
django-class-fixtures Documentation
Release 0.9a1

JK Laiho

October 04, 2014

Contents

1 Installation 3

2 Configuration 5

3 Getting started 7
3.1 Traditional fixtures vs. class-based fixtures . 7
3.2 Basic use of class-based fixtures . 8
3.3 Relationships between objects inside the same fixture module . 9
3.4 Relations from fixture modules to pre-existing objects . 12

4 Using class-based fixtures 15
4.1 Tests . 15
4.2 Initial data . 16
4.3 Manual loaddata calls . 16
4.4 Dynamic approaches to fixture creation . 16

5 Additional Information 19
5.1 Natural keys . 19
5.2 Raw mode . 20
5.3 Multiple database support . 21
5.4 Rules for fixture discovery and loading . 21
5.5 Differences in the output of loaddata . 22

6 Design Choices and Constraints 25
6.1 Hard-coded primary keys . 25
6.2 Fixture locations . 26

7 Changelog and Roadmap 27
7.1 Past releases . 27
7.2 Planned future releases . 27

i

ii

django-class-fixtures Documentation, Release 0.9a1

The purpose of django-class-fixtures is to augment Django’s fixture system, used for loading initial data during
manage.py syncdb calls, test data with the TestCase.fixtures iterable, and other types of data with manual
invocations of manage.py loaddata.

While still supporting Django’s traditional model serialization formats, django-class-fixtures provides pure Python
class-based fixtures. They take the form of model instance definitions in a syntax that is very close to how you’d
create new instances with SomeModel.objects.create(**kwargs). The thinking goes: why do fixtures in
JSON, XML or YAML, when you could just as well do it all with Python code?

This initial public release, 0.8, only implements the loading of class-based fixtures through a loaddata override.
The fixtures have to be created by hand until the release of version 0.9, which brings dumpdata support and is the
first version I’d expect anyone besides myself to actually use in real-world projects. See Planned future releases for
details on future versions.

Even though 0.8 already has rather decent test coverage, use it at your own risk. The first somewhat safe production
version will be 1.0. The standard non-liability clauses in LICENSE.txt apply then as well, of course.

See Getting started for an introduction. After that, check out Using class-based fixtures for some additional informa-
tion about the capabilities of django-class-fixtures, and some neat tricks that class-based fixtures enable you to pull
off.

Good luck!

Contents 1

django-class-fixtures Documentation, Release 0.9a1

2 Contents

CHAPTER 1

Installation

Dependencies:

• Python 2.6+

• Django 1.2+

Until version 1.0 is released (see Planned future releases for details), django-class-fixtures will only be available
through a GitHub source checkout. Post-1.0, you can get it off PyPi using easy_install or pip.

The GitHub page for this project is at https://github.com/jklaiho/django-class-fixtures. Once you’ve grabbed
the source, run sudo python setup.py install (you can most likely drop the sudo if you’re using
virtualenv).

To avoid waking up screaming in the middle of the night, you can run the test suite either with python setup.py
test from the initial source checkout, or with python manage.py test class_fixtures from inside a
Django project directory, once you’ve got one up and running.

3

https://github.com/jklaiho/django-class-fixtures

django-class-fixtures Documentation, Release 0.9a1

4 Chapter 1. Installation

CHAPTER 2

Configuration

There’s not much of it.

After installing django-class-fixtures into your Python environment, insert class_fixtures into
INSTALLED_APPS in the settings file of your Django project. Doesn’t matter where. All this does is over-
ride the loaddata management command with a version that supports class-based fixtures. No models are installed,
so no need for syncdb or schema migrations.

Note: No other loaddata-overriding apps should be present in INSTALLED_APPS. Depending on the order of the
apps listed there, django-class_fixtures’ override may not end up being the active one, and your class-based fixtures
won’t get loaded. Even if it is the active one, then your other loaddata override won’t work, which is probably not
what you want either.

If you wish to place fixtures outside of the fixtures directories of your Django apps (i.e. use “project-level” fix-
tures), use the FIXTURE_PACKAGES setting, an iterable similar to Django’s own FIXTURE_DIRS, only containing
dotted-path notation to Python packages containing fixture modules.

Example:

FIXTURE_PACKAGES = (
’myproject.something.fixtures’,
’someplace.other.project_fixtures’,

)

Obviously, the module paths listed must be valid and importable in the Python environment that your Django project
lives in. Make sure they have __init__.py modules.

With that out of the way, check out the Getting started guide to, well, get started.

5

django-class-fixtures Documentation, Release 0.9a1

6 Chapter 2. Configuration

CHAPTER 3

Getting started

If you’re not familiar with Django’s existing fixture system, please look at the relevant Django documentation before
going further. Things like why fixtures exist, how and when they are used and what they are good for are not covered
here. Coming here, you’ve optimally used Django’s fixtures for some time and, if you’re like me, gotten a little
frustrated with them.

If you haven’t already, have a quick look at the Configuration document. It’s very short. All you need to do, basically,
is to add class_fixtures to your INSTALLED_APPS.

Let’s dive in to the practical stuff right away.

3.1 Traditional fixtures vs. class-based fixtures

We’ll use a band-related Django app called bandaid and its models to illustrate the use of the basic features of django-
class-fixtures.

Assume a simplistic Django model inside bandaid.models, like this:

class Band(models.Model):
name = models.CharField(max_length=255)
genre = models.CharField(max_length=100)

A typical way of creating an instance of this model would look like this:

band = Band.objects.create(name="Bar Fighters", genre="Rock")

When serialized to JSON using the dumpdata management command, it would look like this:

[
{

"pk": 1,
"model": "bandaid.band",
"fields":
{

"name": "Bar Fighters",
"genre": "Rock"

}
}

]

That dumpdata output is saved as example_band.json inside bandaid/fixtures. Our hypothetical
bandaid app now looks like this:

7

django-class-fixtures Documentation, Release 0.9a1

bandaid/
__init__.py
models.py
fixtures/

example_band.json

The JSON serialization of the Band object is simple enough, but files with lots of serialized objects become cumber-
some to deal with very quickly, especially when using schema migrations. We’d rather just deal with Python code all
the way. It’s more readable, as well as easier to modify by hand and keep current with schema changes.

