live in a file called cms_app.py, so go ahead and create it to
make your polls app look like this:

polls/
 __init__.py
 cms_app.py
 cms_plugins.py
 models.py
 tests.py
 views.py

In this file, write:

from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool
from django.utils.translation import ugettext_lazy as _

class PollsApp(CMSApp):
 name = _("Poll App") # give your app a name, this is required
 urls = ["polls.urls"] # link your app to url configuration(s)

apphook_pool.register(PollsApp) # register your app

Now remove the inclusion of the polls urls in your main urls.py so it looks
like this:

from django.conf.urls.defaults import *

from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns('',
 (r'^admin/', include(admin.site.urls)),
 (r'^', include('cms.urls')),
)

Now open your admin in your browser and edit a CMS Page. Open the ‘Advanced
Settings’ tab and choose ‘Polls App’ for your ‘Application’.

[image: apphooks]

Unfortunately, for these changes to take effect, you will have to restart
your server. So do that and afterwards if you navigate to that CMS Page, you will see
your polls application.

1.3. My First Menu

Now you might have noticed that the menu tree stops at the CMS Page you created
in the last step. So let’s create a menu that shows a node for each poll you
have active.

For this we need a file called menu.py. Create it and ensure your polls app
looks like this:

polls/
 __init__.py
 cms_app.py
 cms_plugins.py
 menu.py
 models.py
 tests.py
 views.py

In your menu.py write:

from cms.menu_bases import CMSAttachMenu
from menus.base import Menu, NavigationNode
from menus.menu_pool import menu_pool
from django.core.urlresolvers import reverse
from django.utils.translation import ugettext_lazy as _
from polls.models import Poll

class PollsMenu(CMSAttachMenu):
 name = _("Polls Menu") # give the menu a name, this is required.

 def get_nodes(self, request):
 """
 This method is used to build the menu tree.
 """
 nodes = []
 for poll in Poll.objects.all():
 # the menu tree consists of NavigationNode instances
 # Each NavigationNode takes a label as its first argument, a URL as
 # its second argument and a (for this tree) unique id as its third
 # argument.
 node = NavigationNode(
 poll.question,
 reverse('polls.views.detail', args=(poll.pk,)),
 poll.pk
)
 nodes.append(node)
 return nodes
menu_pool.register_menu(PollsMenu) # register the menu.

At this point this menu alone doesn’t do a whole lot. We have to attach it to the
Apphook first.

So open your cms_apps.py and write:

from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool
from polls.menu import PollsMenu
from django.utils.translation import ugettext_lazy as _

class PollsApp(CMSApp):
 name = _("Poll App")
 urls = ["polls.urls"]
 menus = [PollsMenu] # attach a CMSAttachMenu to this apphook.

apphook_pool.register(PollsApp)

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

2. Custom Plugins

CMS Plugins are reusable content publishers that can be inserted into django
CMS pages (or indeed into any content that uses django CMS placeholders). They
enable the publishing of information automatically, without further intervention.

This means that your published web content, whatever it is, is kept
up-to-date at all times.

It’s like magic, but quicker.

Unless you’re lucky enough to discover that your needs can be met by the
built-in plugins, or by the many available 3rd-party plugins, you’ll have
to write your own custom CMS Plugin. Don’t worry though -
writing a CMS Plugin is rather simple.

2.1. Why would you need to write a plugin?

A plugin is the most convenient way to integrate content from another Django
app into a django CMS page.

For example, suppose you’re developing a site for a record company in django
CMS. You might like to have a “Latest releases” box on your site’s home page.

Of course, you could every so often edit that page and update the information.
However, a sensible record company will manage its catalogue in Django too,
which means Django already knows what this week’s new releases are.

This is an excellent opportunity to make use of that information to make your
life easier - all you need to do is create a django CMS plugin that you can
insert into your home page, and leave it to do the work of publishing information
about the latest releases for you.

Plugins are reusable. Perhaps your record company is producing a series of
reissues of seminal Swiss punk records; on your site’s page about the series,
you could insert the same plugin, configured a little differently, that will
publish information about recent new releases in that series.

2.2. Overview

A django CMS plugin is fundamentally composed of three things.

	a plugin editor, to configure a plugin each time it is deployed

	a plugin publisher, to do the automated work of deciding what to publish

	a plugin template, to render the information into a web page

These correspond to the familiar Model-View-Template scheme:

	the plugin model to store its configuration

	the plugin view that works out what needs to be displayed

	the plugin template to render the information

And so to build your plugin, you’ll make it from:

	a subclass of cms.models.pluginmodel.CMSPlugin to
store the configuration for your plugin instances

	a subclass of cms.plugin_base.CMSPluginBase that defines
the operating logic of your plugin

	a template that renders your plugin

2.2.1. A note about cms.plugin_base.CMSPluginBase

cms.plugin_base.CMSPluginBase is actually a subclass of django.contrib.admin.options.ModelAdmin.

It is its render() method that is the plugin’s view function.

2.2.2. An aside on models and configuration

The plugin model, the subclass of cms.models.pluginmodel.CMSPlugin,
is actually optional.

You could have a plugin that doesn’t need to be configured, because it only
ever does one thing.

For example, you could have a plugin that only publishes information
about the top-selling record of the past seven days. Obviously, this wouldn’t
be very flexible - you wouldn’t be able to use the same plugin for the
best-selling release of the last month instead.

Usually, you find that it is useful to be able to configure your plugin, and this
will require a model.

2.3. The simplest plugin

You may use python manage.py startapp to set up the basic layout for you
plugin app. Alternatively, just add a file called cms_plugins.py to an
existing Django application.

In there, you place your plugins. For our example, include the following code:

from cms.plugin_base import CMSPluginBase
from cms.plugin_pool import plugin_pool
from cms.models.pluginmodel import CMSPlugin
from django.utils.translation import ugettext_lazy as _

class HelloPlugin(CMSPluginBase):
 model = CMSPlugin
 name = _("Hello Plugin")
 render_template = "hello_plugin.html"

 def render(self, context, instance, placeholder):
 return context

plugin_pool.register_plugin(HelloPlugin)

Now we’re almost done. All that’s left is to add the template. Add the
following into the root template directory in a file called
hello_plugin.html:

<h1>Hello {% if request.user.is_authenticated %}{{ request.user.first_name }} {{ request.user.last_name}}{% else %}Guest{% endif %}</h1>

This plugin will now greet the users on your website either by their name if
they’re logged in, or as Guest if they’re not.

Now let’s take a closer look at what we did there. The cms_plugins.py files
are where you should define your subclasses of
cms.plugin_base.CMSPluginBase, these classes define the different
plugins.

There are three required attributes on those classes:

	model: The model you wish to use for storing information about this plugin.
If you do not require any special information, for example configuration, to
be stored for your plugins, you can simply use
cms.models.pluginmodel.CMSPlugin (We’ll look at that model more
closely in a bit).

	name: The name of your plugin as displayed in the admin. It is generally
good practice to mark this string as translatable using
django.utils.translation.ugettext_lazy() [http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.ugettext_lazy], however this is optional.

	render_template: The template to render this plugin with.

In addition to those three attributes, you must also define a
render() method on your subclasses. It is specifically this render
method that is the view for your plugin.

The render method takes three arguments:

	context: The context with which the page is rendered.

	instance: The instance of your plugin that is rendered.

	placeholder: The name of the placeholder that is rendered.

This method must return a dictionary or an instance of
django.template.Context [http://readthedocs.org/docs/django/en/latest/ref/templates/api.html#django.template.Context], which will be used as context to render the
plugin template.

2.4. Storing configuration

In many cases, you want to store configuration for your plugin instances. For
example, if you have a plugin that shows the latest blog posts, you might want
to be able to choose the amount of entries shown. Another example would be a
gallery plugin where you want to choose the pictures to show for the plugin.

To do so, you create a Django model by subclassing
cms.models.pluginmodel.CMSPlugin in the models.py of an installed
application.

Let’s improve our HelloPlugin from above by making its fallback name for
non-authenticated users configurable.

In our models.py we add the following:

from cms.models.pluginmodel import CMSPlugin

from django.db import models

class Hello(CMSPlugin):
 guest_name = models.CharField(max_length=50, default='Guest')

If you followed the Django tutorial, this shouldn’t look too new to you. The
only difference to normal models is that you subclass
cms.models.pluginmodel.CMSPlugin rather than
django.db.models.base.Model.

