

Welcome to django-boogie’s documentation!

Warning

Beta software

You are using a software that has not reached a stable version yet. Please
beware that interfaces might change, APIs might disappear and general
breakage can occur before 1.0.

If you plan to use this software for something important, please read the
roadmap, and the issue tracker in Github. If you are unsure about the
future of this project, please talk to the developers, or (better yet) get
involved with the development of django-boogie!

[image: _images/django-boogie.svg]
 [https://travis-ci.org/fabiommendes/django-boogie/][image: _images/badge.svg]
 [https://coveralls.io/github/fabiommendes/django-boogie?branch=master]Django-Boogie is a framework formed by several loosely coupled modules that
rethinks some of Django’s practices. You can use any part of Boogie you want.

Highlights:

	Class-based settings.

	Easy creation of rest APIs with a simple decorator.

	A Flask inspired router that merges views and urls in a single module.

	A Pandas inspired API for querysets + simple integration with Pandas.

	A improved F object that allows more idiomatic query expressions.

	And more!

Installation instructions

Django Boogie can be installed using pip:

$ python3 -m pip install django-boogie

Or better yet, add it to your requirements.txt or setup.py. Boogie does not
need to be added to your INSTALLED_APPS. It requires Django 2.0+ and Python 3.6+.

	Overview
	Installation instructions

	Configurations
	Getting started

	API Documentation

	A deeper dive

	Fields
	EnumField

	API Documentation

	ORM
	Fancy slicing API

	The db object

	Overriding query sets and managers

	Pandas integration

	Alternate Meta syntax and integration with model-utils and django-polymorphic

	REST APIs
	Extending the default API

	Customizing viewsets and serializers

	Retrieving viewsets and serializers

	Versions

	API Documentation

	Routing
	Routers

	Rules

	Testing
	Testing views (pytest only)

	Testing models

	Fixtures

	Mocks

	Boogie Client

	Debug

	Users App
	Usage

	Abstract model

	Future ideas and Brainstorm
	Boogie “PHP” mode

	Proxy factories

	Job runner

	Invoke tasks

	Using Django management commands

	Boogie invocations

	Per-app tasks

	Exporting tasks back to Django

	Boogie stack
	Solutions

	Views
	Our approach

	boogie.apps.tasks

	Advanced usage

	Frequently asked questions
	Usage

	Concepts

	License

Indices and tables

	Index

	Module Index

	Search Page

Overview

[image: _images/django-boogie.svg]
 [https://travis-ci.org/fabiommendes/django-boogie/][image: _images/badge.svg]
 [https://coveralls.io/github/fabiommendes/django-boogie?branch=master]Django-Boogie is a framework formed by several loosely coupled modules that
rethinks some of Django’s practices. You can use any part of Boogie you want.

Highlights:

	Class-based settings.

	Easy creation of rest APIs with a simple decorator.

	A Flask inspired router that merges views and urls in a single module.

	A Pandas inspired API for querysets + simple integration with Pandas.

	A improved F object that allows more idiomatic query expressions.

	And more!

Installation instructions

Django Boogie can be installed using pip:

$ python3 -m pip install django-boogie

Or better yet, add it to your requirements.txt or setup.py. Boogie does not
need to be added to your INSTALLED_APPS. It requires Django 2.0+ and Python 3.6+.

Configurations

Django settings.py module is often a point of friction in a Django project.
Django settings are organized inside modules, but modules are very bad to
compose and not convenient to reuse. Boogie takes inspiration on
django-configurations and integrates it with django-environ to make the settings
module more manageable. The main point is that configurations are
now defined by a class structure (using inheritance) and not by setting
variables on modules.

Boogie also provides a few reusable configuration classes that makes it
easier to build a new project from scratch.

Getting started

Django uses a module to define a namespace for setting configuration variables.
In Boogie configurations, we replace the module by a class:

in your settings.py
from boogie.configurations import Conf, env

#
The configuration class
#
class Config(Conf):
 # It accepts straightforward variable definitions
 A_SIMPLE_VARIABLE = 42

 # Properties work as usual
 @property
 def A_PROPERTY_BASED_VARIABLE(self):
 return self.A_SIMPLE_VARIABLE + 1

 # Conf classes understand the env() object. Attributes declared with
 # env can be overridden by environment variables.
 ENV_VARIABLE = env(42)

 # Lowercase methods starting with get_* are also interpreted as
 # variables. All expected arguments are extracted from the current
 # configuration and passed to the function
 def get_forty_three(self, env_variable):
 return env_variable + 1

 # Methods, lowercase variables, etc, can be used as normal, but they
 # will not be exported to the settings module.
 def compute_value(self, index):
 options = [1, 2, 3, 4]
 return options[index]

Finally, this method saves the settings in the default
DJANGO_SETTINGS_MODULE module
Config.save_settings()

The point of using classes, however, is not replacing where we define our
namespace. Classes are much more suitable for code reuse through inheritance
than flat module namespaces. The Conf base class we used above does not define
any Django-specific behavior. Boogie defines a few classes aimed specifically
at Django projects.

Django configuration

The base class

API Documentation

A deeper dive

Most users don’t have to read this section, but might be useful when you want
to implement a reusable configuration class. The process of extracting settings
from the class to a settings module works like so:

	The save_settings method creates an instance of the chosen configuration
class and calls the .load_settings() method of that instance. This method
should return a dictionary of settings variables.

	It inserts all variables in the current DJANGO_SETTINGS_MODULE module.

You can override the .load_settings() method to do whatever you want. The
default behavior, however, is this:

	Call the .prepare() hook of the configuration instance.

	Creates a dictionary of settings by collecting all uppercase attributes
and their corresponding values.

	Call the .finalize(settings) hook with the resulting settings dictionary and
return the result.

Fields

Django Boogie defines a few fields for your convenience.

EnumField

Django support for enumerations is based on the choices argument of integer or
text-based fields. Now that Python 3 supports Enum types, this approach is
sub-optimal and also involves lots of undesirable boilerplate.

from django.db import models

class User(models.Model):
 ROLE_TEACHER = 0
 ROLE_STUDENT = 1
 ROLE_CHOICES = [
 (ROLE_TEACHER, 'teacher'),
 (ROLE_STUDENT, 'student'),
]
 name = models.CharField(max_length=140)
 role = models.IntegerField(choices=ROLE_CHOICES)

 def can_create_classrooms(self):
 """
 Only teachers can create classrooms.
 """
 return self.role == self.ROLE_TEACHER

Now we can define a RoleEnum and use a EnumField in order to simplify things.

from boogie import models
from boogie.fields import DescriptionEnum

class RoleEnum(DescriptionEnum):
 TEACHER = 0, 'teacher'
 STUDENT = 1, 'student'

class User(models.Model):
 name = models.CharField(max_length=140)
 role = models.EnumField(RoleEnum)

 def can_create_classrooms(self):
 """
 Only teachers can create classrooms.
 """
 return self.role == self.ROLE_TEACHER

The EnumField accepts standard Python Enum and IntEnum
classes. Boogie defines the corresponding Enum IntEnum that
provides human-friendly names for each enumeration and thus integrates
more nicely with Django and gettext.