To that end, here’s the code of a Python module. It contains a single class-based fixture that contains a single object:
a second instance of the Band model:

from class_fixtures.models import Fixture
from bandaid.models import Band

bands = Fixture(Band)
bands.add(2, name="Brutallica", genre="Metal")

That’s it. Save that as more_bands.py in the bandaid app’s fixtures directory. It becomes a fixture module that
django-class-fixtures can use. You’re good to go.

Wait, not quite.

You’ll notice that fixtures is a simple data directory inside the bandaid app. It’s not a Python package, which
it needs to be for django-class-fixtures to find any fixture modules inside it. This is easily fixed: just add an
__init__.py module inside it. The bandaid app now looks like this:

bandaid/
__init__.py
models.py
fixtures/

__init__.py
example_band.json
more_bands.py

Like magic, the sad and lonely fixtures directory is transformed into a subpackage of the bandaid app where
Python modules can be imported from. As you can see, you can freely mix traditional serialized fixtures and class-
based fixtures. You just have to make sure that the primary keys (the “pk” fields in JSON files and the first parameters
to the add() calls in fixture modules) don’t conflict with each other.

Note: A bit on terminology: in Django parlance, a “fixture” is the JSON/XML/YAML file containing serialized
model objects, located inside one of the fixture directories.

As for django-class-fixtures, a “fixture” is a single instance of the Fixture class, many of which can and will appear
inside a single fixture module, which is the actual .py file inside one of the fixture packages (i.e. directories with an
__init__.py file).

All right, the basic infrastructure is in place. Let’s look at what we just did with the code in that fixture module.

3.2 Basic use of class-based fixtures

First off, fixture modules need to import the Fixture class from class_fixtures.models and any model
classes that you want to create fixtures for.

Note: While the Fixture class lives in class_fixture.models, it’s not a Django model class. It’s model-

8 Chapter 3. Getting started

django-class-fixtures Documentation, Release 0.9a1

related, though, and since Django apps need to have a models.py file anyway, it’s as good a place as any for it.

Each Fixture instance is attached to a model class by giving the model as the first parameter to Fixture, like
Fixture(Band) above. For purposes of organization or clarity, you can have multiple Fixture instances per
model class:

decent_bands = Fixture(Band)
awful_bands = Fixture(Band)

Actually populating the Fixture instances with objects is done using the add() method. First, you give it the
primary key and then, as keyword arguments, the same arguments you’d give a Band.objects.create() call:

decent_bands.add(3, name="Led Dirigible", genre="Rock")
awful_bands.add(4, name="Flaxxid Bizkit", genre="Crap")

Note that the primary keys must keep incrementing across Fixture instances, since both of them are still going to
create Band objects into the same database table.

Note: If you are curious as to why the primary key needs to be hard-coded, see Hard-coded primary keys. It’s not
necessary for learning how class-based fixtures work, though, so if this is your first time around, it’s best to just keep
moving for now.

Of course, eventually you’ll have to create relations between objects.

You’ll be doing two kinds of relations with fixtures:

1. Relations to objects that do not yet exist in the database, but are instead created in the same fixture module as
the objects that point to them.

2. Relations to objects that exist in the database prior to loaddata being run (e.g. objects defined in
initial_data fixtures created during syncdb).

Let’s look at these in that order.

3.3 Relationships between objects inside the same fixture module

We’ll start with foreign keys and these two example models from a hypothetical app called wage_slave:

class Company(models.Model):
name = models.CharField(max_length=100)

class Employee(models.Model):
name = models.CharField(max_length=100)
company = models.ForeignKey(Company)
manager = models.ForeignKey(’self’, null=True)

We’ll let code speak for itself first and then explain:

from class_fixtures import Fixture
from wage_slave.models import Company, Employee

companies = Fixture(Company)
employees = Fixture(Employee)

companies.add(1, name="FacelessCorp Inc.")
employees.add(1, name="Ty Rant", company=companies.fk(1))
employees.add(2, name="Sue Ecide-Risk", company=companies.fk(1), manager=employees.fk(1))

3.3. Relationships between objects inside the same fixture module 9

django-class-fixtures Documentation, Release 0.9a1

As is hopefully apparent, we’re creating one Company and two Employees, one of which is the manager of the other
one. The above demonstrates both a foreign key to another model (the company of both employees) and a recursive
FK to the same model (Sue’s manager). This is done using the fk() method of the target fixture instance, giving it
the primary key.

Note: An aside: which would you rather look at and deal with: those few rows of Python, or their imagined JSON
representations? Just sayin’.

Due to the foreign key to Company, Employee objects depend on their target Company instances existing before
they are defined. Fixture instances handle dependency resolution behind the scenes, so as long as you have created
the companies and employees instances first, it doesn’t matter in what order you add() the actual model instance
definitions to them. The proper loading order is determined automatically.

One-to-one relations work basically identically to foreign keys. To demonstrate, here’s one more model:

class EmployeeHistory(models.Model):
employee = models.OneToOneField(Employee)
date_joined = models.DateField()

Using that model in the above scenario is as simple as you might guess:

Remember to add EmployeeHistory to the import from wage_slave.models
histories = Fixture(EmployeeHistory)
histories.add(employee=employees.o2o(1), date_joined=’2003-03-15’)

The o2o() method works identically to fk(). In fact, internally it’s the very same method, just a different alias.
Picking the right one just makes fixture code more self-documenting.