Now we need to change our plugin definition to use this model, so our new
cms_plugins.py looks like this:

from cms.plugin_base import CMSPluginBase
from cms.plugin_pool import plugin_pool
from django.utils.translation import ugettext_lazy as _

from models import Hello

class HelloPlugin(CMSPluginBase):
 model = Hello
 name = _("Hello Plugin")
 render_template = "hello_plugin.html"

 def render(self, context, instance, placeholder):
 context['instance'] = instance
 return context

plugin_pool.register_plugin(HelloPlugin)

We changed the model attribute to point to our newly created Hello
model and pass the model instance to the context.

As a last step, we have to update our template to make use of this
new configuration:

<h1>Hello {% if request.user.is_authenticated %}{{ request.user.first_name }} {{ request.user.last_name}}{% else %}{{ instance.guest_name }}{% endif %}</h1>

The only thing we changed there is that we use the template variable
{{ instance.guest_name }} instead of the hardcoded Guest string in the
else clause.

Warning

cms.models.pluginmodel.CMSPlugin subclasses cannot be further
subclassed at the moment. In order to make your plugin models reusable,
please use abstract base models.

Warning

You cannot name your model fields the same as any installed plugins
lower-cased model name, due to the implicit one-to-one relation Django uses
for subclassed models. If you use all core plugins, this includes:
file, flash, googlemap, link, picture, snippetptr,
teaser, twittersearch, twitterrecententries and video.

Additionally, it is recommended that you avoid using page as a model
field, as it is declared as a property of cms.models.pluginmodel.CMSPlugin,
and your plugin will not work as intended in the administration without
further work.

2.4.1. Handling Relations

If your custom plugin has foreign key or many-to-many relations you are
responsible for copying those if necessary whenever the CMS copies the plugin.

To do this you can implement a method called
cms.models.pluginmodel.CMSPlugin.copy_relations() on your plugin
model which gets the old instance of the plugin as an argument.

Let’s assume this is your plugin:

class ArticlePluginModel(CMSPlugin):
 title = models.CharField(max_length=50)
 sections = models.ManyToManyField(Section)

 def __unicode__(self):
 return self.title

Now when the plugin gets copied, you want to make sure the sections stay:

def copy_relations(self, oldinstance):
 self.sections = oldinstance.sections.all()

Your full model now:

class ArticlePluginModel(CMSPlugin):
 title = models.CharField(max_length=50)
 sections = models.ManyToManyField(Section)

 def __unicode__(self):
 return self.title

 def copy_relations(self, oldinstance):
 self.sections = oldinstance.sections.all()

2.5. Advanced

2.5.1. Plugin form

Since cms.plugin_base.CMSPluginBase extends
django.contrib.admin.options.ModelAdmin, you can customize the form
for your plugins just as you would customize your admin interfaces.

Note

If you want to overwrite the form be sure to extend from
admin/cms/page/plugin_change_form.html to have a unified look across the
plugins and to have the preview functionality automatically installed.

2.5.2. Handling media

If your plugin depends on certain media files, javascript or stylesheets, you
can include them from your plugin template using django-sekizai [https://github.com/ojii/django-sekizai]. Your CMS
templates are always enforced to have the css and js sekizai namespaces,
therefore those should be used to include the respective files. For more
information about django-sekizai, please refer to the
django-sekizai documentation [http://django-sekizai.readthedocs.org].

2.5.2.1. Sekizai style

To fully harness the power of django-sekizai, it is helpful to have a consistent
style on how to use it. Here is a set of conventions that should be followed
(but don’t necessarily need to be):

	One bit per addtoblock. Always include one external CSS or JS file per
addtoblock or one snippet per addtoblock. This is needed so
django-sekizai properly detects duplicate files.

	External files should be on one line, with no spaces or newlines between the
addtoblock tag and the HTML tags.

	When using embedded javascript or CSS, the HTML tags should be on a newline.

A good example:

{% load sekizai_tags %}

{% addtoblock "js" %}<script type="text/javascript" src="{{ MEDIA_URL }}myplugin/js/myjsfile.js"></script>{% endaddtoblock %}
{% addtoblock "js" %}<script type="text/javascript" src="{{ MEDIA_URL }}myplugin/js/myotherfile.js"></script>{% endaddtoblock %}
{% addtoblock "css" %}<link rel="stylesheet" type="text/css" href="{{ MEDIA_URL }}myplugin/css/astylesheet.css"></script>{% endaddtoblock %}
{% addtoblock "js" %}
<script type="text/javascript">
 $(document).ready(function(){
 doSomething();
 });
</script>
{% endaddtoblock %}

A bad example:

{% load sekizai_tags %}

{% addtoblock "js" %}<script type="text/javascript" src="{{ MEDIA_URL }}myplugin/js/myjsfile.js"></script>
<script type="text/javascript" src="{{ MEDIA_URL }}myplugin/js/myotherfile.js"></script>{% endaddtoblock %}
{% addtoblock "css" %}
 <link rel="stylesheet" type="text/css" href="{{ MEDIA_URL }}myplugin/css/astylesheet.css"></script>
{% endaddtoblock %}
{% addtoblock "js" %}<script type="text/javascript">
 $(document).ready(function(){
 doSomething();
 });
</script>{% endaddtoblock %}

2.5.3. Plugin Context Processors

Plugin context processors are callables that modify all plugins’ context before
rendering. They are enabled using the CMS_PLUGIN_CONTEXT_PROCESSORS
setting.

A plugin context processor takes 2 arguments:

	instance: The instance of the plugin model

	placeholder: The instance of the placeholder this plugin appears in.

The return value should be a dictionary containing any variables to be added to
the context.

Example:

def add_verbose_name(instance, placeholder):
 '''
 This plugin context processor adds the plugin model's verbose_name to context.
 '''
 return {'verbose_name': instance._meta.verbose_name}

2.5.4. Plugin Processors

Plugin processors are callables that modify all plugins’ output after rendering.
They are enabled using the CMS_PLUGIN_PROCESSORS setting.

A plugin processor takes 4 arguments:

	instance: The instance of the plugin model

	placeholder: The instance of the placeholder this plugin appears in.

	rendered_content: A string containing the rendered content of the plugin.

	original_context: The original context for the template used to render
the plugin.

Note

Plugin processors are also applied to plugins embedded in Text
plugins (and any custom plugin allowing nested plugins). Depending on
what your processor does, this might break the output. For example,
if your processor wraps the output in a div tag, you might end up
having div tags inside of p tags, which is invalid. You can
prevent such cases by returning rendered_content unchanged if
instance._render_meta.text_enabled is True, which is the case
when rendering an embedded plugin.

2.5.4.1. Example

Suppose you want to wrap each plugin in the main placeholder in a colored
box but it would be too complicated to edit each individual plugin’s template:

In your settings.py:

CMS_PLUGIN_PROCESSORS = (
 'yourapp.cms_plugin_processors.wrap_in_colored_box',
)

In your yourapp.cms_plugin_processors.py:

def wrap_in_colored_box(instance, placeholder, rendered_content, original_context):
 '''
 This plugin processor wraps each plugin's output in a colored box if it is in the "main" placeholder.
 '''
 # Plugins not in the main placeholder should remain unchanged
 # Plugins embedded in Text should remain unchanged in order not to break output
 if placeholder.slot != 'main' or (instance._render_meta.text_enabled and instance.parent):
 return rendered_content
 else:
 from django.template import Context, Template
 # For simplicity's sake, construct the template from a string:
 t = Template('<div style="border: 10px {{ border_color }} solid; background: {{ background_color }};">{{ content|safe }}</div>')
 # Prepare that template's context:
 c = Context({
 'content': rendered_content,
 # Some plugin models might allow you to customize the colors,
 # for others, use default colors:
 'background_color': instance.background_color if hasattr(instance, 'background_color') else 'lightyellow',
 'border_color': instance.border_color if hasattr(instance, 'border_color') else 'lightblue',
 })
 # Finally, render the content through that template, and return the output
 return t.render(c)

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

3. App Integration

It is pretty easy to integrate your own Django applications with django CMS.
You have 5 ways of integrating your app:

	Menus

Statically extend the menu entries

	Attach Menus

Attach your menu to a page.

	App-Hooks

Attach whole apps with optional menu to a page.