A model that declares a EnumField is automatically filled with all
possible ROLE_* attributes for each value in the enumeration. :class:`EnumField`s
automatically computes the ‘choices’ argument, and users cannot override it.

API Documentation

	
boogie.fields.EnumField

	alias of boogie.testing.mock.

	
class boogie.fields.Enum

	Similar to boogie.IntEnum, but accepts any type of value.

	
class boogie.fields.IntEnum

	A subclass of enum.IntEnum that accepts an optional human-friendly
description field during declaration.

It is safe to translate description strings.

	Usage:

	>>> class Roles(IntEnum):
... TEACHER = 0, 'teacher'
... STUDENT = 1, 'student'

Boogie query sets

Django’s ORM favors using the active record pattern (access a row at a time,
wrapped into a Python object). We believe it is often a poor abstraction for
using databases and can often lead to inefficient usage patterns and a poor
architecture. Boogie implements a few extensions to default Django’s query set
and managers APIs in order to favor more data-driven approaches.

Fancy slicing API

Boogie managers and querysets implements a fancy indexing interface inspired
on Numpy and Pandas. In Boogie, we want to see the database as a 2D table of
scalars instead of a collection of complex objects as is implied by the ORM.

By doing so, we loose some encapsulation, but on the other hand, it avoids a
host of potential problems such as race conditions, ineffective usage patterns
(specially, the N + 1 problem), coupling of business logic with storage, and
doing so we often avoid some unnecessarily verbose APIs.

In order to illustrate fancy indexing in Boogie, let us start constructing a
small group of elements. First the model:

Now we create a few users, saving them on the database.

john = User.objects.create(name='John Lennon', age=25, pk=1)
paul = User.objects.create(name='Paul McCartney', age=26, pk=2)
george = User.objects.create(name='George Harrison', age=22, pk=3)
ringo = User.objects.create(name='Ringo Star', age=29, pk=4)

If you are familiar with Pandas, Boogie API is highly inspired by the .loc
attribute of a Pandas data frame (which in its turn is similar to
fancy indexing in 2D numpy arrays). The metaphor is that a Django manager or queryset
represents a 2D table of values: each row corresponds to an object and each
column corresponds to a field. Fancy indexing allow us to select parts of this
table in ways that avoid instantiating lots of different objects.

Let us start with the simple bits. Each cell is indexed by a row and a column. We can
fetch the content of a single cell like so:

>>> pk = 1
>>> User.objects[pk, 'name']
'John Lennon'

Of course we can also use an assignment statement to save/modify values in the
database

>>> users = User.objects # A simple trick to save a few key strokes
>>> users[pk, 'name'] = 'John Winston Lennon'

This prevents an unnecessary instantiation of an User object, and the overhead
of calling its .save() method to hit the database. Notice this
operation is carried exclusively at the database level, and any custom logic
implemented in the .save() method will not be executed. In fact, we strongly
discourage putting complex logic on .save(), or putting business logic in the
model at all.

Boogie only activates when users use 2d indexing. This is a deliberate decision to
preserve compatibility with the slicing syntax of Django query sets. Thus, in order
to fetch a single row from the table we have to use the notation:

>>> users[pk, :]
<User: John Winston Lennon>

	2D indices are interpreted as [rows (by pk), columns (by name)]. This is

	different from Django semantics for queryset indices, which are
interpreted as the positions associated to each item a set of objects.

Thus users.all()[0] returns the first element of users.all(),
while users[0, :] returns the element with pk=0.

The scalar 2D access is very limited and we often want to access a group of fields
of an specific row all at once. Fancy indexing comes to rescue:

>>> users[pk, ['name', 'age']]
Row('John Winston Lennon', 25)

Assignment is also supported:

>>> users[pk, ['name', 'age']] = 'John Lennon', 27

In all those examples, we are interested only on a single object/row in the
database. Boogie also accepts selectors for multiple rows. Let us extract a
single row from the database: for that, just use the standard Python
syntax for selecting “all elements” in the row index:

>>> users[:, 'name']
<QuerySet ['John Lennon', 'Paul McCartney', 'George Harrison', 'Ringo Star']>

This call is basically an alias to Django’s ``users.values_list(‘name’, flat=True).
If you are interested on more than one column, just use

>>> users[:, ['name', 'age']] # doctest: +ELLIPSIS
<QuerySet [Row('John Lennon', 27), Row('Paul McCartney', 26), ...]>

This method returns a sequence of lists representing the selected fields from
each object. In fact, each element behaves as a mutable namedtuple and data can be
accessed either by position or by attribute name.

The first index may also be a list. If that is the case, it is interpreted as a
sequence of primary keys that selects the desired set of rows:

>>> users[[1, 2], :]
<QuerySet [<User: John Lennon>, <User: Paul McCartney>]>

2D indexing is also accepted in many different combinations.

>>> users[[1, 2, 3], 'age']
<QuerySet [27, 26, 22]>
>>> users[[1, 3], ['age', 'name']]
<QuerySet [Row(27, 'John Lennon'), Row(22, 'George Harrison')]>

Finally, the first index can also be a queryset or a Query expression

>>> users[users.filter(age__lt=25), 'name']
<QuerySet ['George Harrison']>

This functionality is more useful and expressive when used in conjunction with
Q or F-expressions:

>>> from boogie.models import F, Q
>>> users[F.age < 25, 'name']
<QuerySet ['George Harrison']>

and this also works…

>>> users[Q(age__lt=25), 'name']
<QuerySet ['George Harrison']>

F expressions can also be used to specify fields. You may find it easier to
read and type than strings

>>> users[F.age < 25, [F.name, F.age]]
<QuerySet [Row('George Harrison', 22)]>

The db object

Boogie exports an object called db that easily exposes a table-centric view
for all models in your project.

>>> from boogie import db
>>> db.auth.user_model[:, 'name']
<QuerySet ['John Lennon', 'Paul McCartney', 'George Harrison', 'Ringo Star']>

It must be used with the db.<app_label>.<model_name> syntax. Under the hood, the db
object calls django.apps.apps.get_model() for a model and return the default
manager.

We believe that managers and query sets should be the default entry point for accessing
your models. Hence, we want to easily expose the model managers instead of the
model classes themselves. Boogie managers also define the .new() method as an
alias to the model constructor.

Overriding query sets and managers

Implementing custom managers and querysets in Django is greatly convenient.
First, the distinction between both is confusing and in most situations the manager is
generated from the queryset class via a boilerplate. Not only that, but managers
and querysets must be defined before the model, since we need to set the
objects during class definition. This is not ideal: it is natural to expect
that models should be in the topmost part of the file (and hence more convenient
to browser). Models declare the structure of tables in the database, and we have
almost no chance of understanding the manager methods before peeking at the model
first. Boogie let us organize both classes in a more natural way:

from boogie import models
from boogie.models import F

class User(models.Model):
 name = models.CharField(max_length=100)
 age = models.IntegerField()

#
Manager and queryset methods
#
@models.manager_method(User)
def create_teen(self, name, age=18):
 return self.create(name=name, age=age)

@models.queryset_method(User)
def advance_age(self, by=1):
 self.update(age=F.age + 1)

This arrangement prevents a few common Django anti-patterns:

	Implementing table logic as class methods of the model class:

	We should create predictable interfaces and the “Django way” is to put
table logic in managers and querysets. Not only that, but class methods
cannot be called later in a chain like standard queryset methods, which
hurts the usability of our APIs.