The implicit OneToOneFields created by concrete model inheritance don’t need explicit o2o() usage. Here’s an
example with an additional model that inherits from bandaid.Band:

in bandaid.models
class MetalBand(Band):

leather_pants_worn = models.BooleanField(default=False)

in some fixture module
metalbands = Fixture(MetalBand)
metalbands.add(666, name="Judas Bishop", genre="Metal", leather_pants_worn=True)

Nothing too special happens here; it relies on Django’s model inheritance functionality, where creating a MetalBand
object will automatically create a Band object with the same primary key. You just need to be careful to not overlap
the primary keys of any of the previously defined Band objects.

What about Many-to-many relationships? To demonstrate their use, we’ll add a few more models to the bandaid app:

class Musician(models.Model):
name = models.CharField(max_length=100)
member_of = models.ManyToManyField(Band, through=’Membership’)

class Membership(models.Model):
musician = models.ForeignKey(Musician)
band = models.ForeignKey(Band)
instrument = models.CharField(max_length=100)

class Roadie(models.Model):
name = models.CharField(max_length=100)
hauls_for = models.ManyToManyField(Band)

Again, let’s look at some code first. Here’s a revised form of bandaid.fixtures.more_bands:

10 Chapter 3. Getting started

django-class-fixtures Documentation, Release 0.9a1

from class_fixtures import Fixture
from bandaid.models import Band, Musician, Membership, Roadie

bands = Fixture(Band)
musicians = Fixture(Musician)
memberships = Fixture(Membership)
roadies = Fixture(Roadie)

bands.add(2, name="Brutallica", genre="Metal")
bands.add(3, name="Led Dirigible", genre="Rock")
bands.add(4, name="Flaxxid Bizkit", genre="Crap")
musicians.add(1, name="Lars Toorich")
A "through" M2M, musician-to-band-via-membership
membership.add(1, musician=musicians.fk(1), band=bands.fk(2), instrument="Bongos")
A normal M2M
roadies.add(1, name="Tats Brimhat", hauls_for=[bands.m2m(2)])

Not many surprises there. “Through” M2Ms are just a couple of foreign keys in the “middle” model in addition to any
extra fields. The only thing of note is the direct assignment of a single-item list to the hauls_forManyToManyField
to create the M2M relation between Roadie and Band. We just inline the M2M relation directly to the object definition,
just like with foreign keys earlier.

This is in contrast to Django, where you’d do the same like this:

brutallica = Band.objects.create(name="Brutallica", genre="Metal")
tats = Roadie.objects.create(name="Tats Brimhat")
Either...
tats.hauls_for.add(brutallica)
Or...
brutallica.roadie_set.add(tats)

So, to create the M2M relation using Django’s ORM, you need an extra call to the add() method of the ManyRelat-
edManager (hauls_for or roadie_set, respectively) after creating the objects that relate to each other.

M2M relations, of course, can be defined from either end of the relation. This means that the following is also legal,
and equivalent to the earlier example of creating the roadie-band relation inline:

Create the M2M relation from the other end, i.e. the "target" of the
Roadie.hauls_for ManyToManyField. As you’ll recall, the add() statements
can be in any order, so we can call roadies.m2m(1) before a Roadie with
that primary key is added to the "roadies" Fixture instance.
bands.add(2, name="Brutallica", genre="Metal", roadie_set=[roadies.m2m(1)])
roadies.add(1, name="Tats Brimhat")

The argument to M2M fields needs to be an iterable, even if it just has the one element. To create several M2M
relations, you just add elements to the iterable. For example, to create a severely overworked roadie for a bunch of
bands:

roadies.add(1, name="Tats Brimhat", hauls_for=[
bands.m2m(2),
bands.m2m(3),
bands.m2m(4),

])

As it happens, m2m() is also just an alias of fk() and o2o(). Internally, a special object called a delayed related
object loader is created for all three relation types, and resolved to actual objects later on in the loading process.

3.3. Relationships between objects inside the same fixture module 11

django-class-fixtures Documentation, Release 0.9a1

3.4 Relations from fixture modules to pre-existing objects

Sometimes you’ll need to define relations to objects that you know to exist in the database prior to the loading of your
fixture module. Syntax-wise, this is actually somewhat simpler than the intra-module relations presented under the
previous heading.

Those pre-existing objects could be coming from syncdb calls that load initial data, or from old-style Django-
serialized fixtures that got loaded before our class-based fixture did, or even from other class-based fixture modules,
ones we know to be loaded beforehand.

In our case, the bandaid app contains a single Band object serialized into the example_band.json file under
bandaid/fixtures. We’ll assume that it was loaded first, and create a relation to it inside the more_bands.py
fixture module like this:

musicians.add(2, name="Dave Growl")
"Bar Fighters" in example_band.json has 1 as its primary key
memberships.add(2, musician=musicians.fk(2), band=1, instrument="All of them")

As you can see from the band argument, instead of referring to the primary key of a not-yet-created object through
the fk() method of the target Fixture instance (like musicians.fk(2)), you just give it the primary key of the
pre-existing related object directly.

Note: Relations to pre-existing objects using natural key tuples instead of primary keys are covered in Natural keys
in the Additional Information document.