	Navigation Modifiers

Modify the whole menu tree

	Custom Plugins

Display your models / content in cms pages

3.1. Menus

Create a menu.py in your application and write the following inside:

from menus.base import Menu, NavigationNode
from menus.menu_pool import menu_pool
from django.utils.translation import ugettext_lazy as _

class TestMenu(Menu):

 def get_nodes(self, request):
 nodes = []
 n = NavigationNode(_('sample root page'), "/", 1)
 n2 = NavigationNode(_('sample settings page'), "/bye/", 2)
 n3 = NavigationNode(_('sample account page'), "/hello/", 3)
 n4 = NavigationNode(_('sample my profile page'), "/hello/world/", 4, 3)
 nodes.append(n)
 nodes.append(n2)
 nodes.append(n3)
 nodes.append(n4)
 return nodes

menu_pool.register_menu(TestMenu)

If you refresh a page you should now see the menu entries from above.
The get_nodes function should return a list of
NavigationNode instances. A
NavigationNode takes the following arguments:

	title

What the menu entry should read as

	url,

Link if menu entry is clicked.

	id

A unique id for this menu.

	parent_id=None

If this is a child of another node supply the the id of the parent here.

	parent_namespace=None

If the parent node is not from this menu you can give it the parent
namespace. The namespace is the name of the class. In the above example that
would be: “TestMenu”

	attr=None

A dictionary of additional attributes you may want to use in a modifier or
in the template.

	visible=True

Whether or not this menu item should be visible.

Additionally, each NavigationNode provides a number of methods which are
detailed in the NavigationNode API references.

3.2. Attach Menus

Classes that extend from menus.base.Menu always get attached to the
root. But if you want the menu to be attached to a CMS Page you can do that as
well.

Instead of extending from Menu you need to extend from
cms.menu_bases.CMSAttachMenu and you need to define a name. We will do
that with the example from above:

from menus.base import NavigationNode
from menus.menu_pool import menu_pool
from django.utils.translation import ugettext_lazy as _
from cms.menu_bases import CMSAttachMenu

class TestMenu(CMSAttachMenu):

 name = _("test menu")

 def get_nodes(self, request):
 nodes = []
 n = NavigationNode(_('sample root page'), "/", 1)
 n2 = NavigationNode(_('sample settings page'), "/bye/", 2)
 n3 = NavigationNode(_('sample account page'), "/hello/", 3)
 n4 = NavigationNode(_('sample my profile page'), "/hello/world/", 4, 3)
 nodes.append(n)
 nodes.append(n2)
 nodes.append(n3)
 nodes.append(n4)
 return nodes

menu_pool.register_menu(TestMenu)

Now you can link this Menu to a page in the ‘Advanced’ tab of the page
settings under attached menu.

Each must have a get_menu_title() method, a
get_absolute_url() [http://readthedocs.org/docs/django/en/latest/ref/models/instances.html#django.db.models.Model.get_absolute_url] method, and a childrens
list with all of its children inside (the ‘s’ at the end of childrens is
done on purpose because children is already taken by django-mptt).

Be sure that get_menu_title() and get_absolute_url() don’t trigger
any queries when called in a template or you may have some serious performance
and database problems with a lot of queries.

It may be wise to cache the output of get_nodes(). For
this you may need to write a wrapper class because of dynamic content that the
pickle module can’t handle.

If you want to display some static pages in the navigation (“login”, for
example) you can write your own “dummy” class that adheres to the conventions
described above.

A base class for this purpose can be found in cms/utils/navigation.py

3.3. App-Hooks

With App-Hooks you can attach whole Django applications to pages. For example
you have a news app and you want it attached to your news page.

To create an apphook create a cms_app.py in your application. And in it
write the following:

from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool
from django.utils.translation import ugettext_lazy as _

class MyApphook(CMSApp):
 name = _("My Apphook")
 urls = ["myapp.urls"]

apphook_pool.register(MyApphook)

Replace myapp.urls with the path to your applications urls.py.

Now edit a page and open the advanced settings tab. Select your new apphook
under “Application”. Save the page.

Warning

If you are on a multi-threaded server (mostly all webservers,
except the dev-server): Restart the server because the URLs are cached by
Django and in a multi-threaded environment we don’t know which caches are
cleared yet.

Note

If at some point you want to remove this apphook after deleting the cms_app.py
there is a cms management command called uninstall apphooks
that removes the specified apphook(s) from all pages by name.
eg. manage.py cms uninstall apphooks MyApphook.
To find all names for uninstallable apphooks there is a command for this as well
manage.py cms list apphooks.

If you attached the app to a page with the url /hello/world/ and the app has
a urls.py that looks like this:

from django.conf.urls.defaults import *

urlpatterns = patterns('sampleapp.views',
 url(r'^$', 'main_view', name='app_main'),
 url(r'^sublevel/$', 'sample_view', name='app_sublevel'),
)

The main_view should now be available at /hello/world/ and the
sample_view has the url /hello/world/sublevel/.

Note

All views that are attached like this must return a
RequestContext [http://readthedocs.org/docs/django/en/latest/ref/templates/api.html#django.template.RequestContext] instance instead of the
default Context [http://readthedocs.org/docs/django/en/latest/ref/templates/api.html#django.template.Context] instance.

3.3.1. Language Namespaces

An additional feature of apphooks is that if you use the
cms.middleware.multilingual.MultilingualURLMiddleware all apphook urls
are language namespaced.

What this means:

To reverse the first url from above you would use something like this in your
template:

{% url app_main %}

If you want to access the same url but in a different language use a language
namespace:

{% url de:app_main %}
{% url en:app_main %}
{% url fr:app_main %}

If you want to add a menu to that page as well that may represent some views
in your app add it to your apphook like this:

from myapp.menu import MyAppMenu

class MyApphook(CMSApp):
 name = _("My Apphook")
 urls = ["myapp.urls"]
 menus = [MyAppMenu]

apphook_pool.register(MyApphook)

For an example if your app has a Category model and you want this
category model to be displayed in the menu when you attach the app to a page.
We assume the following model:

from django.db import models
from django.core.urlresolvers import reverse
import mptt

class Category(models.Model):
 parent = models.ForeignKey('self', blank=True, null=True)
 name = models.CharField(max_length=20)

 def __unicode__(self):
 return self.name

 def get_absolute_url(self):
 return reverse('category_view', args=[self.pk])

try:
 mptt.register(Category)
except mptt.AlreadyRegistered:
 pass

We would now create a menu out of these categories:

from menus.base import NavigationNode
from menus.menu_pool import menu_pool
from django.utils.translation import ugettext_lazy as _
from cms.menu_bases import CMSAttachMenu
from myapp.models import Category

class CategoryMenu(CMSAttachMenu):

 name = _("test menu")

 def get_nodes(self, request):
 nodes = []
 for category in Category.objects.all().order_by("tree_id", "lft"):
 node = NavigationNode(
 category.name,
 category.get_absolute_url(),
 category.pk,
 category.parent_id
)
 nodes.append(node)
 return nodes

menu_pool.register_menu(CategoryMenu)

If you add this menu now to your app-hook:

from myapp.menus import CategoryMenu

class MyApphook(CMSApp):
 name = _("My Apphook")
 urls = ["myapp.urls"]
 menus = [MyAppMenu, CategoryMenu]

You get the static entries of MyAppMenu and the dynamic entries of
CategoryMenu both attached to the same page.

3.4. Navigation Modifiers

Navigation Modifiers give your application access to navigation menus.

A modifier can change the properties of existing nodes or rearrange entire
menus.

3.4.1. An example use-case

A simple example: you have a news application that publishes pages
independently of django CMS. However, you would like to integrate the
application into the menu structure of your site, so that at appropriate
places a News node appears in the navigation menu.

In such a case, a Navigation Modifier is the solution.

3.4.2. How it works

Normally, you’d want to place modifiers in your application’s
menu.py.

To make your modifier available, it then needs to be registered with
menus.menu_pool.menu_pool.

Now, when a page is loaded and the menu generated, your modifier will
be able to inspect and modify its nodes.

A simple modifier looks something like this:

from menus.base import Modifier
from menus.menu_pool import menu_pool

class MyMode(Modifier):
 """

 """
 def modify(self, request, nodes, namespace, root_id, post_cut, breadcrumb):
 if post_cut:
 return nodes
 count = 0
 for node in nodes:
 node.counter = count
 count += 1
 return nodes

menu_pool.register_modifier(MyMode)

It has a method modify() that should return a list
of NavigationNode instances.
modify() should take the following arguments:

	request

A Django request instance. You want to modify based on sessions, or
user or permissions?

	nodes

All the nodes. Normally you want to return them again.

	namespace

A Menu Namespace. Only given if somebody requested a menu with only nodes
from this namespace.

	root_id

Was a menu request based on an ID?

	post_cut

Every modifier is called two times. First on the whole tree. After that the
tree gets cut to only show the nodes that are shown in the current menu.
After the cut the modifiers are called again with the final tree. If this is
the case post_cut is True.

	breadcrumb

Is this not a menu call but a breadcrumb call?