	Creating separate models.py and managers.py:

	Putting all models of an app in a file and all managers in another is a
poor structure: User and UserQuerySet are much more cohesive than, say,
User and Group. We should split our modules by concerns and not by
implementation details such as a common base class.

	Manager methods in the queryset:

	Creating separate managers and queryset classes involves a lot of
boilerplate. The usual approach is to create a QuerySet subclass and
call Manager.from_queryset() to create the corresponding
Manager class. This approach makes it very tempting to move some methods
that should belong exclusively into the manager (e.g., object creation patterns)
to queryset to avoid an extra class declaration. Doing so is not very
problematic, but would allow some spurious API usage such as
obj = Model.objects.filter(age__lt=18).my_create_method(name='John', age=42).
In Boogie we can mark that a method exists only in the Manager by decorating
it with the boogie.models.manager_only() decorator.

Pandas integration

Sometimes SQL (or Django’s ORM) is simply not powerful enough to perform some
advanced multi-row computations. Boogie query sets integrate with
Pandas <https://pandas.pydata.org>, which is a great package to perform data
manipulation in table-like structures. Compared to many hand-written solutions
that iterates over a sequence of objects, Pandas data frames offer simple APIs
and can be much more computationally efficient than ad hoc python solutions.

All Boogie query sets have both a “dataframe()” and a “update_from_dataframe()”
methods. The first returns a dataframe from queryset data:

>>> users[:, ['name', 'age']].dataframe() # doctest: +NORMALIZE_WHITESPACE
 name age
id
1 John Lennon 27
2 Paul McCartney 26
3 George Harrison 22
4 Ringo Star 29

The second updates the database using data from a pandas dataframe. Dataframe
indexes must correspond to primary keys.

>>> df = users[:, 'age'].dataframe()
>>> df['age'] += 1
>>> users.update_from_dataframe(df)
>>> users[:, ['name', 'age']].dataframe() # doctest: +NORMALIZE_WHITESPACE
 name age
id
1 John Lennon 28
2 Paul McCartney 27
3 George Harrison 23
4 Ringo Star 30

Alternate Meta syntax and integration with model-utils and django-polymorphic

Django introduced the Meta syntax before Python 3 even existed and at that time
it wasn’t possible to pass keyword arguments to class constructors. We believe
that the second would be a more natural idiom in modern Python, but obviously
Django cannot break this interface for backwards compatibility.

In Boogie, the Meta information can be passed either in the traditional way
using the class Meta: ... convention or as keyword arguments in the model
declaration:

from boogie import models

class BaseUser(models.Model, abstract=True, status=True):
 name = models.CharField(max_length=100)
 age = models.IntegerField()

Besides all the usual`Meta options`_, Boogie also allows some custom model
initialization that integrates with external libraries to provide additional
functionality to your models:

	timeframed (bool):

	Makes model a subclass of Django Model Utils TimeFramedModel [https://django-model-utils.readthedocs.io/en/latest/models.html#timeframedmodel]. Adds start
and end nullable DateTimeFields, and a timeframed manager that
returns only objects for whom the current date-time lies within their time range.

	timestamped (bool):

	Makes model a subclass of Django Model Utils TimeStampedModel [https://django-model-utils.readthedocs.io/en/latest/models.html#timestampedmodel]. Provides
self-updating created and modified fields on any model that inherits from it.

	status (bool):

	Makes model a subclass of Django Model Utils StatusModel [https://django-model-utils.readthedocs.io/en/latest/models.html#statusmodel]. Provides status
and status_changed fields that control the current status of an instance
based on a list of choices. See the documentation for more details.

	soft_deletable (bool):

	Makes model a subclass of Django Model Utils SoftDeletableModel [https://django-model-utils.readthedocs.io/en/latest/models.html#softdeletablemodel]. Provides
field is_removed which is set to True instead of removing the
instance when schedule for deletion. Entities returned in default manager
are limited to not-deleted instances.

	polymorphic (bool):

	Makes model a subclass of PolymorphicModel [https://django-polymorphic.readthedocs.io/en/stable/quickstart.html#making-your-models-polymorphic], which adds an additional
column ctype that tracks the actual type of each instance in a multiple
table inheritance scenario.

Automatic Rest APIs

Django Rest Framework (DRF) is very powerful and flexible, but it also requires
a lot of boilerplate to declare even simple APIs. This is aggravated if we
want to build a truly RESTful API with HATEAOS controls (also known as a level
3 API according to Richardson maturity model [https://martinfowler.com/articles/richardsonMaturityModel.html]). This is how REST is supposed to
work and, while DRF allow us to do this, it is not the easier path. In Boogie,
creating a RESTful API can be as simple as adding a few decorators
to your model declarations.

from django.db import models
from boogie.rest import rest_api

@rest_api()
class Book(models.Model):
 author = models.ForeignKey('Author', on_delete=models.CASCADE)
 publisher = models.ForeignKey('Publisher', on_delete=models.CASCADE)
 title = models.TextField()

 def __str__(self):
 return self.title

@rest_api()
class Author(models.Model):
 name = models.TextField()

 def __str__(self):
 return self.name

@rest_api()
class Publisher(models.Model):
 name = models.TextField()

 def __str__(self):
 return self.name

Now, just add the following line on your project’s urls.py:

urlpatterns = [
 ...,
 path('api/', include(rest_api.urls)),
]

Under the hood, Boogie creates Serializer and ViewSet classes for each
model using Django REST Framework and configure a router that organizes every
end-point declared. Boogie enforces API versioning, so you should point your
browser to “/api/v1/” in order to obtain something like this:

{
 "books": "https://my-site.com/api/v1/books/",
 "authors": "https://my-site.com/api/v1/authors/",
 "publishers": "https://my-site.com/api/v1/publishers/"
}

Each resource is then constructed automatically according to the information
passed to the rest_api decorator. In our case, it exposes all fields of each
model and stores foreign relations as hyperlinks under the “links” object:

{
 "links": {
 "self": "https://my-site.com/api/v1/books/42/",
 "author": "https://my-site.com/api/v1/author/12/",
 "publisher": "https://my-site.com/api/v1/publisher/2/",
 }
 "author": "Malaclypse, The Younger",
 "publisher": "Loompanics Unltd",
 "title": "Principia Discordia"
}

Extending the default API

Extra properties and attributes

We can declare additional attributes using the rest_api.property()
decorator.

Additional URLs

By default, Boogie creates two kinds of routes for each resource: one is list-based,
usually under /api/v1/<resource-name>/, and the other is a detail view under
/api/v1/<resource-name>/<id>/. It is possible to create additional URLs
associated with either a single document (detail view) or a queryset (list view).