Or, you can just retrieve the actual model object inside the fixture module and relate to that. This is an alternative to
the previous example:

bf = Band.objects.get(name="Bar Fighters")
musicians.add(2, name="Dave Growl")
memberships.add(2, musician=musicians.fk(2), band=bf, instrument="All of them")

M2Ms work no different. Assuming we had some other JSON fixture that defined bands with PKs 5 and 6, we’d just
do this to relate to them inside our fixture module:

roadies.add(2, name="Ciggy Tardust", hauls_for=[5,6])

or, if we wish to relate to the actual objects,
perhaps not even knowing or caring what the PKs are:

some_band = Band.objects.get(**some_kwargs)
other_band = Band.objects.get(**other_kwargs)
roadies.add(2, name="Ciggy Tardust", hauls_for=[some_band, other_band])

This business with creating relations to objects outside the current fixture module brings up a point that bears empha-
sizing:

Warning: Don’t mix traditional fixtures with class-based fixtures unless you have a compelling reason to do so.
If you do, be careful. Django-class-fixtures can handle dependencies inside a single fixture module, but you need
to manually ensure that Django-style serialized fixtures are always loaded before the class-based fixture modules
that relate to objects contained therein.
The same goes for dependencies between class-based fixture modules. django-class-fixtures doesn’t currently
support inter-module dependencies. If, through relation dependencies, you make assumptions about the loading
order of the fixture modules, be very careful to actually load them in the correct order, always, without fail.

That concludes our coverage of the basic concepts and use of class-based fixtures. You’re not done yet, though. Next,
it’s recommended you look at Using class-based fixtures for a brief look at actually using the fixture modules in various

12 Chapter 3. Getting started

django-class-fixtures Documentation, Release 0.9a1

scenarios.

For information on topics like using natural keys to create relations, more in-depth technical details and a few gotchas,
see Additional Information.

3.4. Relations from fixture modules to pre-existing objects 13

django-class-fixtures Documentation, Release 0.9a1

14 Chapter 3. Getting started

CHAPTER 4

Using class-based fixtures

Since django-class-fixtures provides a drop-in replacement for Django’s loaddata, you use it exactly as you would
Django’s fixtures, but with a few bonuses.

4.1 Tests

As you probably know, to use fixtures in Django, you set up TestCase.fixtures, like so:

class WhatLovelyTests(TestCase):
fixtures = ["something", "other_things.json"]

def test_random_stuff(self):
(...)

TestCase.fixtures is an iterable of strings, corresponding to fixture file names (with or without spec-
ifying the extension), located under the fixtures directory of any app, or within any directory listed in
settings.FIXTURE_DIRS. Django loads all fixtures with those names that it can find.

Note: One exception, which you know if you’ve learned Django’s documentation on the topic: you can’t have
something.json and something.xml inside the fixtures directory of the same app and then refer to
plain "something" inside TestCase.fixtures. Having those in two separate apps works fine and loads both,
though.

That same example works as-is under our loaddata override, but django-class-fixtures allows you to put some other
things in TestCase.fixtures as well:

from wage_slave.fixtures.some_module import employees
from bandaid.fixtures import other_bands

class ClassFixtureUsingTests(TestCase):
fixtures = [

employees, # 1
other_bands, # 2
"some_app_name", # 3
"another_app.assorted_fixtures", # 4
"something" # 5

]

1. An individual Fixture instance cherry-picked from its containing fixture module.

2. An individual fixture module. All Fixture instances contained within it are loaded.

15

django-class-fixtures Documentation, Release 0.9a1

3. The name of an app in settings.INSTALLED_APPS. All of its class-based fixtures are loaded in whatever
order they are discovered. Traditional Django fixtures in that app are not loaded.

4. An “appname.fixture_module_name” string. This is an alternative to #2 that doesn’t require you to import
the fixture module. In this example, a fixture module called assorted_fixtures.py must reside in the
fixtures subpackage/directory of another_app.

5. The name of a fixture module in one of the fixture directories.

Astute readers will have spotted a slight problem with #3, #4 and #5. Being strings, all would also
be valid Django fixture names, and Django’s loaddata would search for some_app_name.(format),
another_app.assorted_fixtures.(format) and something.(format) files, substituting (format)
for all the supported serialization formats. So what gets loaded in case of duplicate names? This is covered in Rules
for fixture discovery and loading. Of course, it helps if you don’t mix traditional and class-based fixtures, if you can
avoid it.

4.2 Initial data

By now, you may have guessed how initial data works. You stick your Fixture instances in a file called
initial_data.py, and that’s pretty much all there is to it. It will get loaded with syncdb.

In case you have both initial_data.json and initial_data.py in the same fixture directory/package, both
will be loaded. The traditional JSON fixture will always be loaded first.

4.3 Manual loaddata calls

When running python manage.py loaddata with the name of a fixture on the command line, you obviously
can’t pass in a Fixture instance or an imported fixture module like you can in TestCase.fixtures. But in
addition to the name of a fixture module, passing in the name of an app or an “appname.fixture_module_name” works
(as described in options 3 to 5 in the ways of using TestCase.fixtures above).

Loading traditional Django fixtures works like before.

4.4 Dynamic approaches to fixture creation

It would be boring if django-class-fixtures didn’t have any tricks up its sleeve. Here’s a couple of ways to use the fact
that the fixtures are just Python to your advantage.

4.4.1 Looping through structured data to create fixtures

Say you’re tired of manually defining the primary keys for each model instance you add to a fixture. Well, here’s a
way of being a bit more terse, defining the field names just once instead of writing them out in every add() call, and
automatically generating the required primary keys in situations when you know it’s safe:

field_names = ("name", "genre")
data = [

("Bar Fighters", "Rock"),
("Brutallica", "Metal"),
("Led Dirigible", "Rock")

]

16 Chapter 4. Using class-based fixtures

django-class-fixtures Documentation, Release 0.9a1

bands = Fixture(Band)
for i in range(len(data)):

bands.add(i+1, **dict(zip(field_names, data[i])))

For a simplistic model like Band and such few instances, the above technique is a bit overkill. But for adding large
amounts of instances of big models with more fields, it enables you to produce a lot less code.

Note: The above method is, in fact, one I’ve considered the dumpdata override coming in version 0.9 to use. To
make it a bit cleaner, I may add a helper method to Fixture instances that takes the field name tuple and the data
tuple as its parameters directly, doing the zip-dict dance internally.

The underlying point is to illustrate how you’re not stuck with the canonical fixture construction method described in
the examples around the documentation.