Here is an example of a built-in modifier that marks all node levels:

class Level(Modifier):
 """
 marks all node levels
 """
 post_cut = True

 def modify(self, request, nodes, namespace, root_id, post_cut, breadcrumb):
 if breadcrumb:
 return nodes
 for node in nodes:
 if not node.parent:
 if post_cut:
 node.menu_level = 0
 else:
 node.level = 0
 self.mark_levels(node, post_cut)
 return nodes

 def mark_levels(self, node, post_cut):
 for child in node.children:
 if post_cut:
 child.menu_level = node.menu_level + 1
 else:
 child.level = node.level + 1
 self.mark_levels(child, post_cut)

menu_pool.register_modifier(Level)

3.5. Custom Plugins

If you want to display content of your apps on other pages custom plugins are
a great way to accomplish that. For example, if you have a news app and you
want to display the top 10 news entries on your homepage, a custom plugin is
the way to go.

For a detailed explanation on how to write custom plugins please head over to
the Custom Plugins section.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

4. API References

4.1. cms.api

Python APIs for creating CMS contents. This is done in cms.api and not
on the models and managers, because the direct API via models and managers is
slightly counterintuitive for developers. Also the functions defined in this
module do sanity checks on arguments.

Warning

None of the functions in this module does any security or permission
checks. They verify their input values to be sane wherever
possible, however permission checks should be implemented manually
before calling any of these functions.

4.1.1. Functions and constants

	
cms.api.VISIBILITY_ALL

	Used for the limit_menu_visibility keyword argument to
create_page(). Does not limit menu visibility.

	
cms.api.VISIBILITY_USERS

	Used for the limit_menu_visibility keyword argument to
create_page(). Limits menu visibility to authenticated users.

	
cms.api.VISIBILITY_STAFF

	Used for the limit_menu_visibility keyword argument to
create_page(). Limits menu visibility to staff users.

	
cms.api.create_page(title, template, language, menu_title=None, slug=None, apphook=None, redirect=None, meta_description=None, meta_keywords=None, created_by='python-api', parent=None, publication_date=None, publication_end_date=None, in_navigation=False, soft_root=False, reverse_id=None, navigation_extenders=None, published=False, site=None, login_required=False, limit_visibility_in_menu=VISIBILITY_ALL, position="last-child")

	Creates a cms.models.pagemodel.Page instance and returns it. Also
creates a cms.models.titlemodel.Title instance for the specified
language.

	Parameters:	
	title (string [http://docs.python.org/2.6/library/string.html#module-string]) – Title of the page

	template (string [http://docs.python.org/2.6/library/string.html#module-string]) – Template to use for this page. Must be in CMS_TEMPLATES

	language (string [http://docs.python.org/2.6/library/string.html#module-string]) – Language code for this page. Must be in LANGUAGES [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-LANGUAGES]

	menu_title (string [http://docs.python.org/2.6/library/string.html#module-string]) – Menu title for this page

	slug (string [http://docs.python.org/2.6/library/string.html#module-string]) – Slug for the page, by default uses a slugified version of title

	apphook (string or cms.app_base.CMSApp subclass) – Application to hook on this page, must be a valid apphook

	redirect (string [http://docs.python.org/2.6/library/string.html#module-string]) – URL redirect (only applicable if CMS_REDIRECTS is True)

	meta_description (string [http://docs.python.org/2.6/library/string.html#module-string]) – Description of this page for SEO

	meta_keywords (string [http://docs.python.org/2.6/library/string.html#module-string]) – Keywords for this page for SEO

	created_by (string of django.contrib.auth.models.User [http://readthedocs.org/docs/django/en/latest/ref/contrib/auth.html#django.contrib.auth.models.User] instance) – User that is creating this page

	parent (cms.models.pagemodel.Page instance) – Parent page of this page

	publication_date (datetime [http://docs.python.org/2.6/library/datetime.html#module-datetime]) – Date to publish this page

	publication_end_date (datetime [http://docs.python.org/2.6/library/datetime.html#module-datetime]) – Date to unpublish this page

	in_navigation (boolean) – Whether this page should be in the navigation or not

	soft_root (boolean) – Whether this page is a softroot or not

	reverse_id (string [http://docs.python.org/2.6/library/string.html#module-string]) – Reverse ID of this page (for template tags)

	navigation_extenders (string [http://docs.python.org/2.6/library/string.html#module-string]) – Menu to attach to this page. Must be a valid menu

	published (boolean) – Whether this page should be published or not

	site (django.contrib.sites.models.Site [http://readthedocs.org/docs/django/en/latest/ref/contrib/sites.html#django.contrib.sites.models.Site] instance) – Site to put this page on

	login_required (boolean) – Whether users must be logged in or not to view this page

	limit_menu_visibility (VISIBILITY_ALL or VISIBILITY_USERS or VISIBILITY_STAFF) – Limits visibility of this page in the menu

	position (string [http://docs.python.org/2.6/library/string.html#module-string]) – Where to insert this node if parent is given, must be 'first-child' or 'last-child'

	overwrite_url (string [http://docs.python.org/2.6/library/string.html#module-string]) – Overwritten path for this page

	
cms.api.create_title(language, title, page, menu_title=None, slug=None, apphook=None, redirect=None, meta_description=None, meta_keywords=None, parent=None)

	Creates a cms.models.titlemodel.Title instance and returns it.

	Parameters:	
	language (string [http://docs.python.org/2.6/library/string.html#module-string]) – Language code for this page. Must be in LANGUAGES [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-LANGUAGES]

	title (string [http://docs.python.org/2.6/library/string.html#module-string]) – Title of the page

	page (cms.models.pagemodel.Page instance) – The page for which to create this title

	menu_title (string [http://docs.python.org/2.6/library/string.html#module-string]) – Menu title for this page

	slug (string [http://docs.python.org/2.6/library/string.html#module-string]) – Slug for the page, by default uses a slugified version of title

	apphook (string or cms.app_base.CMSApp subclass) – Application to hook on this page, must be a valid apphook

	redirect (string [http://docs.python.org/2.6/library/string.html#module-string]) – URL redirect (only applicable if CMS_REDIRECTS is True)

	meta_description (string [http://docs.python.org/2.6/library/string.html#module-string]) – Description of this page for SEO

	meta_keywords (string [http://docs.python.org/2.6/library/string.html#module-string]) – Keywords for this page for SEO

	parent (cms.models.pagemodel.Page instance) – Used for automated slug generation

	overwrite_url (string [http://docs.python.org/2.6/library/string.html#module-string]) – Overwritten path for this page

	
cms.api.add_plugin(placeholder, plugin_type, language, position='last-child', **data)

	Adds a plugin to a placeholder and returns it.

	Parameters:	
	placeholder (cms.models.placeholdermodel.Placeholder instance) – Placeholder to add the plugin to

	plugin_type (string or cms.plugin_base.CMSPluginBase subclass, must be a valid plugin) – What type of plugin to add

	language (string [http://docs.python.org/2.6/library/string.html#module-string]) – Language code for this plugin, must be in LANGUAGES [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-LANGUAGES]

	position (string [http://docs.python.org/2.6/library/string.html#module-string]) – Position to add this plugin to the placeholder, must be a valid django-mptt position

	data (kwargs) – Data for the plugin type instance

	
cms.api.create_page_user(created_by, user, can_add_page=True, can_change_page=True, can_delete_page=True, can_recover_page=True, can_add_pageuser=True, can_change_pageuser=True, can_delete_pageuser=True, can_add_pagepermission=True, can_change_pagepermission=True, can_delete_pagepermission=True, grant_all=False)

	Creates a page user for the user provided and returns that page user.

	Parameters:	
	created_by (django.contrib.auth.models.User [http://readthedocs.org/docs/django/en/latest/ref/contrib/auth.html#django.contrib.auth.models.User] instance) – The user that creates the page user

	user (django.contrib.auth.models.User [http://readthedocs.org/docs/django/en/latest/ref/contrib/auth.html#django.contrib.auth.models.User] instance) – The user to create the page user from

	can_* (boolean) – Permissions to give the user

	grant_all (boolean) – Grant all permissions to the user

	
cms.api.assign_user_to_page(page, user, grant_on=ACCESS_PAGE_AND_DESCENDANTS, can_add=False, can_change=False, can_delete=False, can_change_advanced_settings=False, can_publish=False, can_change_permissions=False, can_move_page=False, can_moderate=False, grant_all=False)

	Assigns a user to a page and gives them some permissions. Returns the
cms.models.permissionmodels.PagePermission object that gets
created.