Those additional urls can be created with the @rest_api.action decorator. We
suggest putting those functions in a api.py file inside your app.

api.py file inside your app

from boogie.rest import rest_api

@rest_api.list_action('books.Book')
def recommended(request, books):
 """
 List of recommended books for user.
 """
 return books.recommended_for_user(request.user)

@rest_api.detail_action('books.Book')
def same_author(book):
 """
 List of authors.
 """
 return book.author.books()

This creates two additional endpoints:

/api/v1/books/recommended/
[
 {
 "links": { ... },
 "author": "Malaclypse, The Younger",
 "publisher": "Loompanics Unltd",
 "title": "Principia Discordia"
 },
 {
 "links": { ... },
 "author": "Robert Anton Wilson",
 "publisher": "Dell Publishing",
 "title": "Illuminatus!"
 }
]

/api/v1/books/42/same-author/
[
 {
 "links": { ... },
 "author": "Malaclypse, The Younger",
 "publisher": "Loompanics Unltd",
 "title": "Principia Discordia"
 },
]

Boogie tries to be flexible regarding the input and output parameters of action
functions. Generally speaking, everything that can be safely serialized by the
rest_api object can be returned as the output of those functions. See the
RestAPI.detail_action() documentation for more details.

Custom viewsets and serializers

You can also completely override the default Boogie viewsets and serializers and
specify your own classes. The RestAPI.register_viewset() method allow us
to completely specify a custom viewset class.

Custom routers

#TODO

Customizing viewsets and serializers

Sometimes, the created viewsets and serializers are not good enough to
specify your desired API. Boogie allow us to register completely custom viewset
classes, but most this is an overkill: Boogie provides hooks to register
special methods to be inserted in Boogie serializer and viewset classes classes
so you can still benefit from what Boogie provides by default while having great
flexbility.

Object creation hooks

This is common pattern when designing an API: a model have a few hidden fields
that are not exposed, but during object creation, they can be calculated from
the user that makes the request. The most common use case is probably when
we want to add a reference to the user who made the request in an “author” or
“owner” field.

Hooks can be registered using any of the decorators RestAPI.save_hook(),
RestAPI.delete_hook().

Example:

@rest_api.save_hook(Book)
def save_book(request, book):
 if book.author is None:
 book.author = request.user.as_author()
 return book

@rest_api.save_hook(Book)
def delete_book(request, book):
 if book.can_delete(request.user):
 book.delete()
 else:
 raise PermissionError('user cannot delete book')

Configurations

Boogie understands the following global configurations in Django settings:

	BOOGIE_REST_API_SCHEMA:

	When not given, it uses the same uri schema (e.g., http) as the current
request object. It is possible to override this behavior to select an
specific schema such as ‘http’ or ‘https’. This configuration may be necessary
when Django is running behind a reverse proxy such as Ngnix. Communication with
the reverse proxy is typically done without encryption, even when the public
facing site uses https. Setting BOOGIE_REST_API_SCHEMA='https' makes
all urls references provided by the API to use https independently of how
the user accessed the API endpoint.

Mixin hooks

For maximum flexibility, you can specify an entire mixin class to be included
into the inheritance chain during creation. This advanced feature requires knowledge
of the inner works of DRF and, to some extent, of Boogie serializer
RestAPISerializer and viewset RestAPIBaseViewSet classes. That
said, mixin classes can be added to the class using the RestAPI.serializer_mixin()
and RestAPI.viewset_mixin() decorators:

@rest_api.viewset_mixin(Book)
class BookViewSetMixin:
 def create(request):
 if request.user.can_register_book():
 return super().create(request)
 else:
 raise PermissionError('user cannot register book!')

Retrieving viewsets and serializers

Boogie exposes the serializers, viewsets and router objects created internally
by the rest_api object. They also can be used to directly serialize an object
or queryset or to expose a view function.

The easier way to use Boogie serializers is the invoking RestAPI.serialize()
method.

Versions

Django Boogie assumes that the API is versioned and can expose different set of
resources and different properties of the same resource. By default, all entry
points are created under the “v1” namespace. Users can register different
fields, properties and actions under different API version names:

@rest_api(['author', 'title'], version='v1')
@rest_api(['title'], version='v2')
class Book(models.Model):
 author = models.CharField(...)
 title = models.Charfield(...)

Other decorators also accept the version argument. Omitting version means that
the property is applied to all versions of the API. Versions can also be lists,
meaning that the decorator applies the given settings to all versions on the
list.

@rest_api.list_action(Book, version=['v1', 'v2'])
def readers(request):
 return book.readers.all()

API Documentation

The rest_api object is a globally available instance of the
RestAPI class.

	
class boogie.rest.RestAPI

	Base class that stores global information for building an REST API with DRF.

	
action(model, func=None, *, version=None, name=None, **kwargs)

	Base implementation of both detail_action and list_action.

Please use one of those specific methods.

	
delete_hook(model, func=None, *, version='v1')

	Decorator that registers a hook that is executed before a new object is
about to be deleted.

Deletion can be prevented either by raising an exception (which will
generate an error response) or silently by not calling the .delete()
method of a model or queryset.

	Parameters

	
	model – The model name.

	version – API version. If omitted, it will be included in all API
versions.

Examples

@rest_api.delete_hook(Book)
def delete_book(request, book):
 if book.user_can_remove(request.user):
 book.delete()
 else:
 raise PermissionError('user cannot delete book!')

	
detail_action(model, func=None, **kwargs)

	Register function as an action for a detail view of a resource.

Decorator that register a function as an action to the provided
model.

	Parameters

	
	model – A Django model or a string with <app_label>.<model_name>.

	func – The function that implements the action. It is a
function that receives a model instance and return a response.
RestAPI understands the following objects:

	Django and DRF Response objects

	A JSON data structure

	An instance or queryset of a model that can be serialized by
the current API (it will serialize to JSON and return this
value)

Exceptions are also converted to meaningful responses of the
form {"error": true, "message": <msg>, "error_code": <code>}.
It understands the following exception classes:

	PermissionError: error_code = 403

	ObjectNotFound: error_code = 404

	ValidationError: error_code = 400

The handler function can optionally receive a “request” as
first argument. RestAPI inspects function argument names to
discover which form to call. This strategy may fail if your
function uses decorators or other signature changing modifiers.

	version – Optional API version name.

	name – The action name. It is normally derived from the action function
by simply replacing underscores by dashes in the function
name.

Usage:

@rest_api.detail_action('auth.User')
def books(user):
 return user.user.books.all()

This creates a new endpoint /users/<id>/books/ that displays all books
for the given user.

	
get_api_info(version='v1', create=False)

	Return the ApiInfo instance associated with the given API version.

If version does not exist and create=True, it creates a new empty
ApiInfo object.

Returns an ApiInfo instance.

	
get_hyperlink(obj, request=None, version='v1')

	Return the hyperlink of the given object in the API.

	
get_resource_info(model, version='v1')

	Return the resource info object associated with the given model. If
version does not exist, create a new ApiInfo object for the given
version.

	Parameters

	
	model – A model class or a string in the form of ‘app_label.model_name’

	version – Version string or None for the default api constructor.

	Returns

	A ResourceInfo instance.

	
get_router(version='v1')

	Gets a DRF router object for the given API version.

	Parameters

	version – An API version string.

	
get_serializer(model, version='v1')

	Return the serializer class for the given model.

	
get_urlpatterns(version='v1')

	Return a list of urls to be included in Django’s urlpatterns:

	Usage:

	urlpatterns = [
 ...,
 path('api/v1/', include(rest_api.get_urlpatterns('v1')))
]

See also

get_router()

	
get_viewset(model, version='v1')

	Return the viewset class for the given model.

	
link(model, func=None, *, version='v1', name=None)

	Decorator that declares a function to compute a link included into the
“links” section of the serialized model.