4.4.2 Inserting project-level data into app-level fixtures

One useful way of doing something beyond the capabilities of Django’s serialized fixtures is to determine the data that
Fixture instances contain at runtime.

The fixture discovery process doesn’t care what else the fixture modules contain besides Fixture instances, so you
can do all sort of coding gymnastics to produce the data contained in them.

One example: say you work at a company constructing e-commerce sites, each of which uses a payment processing
app built in-house. Each site uses different merchant IDs and other content related to the payment processing app that
you want stored in the database.

Since the app is reusable across sites, you’d like it to contain fixtures that you can configure on the project (i.e. site)
level. You create a single data source per site in a predefined location (say, projectfolder/site_customize),
from which the objects contained in the app-level Fixture instances get their site-specific data. Less custom settings,
no site-specific modifications to the fixtures of the payment app. (This is functionality I wish I’d had at my fingertips
on some previous projects.)

This is achievable by making the fixture module import the relevant data structures from a preset site-level location.
Here’s a simplified example, using two imaginary e-commerce sites, Cheese Emporium and Snake World, and their
project-level customization for a payment app called Moolah:

cheese_emporium/site_customize/payment.py
paypal_merchant_id = 12534768abcd
google_checkout_merchant_id = asdfqwerty

snake_world/site_customize/payment.py
paypal_merchant_id = 87654321dcba
google_checkout_merchant_id = qwertyasdf

In the fixture module, moolah/fixtures/merchant_data.py
Determine what the project’s root path is through a setting or
something, import site_customize.payment from it.
processors = Fixture(PaymentProcessor)
processors.add(1, name="PayPal", merchant_id=payment.paypal_merchant_id)
processors.add(2, name="Google Checkout", merchant_id=payment.google_checkout_merchant_id)

No matter which site the app is attached to, the fixture module will insert the correct data when loaded.

4.4. Dynamic approaches to fixture creation 17

django-class-fixtures Documentation, Release 0.9a1

4.4.3 And more, much more!

What else? Based on runtime conditions, leave out objects from, or add more objects to a Fixture instance, or
determine what model to construct the instance with in the first place. The payment processor example above could
easily be modified to only include PayPal for Cheese Emporium and Google Checkout for Snake World, based on
some factors set on the site level and checked for in if clauses around the add() statements.

It is my sincere hope that django-class-fixtures enables its users to see fixtures in a new light. Some interesting new
possibilities are there to be discovered.

Use your imagination. In the end, it’s all just Python. Bend it to your will!

If you haven’t already, now would be a good time to check out Additional Information.

18 Chapter 4. Using class-based fixtures

CHAPTER 5

Additional Information

Here’s some slightly more advanced information that you may find useful.

5.1 Natural keys

First of all, read and understand Django’s natural key documentation.

Since version 0.8 of django-class-fixtures only supports loaddata but not dumpdata, we’ll focus on the loading
side of things.

To demonstrate natural keys, we’ll use the following two models, Competency being the one with the custom
manager required for natural key loading:

class CompetencyManager(models.Manager):
def get_by_natural_key(self, framework, level):

return self.get(framework=framework, level=level)

class Competency(models.Model):
LEVEL_CHOICES = (

(0, "None"),
(1, "Beginner"),
(2, "Intermediate"),
(3, "Advanced"),
(4, "Guru"),

)
framework = models.CharField(max_length=100)
level = models.SmallIntegerField(choices=LEVEL_CHOICES)

objects = CompetencyManager()

class Meta(object):
unique_together = ((’framework’, ’level’))

class JobPosting(models.Model):
title = models.CharField(max_length=100)
main_competency = models.ForeignKey(Competency, related_name=’main_competency_for’)
additional_competencies = models.ManyToManyField(Competency, related_name=’extra_competency_for’)

Natural keys are meant to be used when relating from a fixture to an object that is already in the database, where
defining the relation based on the target object’s primary key is inconvenient or even impossible.

To demonstrate, we create a few Competency objects beforehand in a manage.py shell session:

19

https://docs.djangoproject.com/en/dev/topics/serialization/#natural-keys

django-class-fixtures Documentation, Release 0.9a1

rails_n00b = Competency.objects.create(framework=’Ruby on Rails’, level=1)
cake_adept = Competency.objects.create(framework=’CakePHP’, level=2)
spring_master = Competency.objects.create(framework=’Spring’, level=3)
django_guru = Competency.objects.create(framework=’Django’, level=4)

Instead of referring to those objects using primary keys (which we’d have to look up), we’d much rather just use a
(framework, level) natural key tuple, since pairs of those will uniquely identify Competency objects in the
database.

Here are the various ways of doing natural key relations from JobPosting fixtures to those pre-existing
Competency objects:

jobs = Fixture(JobPosting)

A single foreign key with a natural key tuple
jobs.add(1, title=’Rails Intern’, main_competency=(’Ruby on Rails’, 1))

One FK, and a single M2M with a natural key tuple in a single-item list
jobs.add(2, title=’Elder Django Deity’, main_competency=(’Django’, 4),

additional_competencies=[(’Ruby on Rails’, 1)])

One FK, and several M2Ms with a list of multiple natural key tuples
jobs.add(3, title=’A man of many talents’, main_competency=(’Spring’, 3),

additional_competencies=[(’CakePHP’, 2), (’Ruby on Rails’, 1)]
)

As with normal primary key-based relations, foreign keys accept a single natural key tuple, whereas many-to-many
fields require an iterable of them, even with a single item.