	Parameters:	
	page (cms.models.pagemodel.Page instance) – The page to assign the user to

	user (django.contrib.auth.models.User [http://readthedocs.org/docs/django/en/latest/ref/contrib/auth.html#django.contrib.auth.models.User] instance) – The user to assign to the page

	grant_on (cms.models.moderatormodels.ACCESS_PAGE, cms.models.moderatormodels.ACCESS_CHILDREN, cms.models.moderatormodels.ACCESS_DESCENDANTS or cms.models.moderatormodels.ACCESS_PAGE_AND_DESCENDANTS) – Controls which pages are affected

	can_* – Permissions to grant

	grant_all (boolean) – Grant all permissions to the user

	
cms.api.publish_page(page, user, approve=False)

	Publishes a page and optionally approves that publication.

	Parameters:	
	page (cms.models.pagemodel.Page instance) – The page to publish

	user (django.contrib.auth.models.User [http://readthedocs.org/docs/django/en/latest/ref/contrib/auth.html#django.contrib.auth.models.User] instance) – The user that performs this action

	approve (boolean) – Whether to approve the publication or not

	
cms.api.approve_page(page, user)

	Approves a page.

	Parameters:	
	page (cms.models.pagemodel.Page instance) – The page to approve

	user (django.contrib.auth.models.User [http://readthedocs.org/docs/django/en/latest/ref/contrib/auth.html#django.contrib.auth.models.User] instance) – The user that performs this action

4.1.2. Example workflows

Create a page called 'My Page using the template 'my_template.html' and
add a text plugin with the content 'hello world'. This is done in English:

from cms.api import create_page, add_plugin

page = create_page('My Page', 'my_template.html', 'en')
placeholder = page.placeholders.get(slot='body')
add_plugin(placeholder, 'TextPlugin', 'en', body='hello world')

4.2. cms.plugin_base

	
class cms.plugin_base.CMSPluginBase

	Inherits django.contrib.admin.options.ModelAdmin.

	
admin_preview

	Defaults to True, if False no preview is done in the admin.

	
change_form_template

	Custom template to use to render the form to edit this plugin.

	
form

	Custom form class to be used to edit this plugin.

	
model

	Is the CMSPlugin model we created earlier. If you don’t need
model because you just want to display some template logic, use
CMSPlugin from cms.models as the model instead.

	
module

	Will group the plugin in the plugin editor. If module is None,
plugin is grouped “Generic” group.

	
name

	Will be displayed in the plugin editor.

	
render_plugin

	If set to False, this plugin will not be rendered at all.

	
render_template

	Will be rendered with the context returned by the render function.

	
text_enabled

	Whether this plugin can be used in text plugins or not.

	
icon_alt(instance)

	Returns the alt text for the icon used in text plugins, see
icon_src().

	
icon_src(instance)

	Returns the url to the icon to be used for the given instance when that
instance is used inside a text plugin.

	
render(context, instance, placeholder)

	This method returns the context to be used to render the template
specified in render_template.

	Parameters:	
	context – Current template context.

	instance – Plugin instance that is being rendered.

	placeholder – Name of the placeholder the plugin is in.

	Return type:	dict

4.3. menus.base

	
class menus.base.NavigationNode(title, url, id[, parent_id=None][, parent_namespace=None][, attr=None][, visible=True])

	A navigation node in a menu tree.

	Parameters:	
	title (string [http://docs.python.org/2.6/library/string.html#module-string]) – The title to display this menu item with.

	url (string [http://docs.python.org/2.6/library/string.html#module-string]) – The URL associated with this menu item.

	id – Unique (for the current tree) ID of this item.

	parent_id – Optional, ID of the parent item.

	parent_namespace – Optional, namespace of the parent.

	attr (dict [http://docs.python.org/2.6/library/stdtypes.html#dict]) – Optional, dictionary of additional information to store on
this node.

	visible (bool [http://docs.python.org/2.6/library/functions.html#bool]) – Optional, defaults to True, whether this item is
visible or not.

	
get_descendants()

	Returns a list of all children beneath the current menu item.

	
get_ancestors()

	Returns a list of all parent items, excluding the current menu item.

	
get_absolute_url()

	Utility method to return the URL associated with this menu item,
primarily to follow naming convention asserted by Django.

	
get_menu_title()

	Utility method to return the associated title, using the same naming
convention used by cms.models.pagemodel.Page.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

5. Placeholders outside the CMS

Placeholders are special model fields that django CMS uses to render
user-editable content (plugins) in templates. That is, it’s the place where a
user can add text, video or any other plugin to a webpage, using either the
normal Django admin interface or the so called frontend editing.

Placeholders can be viewed as containers for CMSPlugin instances, and
can be used outside the CMS in custom applications using the
PlaceholderField.

By defining one (or several) PlaceholderField on a custom model you can take
advantage of the full power of CMSPlugin, including frontend editing.

5.1. Quickstart

You need to define a PlaceholderField on the model you would like to
use:

from django.db import models
from cms.models.fields import PlaceholderField

class MyModel(models.Model):
 # your fields
 my_placeholder = PlaceholderField('placeholder_name')
 # your methods

The PlaceholderField takes a string as its first
argument which will be used to configure which plugins can be used in this
placeholder. The configuration is the same as for placeholders in the CMS.

Warning

For security reasons the related_name for a
PlaceholderField may not be surpressed using
'+' to allow the cms to check permissions properly. Attempting to do
so will raise a ValueError.

If you install this model in the admin application, you have to use
PlaceholderAdmin instead of
ModelAdmin [http://readthedocs.org/docs/django/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin] so the interface renders
correctly:

from django.contrib import admin
from cms.admin.placeholderadmin import PlaceholderAdmin
from myapp.models import MyModel

admin.site.register(MyModel, PlaceholderAdmin)

Now to render the placeholder in a template you use the
render_placeholder tag from the
placeholder_tags template tag library:

{% load placeholder_tags %}

{% render_placeholder mymodel_instance.my_placeholder "640" %}

The render_placeholder tag takes a
PlaceholderField instance as its first argument and
optionally accepts a width parameter as its second argument for context sensitive
plugins. The view in which you render your placeholder field must return the
request object in the context. This is
typically achieved in Django applications by using RequestContext:

from django.shortcuts import get_object_or_404, render_to_response
from django.template.context import RequestContext
from myapp.models import MyModel

def my_model_detail(request, id):
 object = get_object_or_404(MyModel, id=id)
 return render_to_response('my_model_detail.html', {
 'object': object,
 }, context_instance=RequestContext(request))

5.2. Adding content to a placeholder

There are two ways to add or edit content to a placeholder, the front-end admin
view and the back-end view.

5.2.1. Using the front-end editor

Probably the simplest way to add content to a placeholder, simply visit the
page displaying your model (where you put the render_placeholder tag),
then append ?edit to the page’s URL. This will make a top banner appear,
and after switching the “Edit mode” button to “on”, the banner will prompt you
for your username and password (the user should be allowed to edit the page,
obviously).

You are now using the so-called front-end edit mode:

[image: edit-banner]

Once in Front-end editing mode, your placeholders should display a menu,
allowing you to add plugins to them. The following screen shot shows a
default selection of plugins in an empty placeholder.

[image: frontend-placeholder-add-plugin]

Plugins are rendered at once, so you can get an idea how it will look
in fine. However, to view the final look of a plugin simply leave edit mode by
clicking the “Edit mode” button in the banner again.

5.3. Fieldsets

There are some hard restrictions if you want to add custom fieldsets to an
admin page with at least one PlaceholderField:

	Every PlaceholderField must be in its own
fieldset [http://readthedocs.org/docs/django/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin.fieldsets], one
PlaceholderField per fieldset.

	You must include the following two classes: 'plugin-holder' and
'plugin-holder-nopage'

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

6. Search and the django CMS

For powerful full-text search within the django CMS, we suggest using
Haystack [http://haystacksearch.org/] together with django-cms-search [https://github.com/piquadrat/django-cms-search].

