
django-blog-zinnia Documentation
Release 0.9

Fantomas42

January 19, 2015

Contents

1 Django Blog Zinnia 1
1.1 Features . 1
1.2 Examples . 2
1.3 Online resources . 2

2 Getting Started 3
2.1 Installation . 3
2.2 Upgrading Zinnia . 5

3 Advanced Usage 7
3.1 Advanced Configuration . 7
3.2 Channels . 9
3.3 Search Engines . 10
3.4 URL Shortener . 11
3.5 Spam Checker . 12
3.6 Extending Entry model . 13
3.7 Import / Export . 14

4 Development 17
4.1 Contributing to Zinnia . 17
4.2 Testing and Coverage . 18
4.3 Buildout . 19

5 References 21
5.1 List of settings . 21
5.2 Template Tags . 25

6 Notes 31
6.1 Frequently Asked Questions . 31
6.2 Compatibility . 33
6.3 Thanks . 34
6.4 CHANGELOG . 34

7 Related 37

8 Indices and tables 39

i

ii

CHAPTER 1

Django Blog Zinnia

Simple yet powerful application for managing a blog within your Django website.

Zinnia has been made for publishing weblog entries and designed to do it well.

Basically any feature that can be provided by another reusable app has been left out. Why should we re-implement
something that is already done and reviewed by others and tested ?

1.1 Features

More than a long speech, here the list of the main features :

• Comments

• Sitemaps

• Archives views

• Related entries

• Private entries

• RSS or Atom Feeds

• Tags and categories views

• Advanced search engine

• Prepublication and expiration

• Edition in MarkDown, Textile or reStructuredText

• Widgets (Popular entries, Similar entries, ...)

• Spam protection with Akismet or TypePad

• Admin dashboard

• MetaWeblog API

• Ping Directories

• Ping External links

• Bit.ly support

• Twitter support

• Gravatar support

1

http://django-blog-zinnia.com/documentation/configuration/#sitemaps
http://django-blog-zinnia.com/documentation/search_engines/#advanced-search-engine
http://daringfireball.net/projects/markdown/
http://redcloth.org/hobix.com/textile/
http://docutils.sourceforge.net/rst.html
http://akismet.com
http://antispam.typepad.com/
http://www.xmlrpc.com/metaWeblogApi
http://django-blog-zinnia.com/documentation/configuration/#bit-ly
http://django-blog-zinnia.com/documentation/configuration/#twitter
http://gravatar.com/

django-blog-zinnia Documentation, Release 0.9

• Django-CMS plugins

• Collaborative work

• Tags autocompletion

• Entry model extendable

• Pingback/Trackback support

• Blogger conversion utility

• WordPress conversion utility

• WYMeditor, TinyMCE and MarkItUp support

• Ready to use and extendables templates

• Windows Live Writer compatibility

1.2 Examples

Take a look at the online demo at : http://django-blog-zinnia.com or you can visit these websites who use Zinnia.

• Fantomas’ side / Mobile version.

• Professional Web Studio.

• mixedCase.

• MadCad’s Page.

• SysVar.

If you are a proud user of Zinnia, send me the URL of your website and I will add it to the list.

1.3 Online resources

More information and help available at these URLs :

• Code repository.

• Documentation.

• API documentation.

• Code coverage.

• Discussions and help at Google Group.

• For reporting a bug use Github Issues.

2 Chapter 1. Django Blog Zinnia

http://django-blog-zinnia.com/documentation/configuration/#django-cms
http://django-blog-zinnia.com/documentation/extending_entry_model/
http://django-blog-zinnia.com/documentation/import_export/#from-blogger-to-zinnia
http://django-blog-zinnia.com/documentation/import_export/#from-wordpress-to-zinnia
http://www.wymeditor.org/
http://tinymce.moxiecode.com/
http://markitup.jaysalvat.com/
http://explore.live.com/windows-live-writer
http://django-blog-zinnia.com
http://fantomas.willbreak.it/blog/
http://m.fantomas.willbreak.it/blog/
http://www.professionalwebstudio.com/en/weblog/
http://www.mixedcase.nl/articles/
http://mad-cad.net/blog/
http://sysvar.net/
https://github.com/Fantomas42/django-blog-zinnia
http://django-blog-zinnia.com/documentation/
http://django-blog-zinnia.com/docs/api/
http://django-blog-zinnia.com/documentation/coverage/
http://groups.google.com/group/django-blog-zinnia/
https://github.com/Fantomas42/django-blog-zinnia/issues/