5.2 Raw mode

When Django deserializes fixtures, it doesn’t actually call the save() method of the respective model classes
directly. Instead, it uses DeserializedObject, a container class for pre-saved deserialized data, found in
django.core.serializers.base. Here’s the relevant bit from its save() method (as of Django 1.3):

Call save on the Model baseclass directly. This bypasses any
model-defined save. The save is also forced to be raw.
This ensures that the data that is deserialized is literally
what came from the file, not post-processed by pre_save/save
methods.
models.Model.save_base(self.object, using=using, raw=True)

The comment probably doesn’t need further explanation. Fixture, on the other hand, has an optional boolean raw
parameter that defaults to False, meaning that in django-class-fixtures, saves are done in “normal” mode by default,
using the create() method of the default manager of the actual model class.

Remember the wage_slave app from the introduction? Let’s revisit it, adding some custom save() logic to demon-
strate the use and effects of raw mode:

class Company(models.Model):
name = models.CharField(max_length=100)

class Employee(models.Model):
name = models.CharField(max_length=100)
company = models.ForeignKey(Company)
manager = models.ForeignKey(’self’, null=True)
New field, conditionally set to True in save()

20 Chapter 5. Additional Information

django-class-fixtures Documentation, Release 0.9a1

cog_in_the_machine = models.BooleanField(default=False)

def save(self, *args, **kwargs):
if ’ corp’ in self.company.name.lower():

self.cog_in_the_machine = True
super(Employee, self).save(*args, **kwargs)

The save() method of the Employee class examines the employing company, checking if its name contains some-
thing like “Corp.” or “Corporation”. If it does, then in a rather silly bit of social commentary, it deduces that this
person is necessarily a dehumanized corporate drone, and sets the cog_in_the_machine boolean to True.

Raw mode will prevent this, however. Here’s what happens with fixtures set to normal and raw mode:

company_fixture = Fixture(Company)
company_fixture.add(1, name=’Bloatware Corporation’)

employee_fixture = Fixture(Employee)
employee_fixture.add(1, name=’Andy Depressant’, company=company_fixture.fk(1), manager=None)
raw_employee_fixture = Fixture(Employee, raw=True)
raw_employee_fixture.add(2, name=’Sadie Peon’, company=company_fixture.fk(1), manager=None)

Once a fixture module containing those fixtures is loaded, we can check to see that in raw mode, Sadie was spared the
humiliation:

>>> andy = Employee.objects.get(pk=1)
>>> sadie = Employee.objects.get(pk=2)
>>> andy.cog_in_the_machine
True
>>> sadie.cog_in_the_machine
False

Raw mode in django-class-fixtures is a feature I’d appreciate testing and feedback on. I’m not entirely sure about all
the implications of it being set to either True or False; it just felt natural to leave it to False when dealing with
Python code instead of, say, a JSON serialization.

If you run into use cases where raw=True is necessary, I’d be glad to hear about them. If you have a compelling
argument why raw mode should be on by default, do tell. It’s possible that when I get to work implementing a
dumpdata override for 0.9, I’ll set raw=True for all fixtures created programmatically with dumpdata, or even
change the default mode, if testing produces results to support that action.

5.3 Multiple database support

I’ve tried to be diligent in making all of the database operations in django-class-fixtures work cleanly with multiple
databases, and there are even a couple of tests for it, but I have no experience actually using Django’s multiple database
support in real-world environments.

Also, check out the note in Differences in the output of loaddata below for a possible minor caveat associated with
custom database routers.

I’d appreciate more testing of this for feature parity with Django’s fixture system.

5.4 Rules for fixture discovery and loading

The various forms of specifying fixtures for loading are detailed in this example of TestCase.fixtures. Options
1 and 2 there are always handled by django-class-fixtures alone, but the strings in options 3, 4 and 5 are all valid

5.3. Multiple database support 21

django-class-fixtures Documentation, Release 0.9a1

monikers for Django fixtures, too, so there’s some logic in place to determine who handles what.

The loaddata override looks at each fixture name it’s given, and internally assigns either Django or django-class-
fixtures to handle each, sometimes both. Some shadowing related to app names also takes place that may bite you in
the ass if you’re not careful. Here’s a look at what happens with various types of strings:

File names with registered fixture extensions such as "example_band.json" are assigned to be handled di-
rectly by Django’s loaddata, no questions asked. If you’ve written a custom serializer that uses some other format
and extension than those provided by Django, the same applies for file names matching those. The “reserved” exten-
sions are sourced from Django’s serialization machinery, where custom stuff is also registered.

Strings with dots such as "other.thing" or "bandaid.other_bands" are split on the dots, and the first
element of the resulting list is matched against the names of all installed apps. Of those two, other does not
correspond to an app, so the whole string is passed on to be handled by Django’s loaddata, matching files like
"other.thing.json".

bandaid is an installed app, however, so a fixture module called other_bands is searched for under the its
fixtures subpackage. If found, it alone gets loaded and any further searches are not made on that name. If not
found, a FixtureUsageError exception is raised.

Note: Raising an exception may seem harsh, when one could just pass the string on for Django to handle, but I wanted
to make references to appname.module_name clearly distinct from other string forms to avoid cases where they
would get passed on to Django due to a typo in the module name, and then silently ignored when files matching the
name are not found, since Django does not raise errors in case of non-existent fixtures.

This means that any traditional fixture files that start with an app name followed by a
dot, like bandaid.anythingatall.json are shadowed and not loaded, if referred to as
"bandaid.anythingatall". The solution is to always include the file extension in cases like these,
triggering the automatic assignment for Django’s loaddata as described above.

Arbitrary strings with no dots such as "something" are first checked against app names. If a match is found,
no further determination takes place. All the fixture modules (but no traditional fixtures) of that app are loaded.
This shadows both "something.json" files and fixture modules called "something.py", so don’t name your
traditional fixtures or fixture modules the same as any apps.

Note: In this scenario, "something.json" is still accessible by referring to it with the .json extension and not
just as "something". Remember: explicit is better than implicit.