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

7. Form and model fields

7.1. Model fields

	
class cms.models.fields.PageField

	This is a foreign key field to the cms.models.pagemodel.Page model
that defaults to the cms.forms.fields.PageSelectFormField form
field when rendered in forms. It has the same API as the
django.db.models.fields.related.ForeignKey but does not require
the othermodel argument.

7.2. Form fields

	
class cms.forms.fields.PageSelectFormField

	Behaves like a django.forms.models.ModelChoiceField field for the
cms.models.pagemodel.Page model, but displays itself as a split
field with a select dropdown for the site and one for the page. It also
indents the page names based on what level they’re on, so that the page
select dropdown is easier to use. This takes the same arguments as
django.forms.models.ModelChoiceField.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

1. Introduction

This section doesn’t explain how to do anything, but explains and analyses some key concepts in django CMS.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

2. How the menu system works

2.1. Basic concepts

2.1.1. Registration

The menu system isn’t monolithic. Rather, it is composed of numerous active parts, many of which can operate independently of each other.

What they operate on is a list of menu nodes, that gets passed around the menu system, until it emerges at the other end.

The main active parts of the menu system are menu generators and modifiers.

Some of these parts are supplied with the menus application. Some come from other applications (from the cms application in django CMS, for example, or some other application entirely).

All these active parts need to be registered within the menu system.

Then, when the time comes to build a menu, the system will ask all the registered menu generators and modifiers to get to work on it.

2.1.2. Generators and Modifiers

Menu generators and modifiers are classes.

2.1.2.1. Generators

To add nodes to a menu a generator is required.

There is one in cms for example, which examines the Pages in the database and adds them as nodes.

These classses are subclasses of menus.base.Menu. The one in cms is cms.menu.CMSMenu.

In order to use a generator, its get_nodes() method must be called.

2.1.2.2. Modifiers

A modifier examines the nodes that have been assembled, and modifies them according to its requirements (adding or removing them, or manipulating their attributes, as it sees fit).

An important one in cms (cms.menu.SoftRootCutter) removes the nodes that are no longer required when a soft root is encountered.

These classes are subclasses of menus.base.Modifier. Examples are cms.menu.NavExtender and cms.menu.SoftRootCutter.

In order to use a modifier, its modify() method must be called.

Note that each Modifier’s modify() method can be called twice, before and after the menu has been trimmed.

For example when using the {% show_menu %} templatetag, it’s called:

	first, by menus.menu_pool.MenuPool.get_nodes(), with the argument post_cut = False

	later, by the templatetag, with the argument post_cut = True

This corresponds to the state of the nodes list before and after menus.templatetags.menu_tags.cut_levels(), which removes nodes from the menu according to the arguments provided by the templatetag.

This is because some modification might be required on all nodes, and some might only be required on the subset of nodes left after cutting.

2.1.3. Nodes

Nodes are assembled in a tree. Each node is an instance of the menus.base.NavigationNode class.

A NavigationNode has attributes such as URL, title, parent and children - as one would expect in a navigation tree.

Warning

You can’t assume that a menus.base.NavigationNode represents a django CMS Page. Firstly, some nodes may
represent objects from other applications. Secondly, you can’t expect to be be able to access Page objects via
NavigationNodes.

2.2. How does all this work?

2.2.1. Tracing the logic of the menu system

Let’s look at an example using the {% show_menu %} templatetag. It will be different for other templatetags, and your applications might have their own menu classes. But this should help explain what’s going on and what the menu system is doing.

One thing to understand is that the system passes around a list of nodes, doing various things to it.

Many of the methods below pass this list of nodes to the ones it calls, and return them to the ones that they were in turn called by.

Don’t forget that show_menu recurses - so it will do all of the below for each level in the menu.

	
	{% show_menu %} - the templatetag in the template

	
	
	menus.templatetags.menu_tags.ShowMenu.get_context()

	
	
	menus.menu_pool.MenuPool.get_nodes()

	
	
	menus.menu_pool.MenuPool.discover_menus() checks every application’s menu.py, and registers:

	
	Menu classes, placing them in the self.menus dict

	Modifier classes, placing them in the self.modifiers list

	
	menus.menu_pool.MenuPool._build_nodes()

	
	checks the cache to see if it should return cached nodes

	
	loops over the Menus in self.menus (note: by default the only generator is cms.menu.CMSMenu); for each:

	
	call its get_nodes() - the menu generator

	menus.menu_pool._build_nodes_inner_for_one_menu()

	adds all nodes into a big list

	
	menus.menu_pool.MenuPool.apply_modifiers()

	
	menus.menu_pool.MenuPool._mark_selected()

	loops over each node, comparing its URL with the request.path, and marks the best match as selected

	
	loops over the Modifiers in self.modifiers calling each one’s modify(post_cut=False)(). The default Modifiers are:

	
	cms.menu.NavExtender

	cms.menu.SoftRootCutter removes all nodes below the appropriate soft root

	menus.modifiers.Marker loops over all nodes; finds selected, marks its ancestors, siblings and children

	menus.modifiers.AuthVisibility removes nodes that require authorisation to see

	
	menus.modifiers.Level loops over all nodes; for each one that is a root node (level = 0) passes it to:

	
	menus.modifiers.Level.mark_levels() recurses over a node’s descendants marking their levels

	we’re now back in menus.templatetags.menu_tags.ShowMenu.get_context() again

	if we have been provided a root_id, get rid of any nodes other than its descendants

	menus.templatetags.menu_tags.cut_levels() removes nodes from the menu according to the arguments provided by the templatetag

	
	menu_pool.MenuPool.apply_modifiers(post_cut = True)() loops over all the Modifiers again

	
	cms.menu.NavExtender

	cms.menu.SoftRootCutter

	menus.modifiers.Marker

	menus.modifiers.AuthVisibility

	
	menus.modifiers.Level:

	
	menus.modifiers.Level.mark_levels()

	return the nodes to the context in the variable children

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

3. Serving content in multiple languages

3.1. Basic concepts

django CMS has a sophisticated multilingual capability. It is able to serve
content in multiple languages, with fallbacks into other languages where
translations have not been provided. It also has the facility for the user to set the
preferred language and so on.

3.1.1. How django CMS determines the user’s preferred language

django CMS determines the user’s language based on (in order of priority):

	the language code prefix in the URL (but see Watch out for the bug below)

	the last language the user chose in the language chooser

	the language that the browser says its user prefers

3.1.2. How django CMS determines what language to serve

Once it has identified a user’s language, it will try to accommodate it using the languages set in CMS_LANGUAGES.

If CMS_LANGUAGE_FALLBACK is True, and if the user’s preferred
language is not available for that content, it will use the fallbacks
specified for the language in CMS_LANGUAGE_CONF.

3.1.3. What django CMS shows in your menus

If CMS_HIDE_UNTRANSLATED is True (the default) then pages that
aren’t translated into the desired language will not appear in the menu.

3.2. Follow an example

It helps to understand how the system behaves by stepping through some actual
examples.

	
	the situation:

	
	your browser wants Italian content

	the CMS is set up to provide content in English and Italian

	CMS_HIDE_UNTRANSLATED is False

	the page /some/page

	
	you visit /some/page

	
	the content is served in Italian

	all link URLs (menus etc.) on that page will be prepended with /it

	the page is served at /some/page (i.e. no redirection has taken place)

	
	now you select one of those links /it/some/other/page that is available in Italian

	
	Italian content is served

	the page is served at /it/some/other/page

	
	now you select a link to a page not available in Italian

	
	the link is still /it/some/other/page

	you’ll get the English version, because Italian’s not available

	the path of the new page is /en/some/other/page (i.e. it has redirected)

	some issues (see Watch out for the bug below)

	all links on /en/some/other/page are prepended with /en - even if they are available in Italian

	if you now visit /some/page or any other page without using a language prefix, you’ll get content in English - even though your browser wants Italian

3.3. Watch out for the bug

3.3.1. What goes wrong

As soon as you visit any page with a /en prefix in the path, the system
sets a django_language cookie (which will expire when the browser is quit)
with content “en”.

From now on, the system thinks that you want English content.

Note that this could have happened:

	because you chose English in the language selector (good)

	because you arrived at a /en page from a search engine (possibly bad)

	because the page you wanted in Italian redirected you to an English one without warning or choice (bad)

Note

This is an issue the developers are aware of and are working towards fixing.