	Parameters

	
	model – The model name.

	version – API version. If omitted, it will be included in all API
versions.

	
list_action(model, func=None, **kwargs)

	Similar to :method:`detail_action`, but creates an endpoint associated
with a list of objects.

Usage:

@rest_api.detail_action('auth.User')
def books():
 return Book.objects.filter(author__in=users)

The new endpoint is created under /users/books/

See also

detail_action()

	
property(model, func=None, *, version='v1', name=None)

	Decorator that declares a read-only API property.

	Parameters

	
	model – The model name.

	version – API version. If omitted, it will be included in all API
versions.

	
query_hook(model, func=None, *, version='v1')

	Decorator that registers a hook that is executed to extract the
queryset used by the viewset class.

	Parameters

	
	model – The model name.

	version – API version. If omitted, it will be included in all API
versions.

Examples

@rest_api.query_hook(Book)
def query_hook(request, qs):
 return qs.all()

	
register(model, fields=None, *, version=None, inline=False, **kwargs)

	Register class with the given meta data.

	Parameters

	
	model – A Django model

	version – Optional API version string (e.g., ‘v1’). If not given, it will
register a resource to all API versions.

	fields – The list of fields used in the API. If not given, uses all
fields.

	exclude – A list of fields that should be excluded.

	base_url – The base url address in which the resource is mounted. Defaults
to a dashed case plural form of the model name.

	base_name – Base name for the router urls. Router will append suffixes such
as <base_name>-detail or <base_name>-list. Defaults
to a dashed case plural form of the model name.

	inline – Inline models are not directly part of an API, but can be
embedded into other resources.

	Returns

	An ResourceInfo object.

	
register_viewset(viewset=None, base_url=None, *, version='v1', model=None, skip_serializer=False)

	Register a viewset class responsible for handling the given url.

If a ModelViewSet is given, the viewset is automatically associated
with a model and registered. Can be used as a decorator if the viewset
argument is omitted.

	Parameters

	
	viewset – Viewset subclass.

	base_url – Base url under which the viewset will be mounted. RestAPI can
infer this URL from the model, when possible.

	version – API version name.

	model – Model associated with the viewset, when applicable.

	skip_serializer – If True, do not register serializer of ModelViewSet subclasses.

	
save_hook(model, func=None, *, version='v1')

	Decorator that registers a hook that is executed when a new object is
about to be saved. This occurs both during object creation and when it
is updated. The provided function receives a request and an unsaved
instance as arguments and must save the instance to the database and
return it.

	Parameters

	
	model – The model name.

	version – API version. If omitted, it will be included in all API
versions.

Examples

@rest_api.save_hook(Book)
def save_book(request, book):
 book.save() # Don't forget saving the instance!
 book.owner = request.user
 return book

	
serialize(obj, request=None, version='v1')

	Serialize object and return the corresponding JSON structure.

Url routing and views

Regex-based routing is flexible, powerful, and can express very sophisticated URL
interfaces. It is also usually much more complicated than necessary. The arcane
syntax of regular expressions is notoriously hard to debug and it is easy to
introduce subtle bugs that can have security implications for your website.

Django 1.11 recognized that regular expressions are an overkill for this task
and introduced the path [https://docs.djangoproject.com/en/2.0/ref/urls/#path] element. Boogie goes one step further and creates
a router object that is responsible for defining urlpatterns through decorators
to view functions in a way that resembles other micro-frameworks such as Flask [http://flask.pocoo.org/]
and Bottle [https://bottlepy.org/docs/dev/].

Routers

In a Boogie app, we can merge the separate views.py and urls.py and define a
single routes.py module that takes care of both defining the view functions
and associating them to urls. A routes.py module can be defined as bellow:

app routes.py
from boogie.router import Router

urlpatterns = Router()

@urlpatterns.route()
def list(request):
 return render(...)

@urlpatterns.route('<pk>/')
def detail(request, pk):
 return render(...)

Each router is declared with the .route() decorator method of a router instance.
Here we also named the router “urlpatterns” in order to make the module
directly included in the global url conf.

urls.py
from django.urls import path, include

urlpatterns = [
 (...),
 path('sub-url/', include('my_app.routes')),
]

Internally, every view function decorated with the .route() method creates a
new Route object that manages the relationship between view functions and a url.
Route objects are powerful can greatly simplify the task of creating a
view function. First, it can apply a series of transformations in the view
function (that are usually managed by decorators scattered across different
django modules). The example bellow declares a route that requires logged in
users:

@urlpatterns.route('profile/', login=True)
def profile_detail(request):
 return (...)

Here is list with all options:

	login (bool):

	Redirects the user to login page if not logged in.

	staff (bool):

	Only staff members can access the page. Return 404 otherwise.

	perms (list):

	A list of permission or a single permission string. Describes the
permissions necessary to access the page. Return 404 otherwise.

	cache:

	Can be False, to disable cache in the page or a dictionary of cache control
parameters (e.g.: {})

	gzip (bool):

	If true, enable gzip compression for the view.

	xframe:

	False to disable X-Frame clickjacking [https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options#Browser_compatibility] protection; It can also be
'deny' and 'sameorigin' to set the appropriate X-Frame protection
policy.

	csrf:

	Can be True or False to enable/disable Django’s CSRF [https://docs.djangoproject.com/en/2.0/ref/csrf/] protection.
Alternatively, it can be ‘token’ to include the CSRF token in the request,
but not reject requests. It can also be ‘cookie’ to ensure that the cookie
was sent.

	decorators:

	A list of decorator functions to be applied to the view just before the
previous transformations.

Boogie view functions

Django view functions must comply with a very simple contract: they receive
a request + url params and return an HttpsResponse instance. While elegant, this
approach has a series of practical problems.

Django’s approach hinders testability:

Django-boogie url router translates nice url template expressions to low-level
regexes that Django understands.

Business logic: values and rules

Even though Django claims to be an MVC, the way it split the “model”, “view” and
“controller” parts is not typical of most MVC frameworks. It a way, that is a
symptom of MVC being more like a meta-architecture/principle than a
concrete way of organizing code. This is specially confusing in the case of most big
frameworks written in dynamic languages. The role of the “model” layer is
greatly simplified by having most interactions with the database automatically
derived from the model declaration. Similarly, the “view logic” is delegated to
powerful templating languages, which leave us with the bulk of our application
in the “controller” bin. By placing no further structure in our controllers,
we are in for a tangled mess of code and a very bad, but formally correct MVC
architecture.

Django claims that the “controller” is the framework itself, with all the
automatic wiring between different parts. While this may be partially true, it
leaves an important aspect out: where code pertaining the business logic should
live? In most Django projects, developers have to decide between two evils:
the “fat views” (i.e., the greater evil) or “fat models” (the lesser evil)
approaches.