CHAPTER 2

Getting Started

2.1 Installation

2.1.1 Dependencies

Make sure to install these packages prior to installation :

• Python 2.x >= 2.5

• Django >= 1.2

• django-mptt >= 0.4.2

• django-tagging >= 0.3.1

• BeautifulSoup >= 3.2.0

The packages below are optionnal but needed for run the full test suite.

• pyparsing >= 1.5.5

• django-xmlrpc >= 0.1.3

Note that all the dependencies will be resolved if you install Zinnia with pip or easy_install, excepting Django.

2.1.2 Getting the code

You could retrieve the last sources from http://github.com/Fantomas42/django-blog-zinnia and run the installation
script

$ python setup.py install

or use pip

$ pip install -e git://github.com/Fantomas42/django-blog-zinnia.git#egg=django-blog-zinnia

For the latest stable version use easy_install

$ easy_install django-blog-zinnia

3

http://www.python.org/
http://www.djangoproject.com/
https://github.com/django-mptt/django-mptt/
http://code.google.com/p/django-tagging/
http://www.crummy.com/software/BeautifulSoup/
http://pyparsing.wikispaces.com/
https://github.com/Fantomas42/django-xmlrpc
http://github.com/Fantomas42/django-blog-zinnia

django-blog-zinnia Documentation, Release 0.9

2.1.3 Applications

Then register zinnia, and these following applications in the INSTALLED_APPS section of your project’s settings.

INSTALLED_APPS = (
Your favorite apps
’django.contrib.contenttypes’,
’django.contrib.comments’,
’django.contrib.sessions’,
’django.contrib.sites’,
’django.contrib.admin’,
’tagging’,
’mptt’,
’zinnia’,)

2.1.4 Template Context Processors

Add these following template context processors if not already present.

TEMPLATE_CONTEXT_PROCESSORS = (
’django.core.context_processors.auth’,
’django.core.context_processors.i18n’,
’django.core.context_processors.request’,
’django.core.context_processors.media’,
’zinnia.context_processors.version’, # Optional
’zinnia.context_processors.media’,)

2.1.5 Media Files

You have to make a symbolic link from zinnia/media/zinnia directory to your media directory or make a copy named
zinnia, but if want to change this value, define ZINNIA_MEDIA_URL in the settings.py as appropriate.

And don’t forget to serve this URL.

2.1.6 URLs

Add the following lines to your project’s urls.py in order to display the blog.

url(r’^weblog/’, include(’zinnia.urls’)),
url(r’^comments/’, include(’django.contrib.comments.urls’)),

Note that the default zinnia URLset is provided for convenient usage, but you can customize your URLs if you want.
Here’s how :

url(r’^’, include(’zinnia.urls.capabilities’)),
url(r’^search/’, include(’zinnia.urls.search’)),
url(r’^sitemap/’, include(’zinnia.urls.sitemap’)),
url(r’^trackback/’, include(’zinnia.urls.trackback’)),
url(r’^weblog/tags/’, include(’zinnia.urls.tags’)),
url(r’^weblog/feeds/’, include(’zinnia.urls.feeds’)),
url(r’^weblog/authors/’, include(’zinnia.urls.authors’)),
url(r’^weblog/categories/’, include(’zinnia.urls.categories’)),
url(r’^weblog/discussions/’, include(’zinnia.urls.discussions’)),
url(r’^weblog/’, include(’zinnia.urls.quick_entry’)),

4 Chapter 2. Getting Started

django-blog-zinnia Documentation, Release 0.9

url(r’^weblog/’, include(’zinnia.urls.entries’)),
url(r’^comments/’, include(’django.contrib.comments.urls’)),

2.2 Upgrading Zinnia

If you want to upgrade your installation of Zinnia from a previous release, it’s easy, but you need to be cautious. The
whole process takes less than 15 minutes.

2.2.1 Dumping

The first thing to do is a to dump your data for safety reasons.