3.3.2. What should happen

Your language cookie should only ever get set or changed if:

	you choose a language in the language selector

	your browser has asked for a language (but this can’t override your choice above)

If your cookie contains a particualar language (say, “it”):

	the content should be served in Italian wherever available

	links on a page should be to /it content where available, and fallback where not

When visiting a page only available in English:

	content will have to be in English

	links should be to Italian content where possible

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django cms 2.3.8 documentation

1. Contributing to django CMS

Like every open-source project, django CMS is always looking for motivated
individuals to contribute to its source code.
However, to ensure the highest code quality and keep the repository nice and
tidy, everybody has to follow a few rules (nothing major, I promise :))

1.1. Community

People interested in developing for the django CMS should join the
django-cms-developers [http://groups.google.com/group/django-cms-developers] mailing list as well as heading over to #django-cms on
the freenode [http://freenode.net/] IRC network for help and to discuss the development.

You may also be interested in following @djangocmsstatus [https://twitter.com/djangocmsstatus] on twitter to get the
GitHub commits as well as the hudson build reports. There is also a @djangocms [https://twitter.com/djangocms]
account for less technical announcements.

1.2. In a nutshell

Here’s what the contribution process looks like, in a bullet-points fashion, and
only for the stuff we host on GitHub:

	django CMS is hosted on GitHub [http://www.github.com], at https://github.com/divio/django-cms

	The best method to contribute back is to create an account there, then fork
the project. You can use this fork as if it was your own project, and should
push your changes to it.

	When you feel your code is good enough for inclusion, “send us a pull
request [http://help.github.com/send-pull-requests/]”, by using the nice GitHub web interface.

1.3. Contributing Code

1.3.1. Getting the source code

If you’re interested in developing a new feature for the CMS, it is recommended
that you first discuss it on the django-cms-developers [http://groups.google.com/group/django-cms-developers] mailing list so as
not to do any work that will not get merged in anyway.

	Code will be reviewed and tested by at least one core developer, preferably
by several. Other community members are welcome to give feedback.

	Code must be tested. Your pull request should include unit-tests (that cover
the piece of code you’re submitting, obviously)

	Documentation should reflect your changes if relevant. There is nothing worse
than invalid documentation.

	Usually, if unit tests are written, pass, and your change is relevant, then
it’ll be merged.

Since we’re hosted on GitHub, django CMS uses git [http://git-scm.com/] as a version control system.

The GitHub help [http://help.github.com] is very well written and will get you started on using git
and GitHub in a jiffy. It is an invaluable resource for newbies and old timers
alike.

1.3.2. Syntax and conventions

We try to conform to PEP8 [http://www.python.org/dev/peps/pep-0008/] as much as possible. A few highlights:

	Indentation should be exactly 4 spaces. Not 2, not 6, not 8. 4. Also, tabs
are evil.

	We try (loosely) to keep the line length at 79 characters. Generally the rule
is “it should look good in a terminal-base editor” (eg vim), but we try not be
[Godwin’s law] about it.

1.3.3. Process

This is how you fix a bug or add a feature:

	fork [http://github.com/divio/django-cms] us on GitHub.

	Checkout your fork.

	Hack hack hack, test test test, commit commit commit, test again.

	Push to your fork.

	Open a pull request.

1.3.4. Tests

Having a wide and comprehensive library of unit-tests and integration tests is
of exceeding importance. Contributing tests is widely regarded as a very
prestigious contribution (you’re making everybody’s future work much easier by
doing so). Good karma for you. Cookie points. Maybe even a beer if we meet in
person :)

Generally tests should be:

	Unitary (as much as possible). I.E. should test as much as possible only one
function/method/class. That’s the
very definition of unit tests. Integration tests are interesting too
obviously, but require more time to maintain since they have a higher
probability of breaking.

	Short running. No hard numbers here, but if your one test doubles the time it
takes for everybody to run them, it’s probably an indication that you’re doing
it wrong.

In a similar way to code, pull requests will be reviewed before pulling
(obviously), and we encourage discussion via code review (everybody learns
something this way) or IRC discussions.

1.3.4.1. Running the tests

To run the tests simply execute python setup.py test from your shell.

1.4. Contributing Documentation

Perhaps considered “boring” by hard-core coders, documentation is sometimes even
more important than code! This is what brings fresh blood to a project, and
serves as a reference for old timers. On top of this, documentation is the one
area where less technical people can help most - you just need to write
semi-decent English. People need to understand you. We don’t care about style or
correctness.

Documentation should be:

	We use Sphinx [http://sphinx.pocoo.org/]/restructuredText [http://docutils.sourceforge.net/docs/ref/rst/introduction.html]. So obviously this is the format you should
use :) File extensions should be .rst.

	Written in English. We could discuss how it would bring more people to the
project by having a Klingon or some other translation, but that’s a problem we
will confront once we already have good documentation in English.

	Accessible. You should assume the reader to be moderately familiar with
Python and Django, but not anything else. Link to documentation of libraries
you use, for example, even if they are “obvious” to you (South is the first
example that comes to mind - it’s obvious to any Django programmer, but not to
any newbie at all).
A brief description of what it does is also welcome.

Pulling of documentation is pretty fast and painless. Usually somebody goes over
your text and merges it, since there are no “breaks” and that GitHub parses rst
files automagically it’s really convenient to work with.

Also, contributing to the documentation will earn you great respect from the
core developers. You get good karma just like a test contributor, but you get
double cookie points. Seriously. You rock.

1.4.1. Section style

We use Python documentation conventions for section marking:

	# with overline, for parts

	* with overline, for chapters

	=, for sections

	-, for subsections

	^, for subsubsections

	", for paragraphs

1.5. Translations

For translators we have a Transifex account [https://www.transifex.com/projects/p/django-cms/] where you can translate
the .po files and don’t need to install git or mercurial to be able to
contribute. All changes there will be automatically sent to the project.

Top translations django-cms core:

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	django cms 2.3.8 documentation

 Python Module Index

 c |
 m

 			

 		
 c	

 	[image: -]
 	
 cms	

 	
 	
 cms.api	

 	
 	
 cms.plugin_base	

 			

 		
 m	

 	[image: -]
 	
 menus	

 	
 	
 menus.base	

 Navigation

 	
 index

 	
 modules |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	django cms 2.3.8 documentation

 Index

 A | C | F | G | I | L | M | N | P | R | S | T | V

A

	

	add_plugin() (in module cms.api)

	admin_preview (cms.plugin_base.CMSPluginBase attribute)

	approve_page() (in module cms.api)

	
	assign_user_to_page() (in module cms.api)

C

	

	change_form_template (cms.plugin_base.CMSPluginBase attribute)

	cms.api (module)

	cms.forms.fields.PageSelectFormField (built-in class)

	cms.models.fields.PageField (built-in class)

	cms.plugin_base (module)

	CMS_APPHOOKS

 	
 	setting

	CMS_CACHE_DURATIONS

 	
 	setting

	CMS_CACHE_PREFIX

 	
 	setting

	CMS_FLAT_URLS

 	
 	setting

	CMS_FRONTEND_LANGUAGES

 	
 	setting

	CMS_HIDE_UNTRANSLATED

 	
 	setting

	CMS_LANGUAGE_CONF

 	
 	setting

	CMS_LANGUAGE_FALLBACK

 	
 	setting

	CMS_LANGUAGES

 	
 	setting

	CMS_MEDIA_PATH

 	
 	setting

	CMS_MEDIA_ROOT

 	
 	setting

	CMS_MEDIA_URL

 	
 	setting

	CMS_MENU_TITLE_OVERWRITE

 	
 	setting

	CMS_MODERATOR

 	
 	setting

	CMS_PAGE_MEDIA_PATH

 	
 	setting

	
	CMS_PERMISSION

 	
 	setting

	CMS_PLACEHOLDER_CONF

 	
 	setting

	CMS_PLUGIN_CONTEXT_PROCESSORS

 	
 	setting

	CMS_PLUGIN_PROCESSORS

 	
 	setting

	CMS_PUBLIC_FOR

 	
 	setting

	CMS_REDIRECTS

 	
 	setting

	CMS_SEO_FIELDS

 	
 	setting

	CMS_SHOW_END_DATE

 	
 	setting

	CMS_SHOW_START_DATE

 	
 	setting

	CMS_SITE_LANGUAGES

 	
 	setting

	CMS_SOFTROOT

 	
 	setting

	CMS_TEMPLATE_INHERITANCE

 	
 	setting

	CMS_TEMPLATES

 	
 	setting

	cms_toolbar

 	
 	template tag

	CMS_URL_OVERWRITE

 	
 	setting

	CMSPluginBase (class in cms.plugin_base)

	create_page() (in module cms.api)

	create_page_user() (in module cms.api)

	create_title() (in module cms.api)