If "something" isn’t the name of an app, it is assigned for Django to handle first. In addition, it is checked against
the names of fixture modules in all valid fixture module locations. All matches are marked for loading in whatever
order they are found (but always after Django has taken a crack at locating and loading traditional fixture files with
that name first).

That means you can have as many fixture modules called "something.py" in as many fixtures directories or
FIXTURE_PACKAGES locations as you like. You can also have something.json and something.py under
the same directory/package, both will be loaded, Django first. No shadowing takes place at this stage.

5.5 Differences in the output of loaddata

Due to the process described above in Rules for fixture discovery and loading, when django-class-fixtures needs to
fall back to Django’s loaddata, it does so for a single fixture name parameter at a time. That is, if the parameters
to loaddata include "something.json" and "other_thing.json", that results in two runs of Django’s
loaddata, not one for both together. This is to ensure that the user-specified fixture ordering is preserved when
mixing traditional and class-based fixtures; it won’t do to just pick out all the traditional fixtures from the list and give
them to the original loaddata command in one bunch.

22 Chapter 5. Additional Information

django-class-fixtures Documentation, Release 0.9a1

The outputs from those two runs are stored and parsed for the loaded fixture counts. Those counts are then combined
with the counts produced by any class-based fixtures.

Any extra messages produced by calls to Django’s loaddata when verbosity is 2 or 3 are stored and displayed in
order of appearance. This is followed by the summary row (shown as the only row with a verbosity of 1, too), which
is either “No fixtures found.” or “Installed x object(s) from y fixture(s)” to match what Django outputs.

Note: Django actually has a third form of the summary row: “Installed x object(s) (of z) from y fixture(s).” As far
as I can tell by looking at the code of Django’s loaddata, this comes into play when using multiple databases and a
custom database router disallows the loading of instances of a certain model into a certain database.

As of 0.8, the x and y counts are parsed from that and correctly included in the final count, but the loaddata
override’s summary row does not parse or include the “(of z)” bit. I was too lazy to implement it, frankly. If you rely
on it, patches are welcome, or you can hope that I find the motivation to implement it in a later version.

If you use scripts that rely on the precise output of loaddata (as part of Fabric deployments, for example), be sure to
test them thoroughly. This is another area I’m happy to receive feedback about, there may be arguments for changing
some aspect of django-class-fixtures’ behaviour.

5.5. Differences in the output of loaddata 23

http://fabfile.org/

django-class-fixtures Documentation, Release 0.9a1

24 Chapter 5. Additional Information

CHAPTER 6

Design Choices and Constraints

This section outlines some of the design choices made during the development of django-class-fixtures.

As a general rule, django-class-fixtures tries to work as much like Django’s fixture loading mechanisms as possible
or feasible. Predictability is the key: if you’re used to working with Django’s fixture system, django-class-fixtures
should minimize any surprises.

6.1 Hard-coded primary keys

Using Python objects instead of serialized JSON files as the data source for the loaddata command, an option exists
to not force the use of hard-coded primary keys. Relations from objects in class fixtures could easily be made both
to other class fixtures and objects that already exist in the database prior to the loading of the fixture (such as content
types created during manage.py syncdb).

In fact, early development versions of django-class-fixtures took this exact approach, using special objects called “rela-
tion tokens” and kwarg-based deferred object searches to build relations and their associated loading order dependency
graphs.

While reasonably elegant, this approach posed several problems. First was the fact that django-class-fixtures needed
to work with old-style serialized fixture files that do have hard-coded keys. Mixing hard-coded PKs with dynamically
assigned primary keys is a recipe for disaster. This was circumvented by making sure that old-style fixtures always got
loaded first, ensuring that class fixtures would not get overwritten and that relations didn’t go haywire. Some dangers
still remained, but this could be overcome with sufficient guidance of best practices in the documentation.

Another issue was that of code complexity. While hard-coding primary keys into Python code “feels dirty”, doing
so enables the code of django-class-fixtures to be a lot simpler and more terse, doing away with a lot of corner case
handling and object identification needed for building relations.

The final nail in the coffin was the fact that if fixtures don’t hard-code primary keys, then successive loaddata calls
create duplicate objects instead of overwriting existing ones. Without a primary key, there was no reliable way of
identifying if the object that a class fixture represents already existed in the database or not. While creating duplicate
objects isn’t “wrong” in an absolute sense, at least not much more than blindly overwriting any changes in existing
objects (which is what Django does), the initial design choice to be predictable for users of old-style fixtures made it
necessary to hard-code primary keys into class fixtures as well.

I wish it wasn’t so, but then again, I wish for a lot of things that I can’t have. If you discover a way to do it properly,
do tell.

25

django-class-fixtures Documentation, Release 0.9a1

6.2 Fixture locations

Since class fixtures are Python objects, theoretically you could have a lot of flexibility with their placement, how to
import them etc. But as Django expects apps to have fixtures subdirs containing serialized files, django-class-
fixtures expects modules containing class fixtures to be there as well. The only difference is that fixtures must
also contain an __init__.py module, turning the directory into a Python package. Serialized fixtures in the same
directory will continue to work as before, since Django’s loaddata only cares about the non-Python files inside it.

This “transparent” approach won’t work with directories defined in FIXTURE_DIRS, however. It’s an iterable of
filesystem paths that—unlike app-based fixtures dirs—may not lie on Python’s module search path at all, and
even if they did, converting filesystem paths into importable module paths would be extremely impractical.

The FIXTURE_DIRS use case of having fixtures outside the apps is a valid one, so our own FIXTURE_PACKAGES
setting aims to enable the same way of storing class fixture modules.

Just as Django’s loaddata only looks at fixtures that are in the fixtures dir itself, not any subdirectories, our
loaddata only discovers and uses fixture modules in the fixtures package. Nothing stops you from creating
subpackages like fixtures.regressiontests from which you import stuff into modules contained directly
under fixtures, of course.