Ideally, business logic should live in a separate module in order to promote better
separation of concerns. Boogie favors the approach introduced by a third part
app called django-rules [https://pypi.org/project/rules/]. Rules model requirements as simple functions that
return boolean values. This is great for many
situations: give/deny authorization to a resource, check if user has some
permission, determine if some service or resource is available to a user, etc.
Boogie expands on this idea, but let us talk about the rules module first.

Rules start their life as a decorated function that returns a boolean value
(possibly in a rules.py file inside your app). Those types of functions are
known as predicates

import rules

@rules.predicate
def is_closed(classroom):
 return classroom.is_closed

@rules.predicate
def is_full(classroom):
 return classroom.students.count() < classroom.max_students

@rules.predicate(bind=True)
def is_allowed_to_join(self, classroom, student):
 if student is None:
 return None
 return not classroom.is_blocked(student)

rules.add_rule('classroom.accept_subscription',
 ~is_closed & ~is_full & is_allowed_to_join)

We can easily test a rule in other parts of our code by invoking it from its
name:

if rules.test_rule('classroom.accept_subscription', classroom, user):
 subscribe_user(classroom, user)
else:
 show_error(classroom, user)

Predicate functions can have any of 3 signatures:

func() -> global boolean value
func(obj) -> test object capability
func(obj, target) -> test a object relationship with target resource

This framework is great for modelling permissions and generic authorization
rules. In fact, if the subject of the rule is a User instance, Rules make it
possible to integrate with Django’s permission system. In order
to do so, use rules.add_perm instead of rules.add_rule and the rule will
be tested using the builtin user.has_perm('rule name', target) method.

With rules, we have a predictable place to put business logic that can be
declared by defining and composing very simple predicate functions. While this
is very convenient, it has a shortcoming: predicate functions only provide
boolean values. This leaves all business logic that requires more sophisticated
data out of the framework.

Following a similar logic, boogie defines “value” functions that compute any
arbitrary value from arbitrary objects. Similarly to rules, value functions can
have 3 types of signatures

func() -> constant or global value
func(obj) -> a value associated with the object
func(obj, user) -> a value associated with the object when accessed by user

Like predicates in django rules, value variables can be composed further using
simple mathematical operations.

A drop-in replacement to the original module
from boogie import rules

@rules.value
def total_points(user):
 return PointsGiven.objects.filter(user=user).sum()

@rules.value
def programming_points(user):
 return PointsGiven.objects.filter(user=user, category='programming').sum()

rules.add_value('programming_fraction', programming_points / total_points)

Now we can use those functions to extract information about a user:

>>> rules.compute('programming_fraction', user) # doctest: +SKIP
0.42

Testing

We all know that all software should be extensively tested, but who has time
for it? ;)

Testing views (pytest only)

Ideally your views should be minimalistic and require very little testing.
Boogie automates simple tests that simply request a view without any complex
validation of the response.

Depending on the complexity of your frontend and/or how the view functions are
organized, those automated tests barely scratch the surface. Either way, the
test classes in this module are a good starting point for more comprehensive
tests for the views of your application.

Web Crawler

Perhaps the most convenient test class in this module is the CrawlerTester.
You just override a few parameters in the sub-class and it will start crawling
pages in your web site looking for broken links and invalid responses.

test_urls.py
import pytest
from boogie.testing.pytest import CrawlerTester

class TestPublicUrls(CrawlerTester):
 ... # TODO

Now we repeat the same tests, but with a different user fixture.
class TestUserUrls(TestPublicUrls):
 must_visit = ('/profile/', '/account/logout/')

 @pytest.fixture
 def user(self, db):
 return factories.make_user()

Explicit

Sometimes it is necessary to offer a more fine-grained control of the URLs that
should be visited. Web crawling based tests can be very slow and are hard to
isolate. They are a nice when doing “integration tests”, but are really poor
to cover specific apps or functions.

UrlTester provides a more fine grained option for testing the URLs of an
specific app.

test_urls.py
from boogie.testing.pytest import UrlTester

class TestUrls(UrlTester):
 ... # TODO

API Reference

Testing models

TODO

Fixtures

Boogie integrates both Factory Boy [https://factoryboy.readthedocs.io/en/latest/] and Model Mommy [https://model-mommy.readthedocs.io/en/latest/] projects. While there
is a lot of overlap between both projects, there are some unique features of
each project that complement the other.

Currently, the only public API is the factory() function:

on factories.py
Notice we do not have to specify default values even for required fields.
ModelMommy fills those entries with random data.
user = factory(User)
admin = factory(User, is_superuser=True, is_staff=True)

on tests.py
from .factories import *

We use factory.create(**optional_kwargs) to create new instances.
Use .build() instead of .create() to preventing saving on the db.
def test_user_can_edit_blog(user, admin, db):
 assert not user.create().can_edit_blog()
 assert not admin.create().can_edit_blog()

API Reference

	
boogie.testing.factories.factory(model, **kwargs)

	Creates a factory boy factory class

Mocks

Mocks are very useful in tests. A prevalent use of mocks can greatly reduce
unnecessary trips to the database which can be very costly and usually is the
major factor in making test suites of web-based apps slow.

You may want to optimize even further by recognizing that unittest.mock Mocks are
really slow compared to more lightweight Python objects. Boogie provides very
lightweight Mock classes and context managers that helps saving a few CPU cycles.

API Reference

	
class boogie.testing.mock.LightMock(*args, **kwargs)

	A lightweight Mock class.

It creates attributes and methods on-demand.

>>> x = LightMock()
>>> x.foo.bar(42) # doctests: +ELLIPSIS
<LightMock ...>

	
boogie.testing.mock.mock_save(model, method=<class 'boogie.testing.mock.LightMock'>)

	Context manager that mocks the .save() method of a model to prevent it from
hitting the database.

	Usage:

	with mock_save(model):
 model.name = "Hello"
 model.save() # it does not actually touch the db

	
boogie.testing.mock.assume_unique(form=None)

	Context manager that suppress checks of uniqueness during model validation.

	Usage:

	with assume_unique(model):
 model.slug = "repeated-slug"
 model.full_clean() # prevents touching the db on uniqueness checks

	
boogie.testing.mock.raise_exception(exception)

	Return a function that raises the given exception when called.

Boogie Client

Boogie implements a Django Client subclass that adds a few extra methods that
can be useful in testing and on interactive environments such as Jupyter
notebooks.

The boogie client can be accessed as a fixture from the boogie.testing.pytest
module. There are a few different flavors:

	client:

	Standard client for a anonymous user.

	user_client:

	Client logged in as “user”.

	admin_client:

	Client logged in as “admin/superuser”.

	author_client:

	Client logged in as “author”. Author is the owner of some resource.

API Reference

	
boogie.testing.client.Client

	alias of boogie.testing.mock.

Debug

Boogie special module boogie.debug implements a few functions that helps
with debugging code. This module uses lots of dirty hacks and non-standard
practices and should never be enabled in a production environments. It is, however,
very convenient to track bugs and other forms of exploration.

API Reference

	
boogie.debug.info()

	Display detailed information about object.

	
boogie.debug.embed()

	

	
boogie.debug.set_trace()

	

	
boogie.debug.enable_debugging(auto=False)

	Register debugging function to builtins.

boogie.apps.users

Boogie Users is a simple app that provides a User model similar to
“django.contrib.auth” user. The only difference is that it does not use separate
“first_name” and “last_name” fields, but rather join both fields into a single
“name” field.