F

	

	form (cms.plugin_base.CMSPluginBase attribute)

	

G

	

	get_absolute_url() (menus.base.NavigationNode method)

	get_ancestors() (menus.base.NavigationNode method)

	get_descendants() (menus.base.NavigationNode method)

	
	get_menu_title() (menus.base.NavigationNode method)

I

	

	icon_alt() (cms.plugin_base.CMSPluginBase method)

	icon_src() (cms.plugin_base.CMSPluginBase method)

	

L

	

	language_chooser

 	
 	template tag

	

M

	

	menus.base (module)

	model (cms.plugin_base.CMSPluginBase attribute)

	
	module (cms.plugin_base.CMSPluginBase attribute)

N

	

	name (cms.plugin_base.CMSPluginBase attribute)

	NavigationNode (class in menus.base)

	

P

	

	page_attribute

 	
 	template tag

	page_language_url

 	
 	template tag

	page_url

 	
 	template tag

	
	placeholder

 	
 	template tag

	PLACEHOLDER_FRONTEND_EDITING

 	
 	setting

	publish_page() (in module cms.api)

R

	

	render() (cms.plugin_base.CMSPluginBase method)

	render_plugin (cms.plugin_base.CMSPluginBase attribute)

	
	render_template (cms.plugin_base.CMSPluginBase attribute)

S

	

	setting

 	
 	CMS_APPHOOKS

 	CMS_CACHE_DURATIONS

 	CMS_CACHE_PREFIX

 	CMS_FLAT_URLS

 	CMS_FRONTEND_LANGUAGES

 	CMS_HIDE_UNTRANSLATED

 	CMS_LANGUAGES

 	CMS_LANGUAGE_CONF

 	CMS_LANGUAGE_FALLBACK

 	CMS_MEDIA_PATH

 	CMS_MEDIA_ROOT

 	CMS_MEDIA_URL

 	CMS_MENU_TITLE_OVERWRITE

 	CMS_MODERATOR

 	CMS_PAGE_MEDIA_PATH

 	CMS_PERMISSION

 	CMS_PLACEHOLDER_CONF

 	CMS_PLUGIN_CONTEXT_PROCESSORS

 	CMS_PLUGIN_PROCESSORS

 	CMS_PUBLIC_FOR

 	CMS_REDIRECTS

 	CMS_SEO_FIELDS

 	CMS_SHOW_END_DATE

 	CMS_SHOW_START_DATE

 	CMS_SITE_LANGUAGES

 	CMS_SOFTROOT

 	CMS_TEMPLATES

 	CMS_TEMPLATE_INHERITANCE

 	CMS_URL_OVERWRITE

 	PLACEHOLDER_FRONTEND_EDITING

	
	show_breadcrumb

 	
 	template tag

	show_menu

 	
 	template tag

	show_menu_below_id

 	
 	template tag

	show_placeholder

 	
 	template tag

	show_sub_menu

 	
 	template tag

	show_uncached_placeholder

 	
 	template tag

T

	

	template tag

 	
 	cms_toolbar

 	language_chooser

 	page_attribute

 	page_language_url

 	page_url

 	placeholder

 	show_breadcrumb

 	show_menu

 	show_menu_below_id

 	show_placeholder

 	show_sub_menu

 	show_uncached_placeholder

	
	text_enabled (cms.plugin_base.CMSPluginBase attribute)

V

	

	VISIBILITY_ALL (in module cms.api)

	VISIBILITY_STAFF (in module cms.api)

	
	VISIBILITY_USERS (in module cms.api)

 Navigation

 	
 index

 	
 modules |

 	django cms 2.3.8 documentation

 Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

 _images/edit-banner.png
django @ Editmode
g n Template v | Pagev | {Xv | Logout

_images/my-first-page.png

_images/it-works-cms.png
django (H

Welcome to the django CMS!
Here is what to do next:

Log into the admin interface
and start adding some pages!

Make sure you pubish them.
Documentation Django-CMS.org

1fyou dont see the jango CMS 1ogo a the en o ths line make sure you Inked the caaedta folder to your media fes: 9jango (EIH)
You're seeing this message because you have oesuc = True in your django settings file and haven't added any pages yet. Get to work!"

_images/hello-cms-world.png
django[@F Editmode

Hello, CMS world!

_static/comment-close.png

_static/up.png

_static/screen3.png
divio. Change passw

Home > Cms > Pages

Select page to change
tle quick actions published in navigation softroot template author

home DE|EN | examplecom ¢/ (A1 & % off o default divio
[products 0 | examplecom s A &% of o default divio
B team 0 | examplecom s A &% of o default divio

Qasx o9 o9 default divio

patrick. D | example.com

_static/minus.png

_images/frontend-placeholder-add-plugin.png
Column Content +v
Double Teaser Plugin (2]

File (Filer)
Flash
Google Map.
image (Filer)
Link

‘SimpleGallery Publication

Sninnat =

_images/first-admin.png
Groups 51 e
users st Croee

Pages a1 g o

Stes #ra1 g crae

Suppets a5 g cramo

Recent Actions

My Actions
None avaible

_images/first-placeholders.png
No Plugins present. Add a phugin o tis placeholder-siot.
Avaiabie Pugins v @Add Plugin

No Plugins present. Add a phugin o tis placeholder-siot.
Avaiabie Pugins v @Add Plugin

_images/it-worked.png
@ € % (O localhost:3000

It worked!

Congratulations on your first Django-powered page.

Of course, you havent actually done any work yet. Here's what to do next:

 If you plan to use a database, edit the DATAZASES Setting in test_project/settings.py.
 Start your first app by running python test_project/manage.py startapp [appname].

Youte seeing this message because you have pezuG = True in your Django settings file and you havent configured any URLS. Get to work!

_images/cmsapphook.png
Home > Cms > Pages » Polls

‘Change page (you can perform actions on this page directly)
[T 3apanese
polis Menu Title:
The defautt tite Overwite what is displayed in the menu
Slug: polls.

The part of the title that is used in the URL

©1s published) In navigation

Publication ate:[| Tosey | B Publication end Date:| | Today |
date: date:
Tim Now | D Time: Now | @
When the page should go live. Status must be "Published" for page to go live. When to expir the page. Leave empty to never expire.

Note: This page reloads if you change the selection. Save it first.

Template: master template. v

The template use to render the content.

No Plugins present. Add a plugin to this placeholder-siot.

Available Plugins v 4Add Plugin

No Plugins present. Add a plugin to this placeholder-siot.

Available Plugins v 4Add Plugin

1d:

An unique identifier that is used with the page_ur templatetag for linking to this page

Overwrite URL:

Keep this field empty i standard path should be used.

Redirects to this URL.

@ Login required

Menu visibility: [v

fimit when this page is visible in the menu

@ Soft root
Al ancestors will no be displayed i the navigation

Application Polis App ¥

to this page.
e

SEO Settings (Show)

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		django cms 2.3.8 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 Navigation

 		
 index

 		
 modules |

 		django cms 2.3.8 documentation »

 © Copyright 2009, Patrick Lauber.
 Created using Sphinx 1.3.5.

_static/screen1.png
oy S PRgerRaae
Change page «zETmD

The defaut itle “The part of the tite that is used in the url

Status: Published | ¢

Note: This page reloads if you change the selection. Save it first.

English | ¢
“The current language of the content fields.

Languag

Template: default |4
“The template used to render the conten.

Advanced Settings (Show)
No Plugin selected. Selected one on the left side

Picture [pony |

Text [Welcome toa

Link [Team |

Available Plugins | ¢ 4 Add Plugin

No Plugins present. Add a plugin to this placeholder-slot.

Available Plugins $ dAdd Plugin
Sveand dd srsvr] v and cominue i |]

2 Delete

_static/down-pressed.png

_static/comment-bright.png

_static/up-pressed.png

_static/plus.png

_static/screen2.png
Bcueslleorl " Welcome to a pony powered site

Text

Text [Welcome to 2

Link [Team | O | [oty

B Finsert plugin. it selected plugin
| Available Plugins | £ Add Plugin

B Containers >
‘elcome i Paragraph
We t0 a pony powered site Farsarash
Heading 2
Heading 3
Heading 4
Heading 5
Heading &

Preformatted
Blockguote

Table Header

Classes
PARA: Date
PARA: Hidden note

No Plugins present. Add a plugin to this placeholder-slot.

*Delee Sae and addsnthr] Save and conie i]

_static/comment.png

_static/down.png