26 Chapter 6. Design Choices and Constraints

CHAPTER 7

Changelog and Roadmap

7.1 Past releases

7.1.1 0.8

• Initial public release. loaddata support only for class-based fixtures, the necessary dumpdata override not
yet implemented.

7.2 Planned future releases

Here’s a feature roadmap for the foreseeable future. In case updates that break something are made to Django prior
to 1.0, 0.x.y versions may be released. Otherwise, “micro” versions will only be released for post-1.0 bugfix releases.
Prior to that, bugfixes will exist in development code only.

7.2.1 0.9

• Fix any issues discovered in the initial release.

• Implement a dumpdata override for serializing Django models into Fixture instances. You’ll still have to
manually direct the dumpdata output into .py files, same as now with, say, .json files. The output will try to be
complete, including all necessary model imports, so that you don’t need to modify the generated code by hand.

Note: I know, “generated code” has a bad ring to it for Django users who know their history. However, the
code inside fixture modules is so simple structurally that I’m confident the generating can be done reliably.

• Add proper class and exception documentation.

• Possibly: a helper method that formalizes the technique described in Looping through structured data to create
fixtures.

• Possibly: integration with milkman. You’d be able to easily use TestCase.fixtures in your tests while
still making good use of the randomly generated model instances, consolidating the creation of both random and
predefined models in your fixture modules. The syntax could be something like:

bands = Fixture(Band)
musicians = Fixture(Musician)
You need the band to have specific non-random attributes
bands.add(1, name="Arcade Water", genre="Indie")

27

http://pypi.python.org/pypi/milkman

django-class-fixtures Documentation, Release 0.9a1

You don’t care about the details of the musicians, apart from them
being a part of a certain band; all other information is generated.
musicians.add_random(member_of=[1])
musicians.add_random(member_of=[1])

add_random would be available if milkman was on your Python path.

I haven’t yet used milkman myself, and I don’t know if this feature would be all that useful, but I thought I’d
mention it here just in case someone thinks this would be great. If you do, let me know about it.

• Possibly: conditional loading of Fixture instances. Through some (I hope) elegant mechanism, allow indi-
vidual Fixture instances to be able to determine whether some arbitrary prerequisites are met prior to being
loaded. If they are not, either fail silently and keep going, or abort and raise an exception (depending on some
parameter).

This is different from what’s described in Dynamic approaches to fixture creation, where the already possible
methods of conditionally instantiating and populating Fixture instances are discussed. As of 0.8, there’s no
official way to conditionally prevent the loading process itself.

This is just an idea at this stage, I’ll need to come up with compelling use cases before putting in the work. Also,
this may get a bit hairy with inter-fixture dependencies, at least in the “fail silently” case.

7.2.2 1.0

• The first version that can be recommended for use in production.

• Availability on PyPi.

• No new features are planned yet. The idea is to promote a post-0.9 trunk version to 1.0 once sufficient real-
world testing has taken place and any issues discovered in 0.9 have been ironed out. Followed by bugfix/Django
compatibility releases (micro versions) or small feature releases (minor versions) in perpetuity, or until...

7.2.3 2.0

• ...which is purely hypothetical at this point and may never actually see the light of day.

• Pipe dream: some type of integration with schema migrations, namely South or whatever may appear in Django
core. This could take the form of having Fixture instantation happen against a specific generation of the
model class (as frozen by the migration machinery) that is schema-compatible with the assumptions of the
fixture (i.e. whatever schema was in place when the fixture was first created).

Utterly fictional examples of dumpdata output after creating the fixture, with “0003_add_some_fields” being
the latest migration applied that contains changes to the Band model:

With automatic lookup for the migration module
bands = Fixture(Band, rev=’0003_add_neat_fields’)

With explicit import of a South-frozen model dictionary from
a migration module:
from someapp.migrations.0003_add_neat_fields import models as m_0003
bands = Fixture(m_0003[’bandaid.Band’])

bands.add(1, **stuff_as_of_0003)

...or something like that.

28 Chapter 7. Changelog and Roadmap

django-class-fixtures Documentation, Release 0.9a1

Later on, you change the schema of Band and create new migrations, making the fixture module outdated.
loaddata would notice this, and there would be an automated mechanism in place to apply all post-fixture-
creation migrations to all Band fixtures in the fixture module to modernize the schema of their contained objects
before creating them. You would then get fresh dumpdata output with the modern schema, with which you
would replace the old code in the fixture module. It could look like this, following the previous theoretical
syntaxes:

bands = Fixture(Band, rev=’0008_rename_this_to_that’)

or

from someapp.migrations.0008_rename_this_to_that import models as m_0008
bands = Fixture(m_0008[’bandaid.Band’])

bands.add(1, **stuff_as_of_0008)

You get the picture.

This feature would rock so hard it’s uncanny. No more manual updating of fixtures due to schema changes and
migrations (save for piping the fresh dumpdata output into a .py file). Unfortunately, there are tons of open
questions and hard problems here. This option hasn’t yet been researched for any sort of feasibility at all. I’m
mentioning it here just in case some enterprising Djangonaut is divinely inspired by the idea and decides to
implement it. I’m not sure I’ll ever have the skill or patience for it.

7.2. Planned future releases 29

	Installation
	Configuration
	Getting started
	Traditional fixtures vs. class-based fixtures
	Basic use of class-based fixtures
	Relationships between objects inside the same fixture module
	Relations from fixture modules to pre-existing objects

	Using class-based fixtures
	Tests
	Initial data
	Manual loaddata calls
	Dynamic approaches to fixture creation

	Additional Information
	Natural keys
	Raw mode
	Multiple database support
	Rules for fixture discovery and loading
	Differences in the output of loaddata

	Design Choices and Constraints
	Hard-coded primary keys
	Fixture locations

	Changelog and Roadmap
	Past releases
	Planned future releases