Naming patterns vary widely in different parts of the world and the “first_name”,
“last_name” convention, while common in the US and some part of Europe is too
restrictive for most of the world. We adopt a single “name” field for greater
flexibility.

Usage

Add “boogie.apps.users” to your INSTALLED_APPS and set AUTH_USER_MODEL to
“users.User”:

INSTALLED_APPS = [
 ...,
 'boogie.apps.users',
 'django.contrib.auth',
 ...,
]

AUTH_USER_MODEL = 'users.User'

Abstract model

Boogie users also provides an abstract version in case you need to personalize
the default User model. If that is the case, simply import the abstract model
and register your model in AUTH_USER_MODEL setting:

On your own app models.py
from boogie.apps.users.models import AbstractUser

class MyUserModel(AbstractUser):
 # extra fields
 ...

 # extra props
 @property
 def has_university_account(self):
 return self.email.endswith('@some-university.com')

settings.py
...
AUTH_USER_MODEL = 'my_accounts.MyUserModel'

There is no need (and it is a bad practice) to include “boogie.apps.users” in
your INSTALLED_APPS if you just want to use the abstract model.

Ideas

Boogie “PHP” mode

PHP is not a language we want to draw much inspiration from. However, we recognize
that PHP has a great appeal due to the easy deploys of the LAMP stack during the
early 2000’s. Put a PHP file somewhere in your server and it is magically live.
This kind of simplicity is worth reproducing.

We cannot repeat this exact experience because of the host of technical
difficulties in integrating a Django project into a CGI-like mindset. However,
some good parts of this experience can be reproduced in Django in a sane and
secure way.

pages/
 |- index.jinja2
 \- user/
 |- urls.yml
 |- index.jinja2
 |- detail.jinja2
 \- profile.jinja2

urls.yml
detail:
 url: "/<slug:user.username>/"
 user: auth.user
profile:
 view: auth.profile_view

Proxy factories

Proxy factories

Proxy objects to solve a very simple problem: how can we attach additional
properties to arbitrary objects that come exclusively from

>>> github_link = lambda x: 'http://github.com/' + x.account + '/'
>>> user = proxy(user, is_hacker=True, account='torvalds', link=github_link)
>>> user.link
'http://github.com/torvalds/'

If called without the first argument, it becomes a proxy factory:

>>> git_user = proxy(is_hacker=lambda x: x.username == 'torvalds', link=github_link)
>>> wrapped = git_user(linus)
>>> wrapped.is_hacker
True

Proxy understand rules and values:

>>> proxy(rules={'is_ok'}, perms={'can_view': 'foo.can_view'}, values={})

Similarly to proxy, we can have proxy_collection. It augments the elements of a
collection rather than the collection itself. It supports query sets, dicts,
and sequences and iterables.

Job runner

Celery is a great task runner and takes care of many issues inherent to running
asynchronous tasks in distributed systems.

@job()
def process_data(object: Foo, n_iter=100):
 ...

process_data.create()

Invoke tasks

Django API for creating management commands is clumsy, verbose and absolutely
inconvenient. We have first to create a “management” package inside our app with
a “commands” sub-package inside it. Each module inside “commands” implements
one different command that should inherit from from django.core.management.base import BaseCommand:

app/
 |- management/
 | |- commands/
 | | |- __init__.py
 | | |- thiscommandshouldbetterworthit.py
 | | \- anothercommandmodule.py
 | \- __init__.py
 |- models.py
 |- ...
 \- routes.py

thiscommandshouldbetterworthit.py

from django.core.management.base import BaseCommand

class Command(BaseCommand):
 help = 'A simple command'

 def add_arguments(self, parser):
 # Oh my :(
 parser.add_argument(
 '--argument',
 action='store_true',
 help='Forces you to go to the documentation of argparse to '
 'discover the argument parameters',
)

 def handle(self, *args, silent=False, **options):
 now_we_can_do_something_useful()

Compare this unacceptable cruft with more modern Python approaches such as Invoke [http://www.pyinvoke.org/]:

from invoke import task

@task
def my_command(ctx, argument=None, flag=False):
 do_something_useful()

Invoke task are better to write and better to execute, compare:

$ python manage.py cmd
vs.
$ inv cmd

Ah! it can also be chained
$ inv cmd1 --flag1 cmd2 cmd3

Boogie exposes management commands as Invoke tasks in the Django namespace so
you can mostly abandon the Django manage.py nonsense and work with a proper
task management solution. Boogie also exposes a few useful reusable tasks that
you can import into your project and provides an infrastructure for apps to
export discoverable tasks easily accessible from the global tasks.py file.

Using Django management commands

…

Boogie invocations

…

Per-app tasks

…

Exporting tasks back to Django

…

Boogie stack

Boogie introduces an opinionated selection of apps and configurations for a
more or less generic “good practices” web application. While we don’t pretend
that a one-size-fits-all approach will be the best solution for everyone, we
believe that our proposed solution is good or can be easily adapted for the
majority of cases.

We assume a web application with the following broad features:

	A fully featured web site with user accounts, sessions, etc.

	It has a REST API.

	It serves at least parts of its content in the “traditional way” using
templates or server-side rendered HTML.

	It has a build pipeline for static assets, specially CSS and Javascript.

	It will be hosted in a PaaS host at least in some part of the application
lifecycle.

Solutions

Class based views

Old Django versions used generic function-based views. While those views were
convenient, the original implementation lacked composability: function-based
generic views implement common usage patterns, but were hard to modify and
reuse code across implementations. Now, Django introduced class-based views
to solve those problems. The new implementation, however, has its own set
of flaws: it is based on a very confusing inheritance tree [#link], and it
uses a confusing API that betrays the original simplicity of Django view
functions.

	It is not clear what is a View object: instances are never used directly
and the API expect to be used via the View.as_view() class method.

	Data flow is unclear. In most generic views, the request, *args and **kwargs
are saved as attributes and are often also passed as argument of many
internal methods. You can never anticipate when to use what, which is somewhat
ameliorated by Django’s excellent documentation ;)

	They are very stateful objects. Some people may find it distasteful.

Our approach

Boogie tends to favor more functional approaches than Django. While we like
the function view contract, we recognize that classes are very good to compose
isolated namespaces, specially in an object-oriented language like Python. That
said, we introduce a different approach to class-based views, one that opts for
simplicity:

Important

A view instance is a callable object that obeys Django’s view function
contract.

Boogie’s base boogie.View class offers a few goodies. First, it
understands the presence of separate get, post, delete, etc methods and
redirect control flow to the appropriate handler when a request is made:

from boogie.views import View

on view.py
class FormView(View):
 # Only called when request.method == 'GET'
 def get(self, request):
 ctx = {'form': MyForm()}
 return render(request, 'my-template.html', ctx)

 # Called when request.method == 'POST'
 def post(self, request):
 form = MyForm(request.POST)
 ctx = {'form': form}
 if form.is_valid():
 return redirect('success/')
 else:
 return render(request, 'my-template.html', ctx)

on urls.py
urlpatterns = [
 ...,
 path('post/', FormView()),
]

boogie.apps.tasks

(NOT IMPLEMENTED YET)

Boogie tasks app provides integration with celery to run tasks in the background
and store results to the database. It aims to have a straightforward interface
that we can easily use to register new tasks and run operations on the
background.

For simple uses, we can simply decorate a function with the task decorator
and it will expose additional methods for delayed computation. Every Boogie
task expects a django model instance as the first argument. By default, it
should return JSON compatible data.

from boogie.apps.tasks import task

@task
def clean_user_posts(user, force=False):
 removed_posts = user.posts.delete(force=force)
 return {
 'user': user.username,
 'removed': removed_posts,
 }

The decorated function gains some special methods to perform delayed execution:

	task_func(obj, *args, **kwargs):

	Simply call the function. Do not create any task instance in the database
or trigger special behavior.

	task_func.call(obj, *args, **kwargs):

	Create a Task instance and call it synchronously. This will save the result
in the database. Return the result of the task function.

	task_func.delayed(obj, *args, **kwargs):

	Return a new task instance. This method triggers the task function and runs
it on the background.

	task_func.paused(obj, *args, **kwargs):

	Return a new paused task instance. This method does not trigger the
execution of the task function. User should trigger its run() method
manually.

	task_func.schedule(time, obj, *args, **kwargs):

	Schedule task to start on the specified time. Return a task object. If time
is a number, it is interpreted as a time delta (in seconds) from current
time.

The task function also receives the following methods to manage executing
tasks.

	task_func.results(obj=None):

	Return all results from task. May filter by object.

	task_func.tasks(obj=None):

	Return a queryset with all task objects for the given task.

	task_func.finished(obj=None):

	Return all finished tasks.

	task_func.clean(obj=None, keep_last=False, finished=True):

	Clean all task results.

Advanced usage

Frequently asked questions

Usage

Why is this file empty?

Because it was created automatically by python-boilerplate__ and the package
author is too busy coding and did not provide a proper FAQ section ;-)

..: http://github.com/fabiommendes/python-boilerplate/

Concepts

Why do we want an automatic boilerplate?

Because time is precious and we don’t want to waste it in repetitive tasks. Copy
and paste can go a long way creating a new project, but is tedious and error
prone. Python boilerplate makes it easy, simple, and beautiful.

License

Copyright (c) Fábio Macêdo Mendes
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of Django-Boogie nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 boogie	

 	
 	
 boogie.configuration	

 	
 	
 boogie.debug	

 	
 	
 boogie.fields	

 	
 	
 boogie.rest	

 	
 	
 boogie.testing.client	

 	
 	
 boogie.testing.factories	

 	
 	
 boogie.testing.mock	

 	
 	
 boogie.testing.pytest	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | P
 | Q
 | R
 | S

A

 	
 	action() (boogie.rest.RestAPI method)

 	
 	assume_unique() (in module boogie.testing.mock)

B

 	
 	boogie.configuration (module)

 	boogie.debug (module)

 	boogie.fields (module)

 	boogie.rest (module)

 	
 	boogie.testing.client (module)

 	boogie.testing.factories (module)

 	boogie.testing.mock (module)

 	boogie.testing.pytest (module)

C

 	
 	Client (in module boogie.testing.client)

D

 	
 	delete_hook() (boogie.rest.RestAPI method)

 	
 	detail_action() (boogie.rest.RestAPI method)

E

 	
 	embed() (in module boogie.debug)

 	enable_debugging() (in module boogie.debug)

 	
 	Enum (class in boogie.fields)

 	EnumField (in module boogie.fields)

F

 	
 	factory() (in module boogie.testing.factories)

G

 	
 	get_api_info() (boogie.rest.RestAPI method)

 	get_hyperlink() (boogie.rest.RestAPI method)

 	get_resource_info() (boogie.rest.RestAPI method)

 	
 	get_router() (boogie.rest.RestAPI method)

 	get_serializer() (boogie.rest.RestAPI method)

 	get_urlpatterns() (boogie.rest.RestAPI method)

 	get_viewset() (boogie.rest.RestAPI method)

I

 	
 	info() (in module boogie.debug)

 	
 	IntEnum (class in boogie.fields)

L

 	
 	LightMock (class in boogie.testing.mock)

 	
 	link() (boogie.rest.RestAPI method)

 	list_action() (boogie.rest.RestAPI method)

M

 	
 	mock_save() (in module boogie.testing.mock)

P

 	
 	property() (boogie.rest.RestAPI method)

Q

 	
 	query_hook() (boogie.rest.RestAPI method)

R

 	
 	raise_exception() (in module boogie.testing.mock)

 	register() (boogie.rest.RestAPI method)

 	
 	register_viewset() (boogie.rest.RestAPI method)

 	RestAPI (class in boogie.rest)

S

 	
 	save_hook() (boogie.rest.RestAPI method)

 	
 	serialize() (boogie.rest.RestAPI method)

 	set_trace() (in module boogie.debug)

Warning

Beta software

You are using a software that has not reached a stable version yet. Please
beware that interfaces might change, APIs might disappear and general
breakage can occur before 1.0.

If you plan to use this software for something important, please read the
roadmap, and the issue tracker in Github. If you are unsure about the
future of this project, please talk to the developers, or (better yet) get
involved with the development of django-boogie!

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to django-boogie’s documentation!

 		
 Overview

 		
 Installation instructions

 		
 Configurations

 		
 Getting started

 		
 Django configuration

 		
 API Documentation

 		
 A deeper dive

 		
 Fields

 		
 EnumField

 		
 API Documentation

 		
 ORM

 		
 Fancy slicing API

 		
 The db object

 		
 Overriding query sets and managers

 		
 Pandas integration

 		
 Alternate Meta syntax and integration with model-utils and django-polymorphic

 		
 REST APIs

 		
 Extending the default API

 		
 Extra properties and attributes

 		
 Additional URLs

 		
 Custom viewsets and serializers

 		
 Custom routers

 		
 Customizing viewsets and serializers

 		
 Object creation hooks

 		
 Configurations

 		
 Mixin hooks

 		
 Retrieving viewsets and serializers

 		
 Versions

 		
 API Documentation

 		
 Routing

 		
 Routers

 		
 Boogie view functions

 		
 Rules

 		
 Testing

 		
 Testing views (pytest only)

 		
 Web Crawler

 		
 Explicit

 		
 API Reference

 		
 Testing models

 		
 Fixtures

 		
 API Reference

 		
 Mocks

 		
 API Reference

 		
 Boogie Client

 		
 API Reference

 		
 Debug

 		
 API Reference

 		
 Users App

 		
 Usage

 		
 Abstract model

 		
 Future ideas and Brainstorm

 		
 Boogie “PHP” mode

 		
 Proxy factories

 		
 Proxy factories

 		
 Job runner

 		
 Invoke tasks

 		
 Using Django management commands

 		
 Boogie invocations

 		
 Per-app tasks

 		
 Exporting tasks back to Django

 		
 Boogie stack

 		
 Solutions

 		
 Views

 		
 Our approach

 		
 boogie.apps.tasks

 		
 Advanced usage

 		
 Frequently asked questions

 		
 Usage

 		
 Why is this file empty?

 		
 Concepts

 		
 Why do we want an automatic boilerplate?

 		
 License

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