$ python manage.py dumpdata --indent=2 zinnia > dump_zinnia_before_migration.json

2.2.2 Preparing the database

The main problem with the upgrade process is the database. The Zinnia’s models can have changed with new or
missing fields. That’s why Zinnia use South‘s migrations to facilitate this step.

So we need to install the South package.

$ easy_install south

South needs to be registered in your project’s settings as an INSTALLED_APPS. Once it is done, use syncdb to finish
the installtaion of South in your project.

$ python manage.py syncdb

Now we will install the previous migrations of Zinnia to synchronize the current database schema with South.

$ python manage.py migrate zinnia --fake

2.2.3 Update Zinnia’s code

We are now ready to upgrade Zinnia. If you want to use the latest stable version use easy_install with this command :

$ easy_install -U zinnia

or if you prefer to upgrade from the development release, use pip like that :

$ pip install -U -e git://github.com/Fantomas42/django-blog-zinnia.git#egg=django-blog-zinnia

2.2.4 Update the database

The database should probably be updated to the latest database schema of Zinnia, South will be useful.

$ python manage.py migrate zinnia

The database is now up to date, and ready to use.

2.2. Upgrading Zinnia 5

http://south.aeracode.org/

django-blog-zinnia Documentation, Release 0.9

2.2.5 Check list

In order to finish the upgrade process, we must check if everything works fine by browsing the website.

By experience, problems mainly come from customized templates, because of changes in the url reverse functions.

6 Chapter 2. Getting Started

CHAPTER 3

Advanced Usage

3.1 Advanced Configuration

3.1.1 Sitemaps

One of the cool features of Django is the sitemap application, so if you want to fill your website’s sitemap with the
entries of your blog, follow these steps.

• Register django.contrib.sitemaps in the INSTALLED_APPS section.

• Edit your project’s URLs and add this code :

from zinnia.sitemaps import TagSitemap
from zinnia.sitemaps import EntrySitemap
from zinnia.sitemaps import CategorySitemap
from zinnia.sitemaps import AuthorSitemap

sitemaps = {’tags’: TagSitemap,
’blog’: EntrySitemap,
’authors’: AuthorSitemap,
’categories’: CategorySitemap,}

urlpatterns += patterns(’django.contrib.sitemaps.views’,
url(r’^sitemap.xml$’, ’index’,

{’sitemaps’: sitemaps}),
url(r’^sitemap-(?P<section>.+)\.xml$’, ’sitemap’,

{’sitemaps’: sitemaps}),)

3.1.2 Akismet Anti-Spam

If you want to benefit of the Akismet spam protection on your comments, it’s possible to do it by installing the akismet
python module, and add this setting:

ZINNIA_SPAM_CHECKER_BACKENDS = (’zinnia.spam_checker.backends.automattic’,)

Important: You need an API key. If you don’t have any, get one for free at http://akismet.com/signup/ then set it in
your project’s settings like this:

AKISMET_SECRET_API_KEY = ’your key’

7

http://www.voidspace.org.uk/python/modules.shtml#akismet
http://akismet.com/signup/

django-blog-zinnia Documentation, Release 0.9

3.1.3 TypePad Anti-Spam

It’s also possible to benefit of the TypePad AntiSpam service to fight the spam. Like the Akismet protection you need
to install the akismet python module.

The register the TypePad AntiSpam protection with this setting:

ZINNIA_SPAM_CHECKER_BACKENDS = (’zinnia.spam_checker.backends.typepad’,)

Important: You need an API key. If you don’t have any, get one for free at http://antispam.typepad.com/info/get-
api-key.html then set it in your project’s settings like this:

TYPEPAD_SECRET_API_KEY = ’your key’

3.1.4 Bit.ly

You find http://bit.ly useful and want to use it for your blog entries ?

It’s simple, install django_bitly in your project’s settings and add these settings:

BITLY_LOGIN = ’your bit.ly login’
BITLY_API_KEY = ’your bit.ly api key’
ZINNIA_URL_SHORTENER_BACKEND = ’zinnia.url_shortener.backends.bitly’

Zinnia will do the rest.

3.1.5 Twitter

When you post a new entry on your blog you might want to tweet it as well.

In order to do that, you first need to activate the Bit.ly support like described above.

Then install tweepy and add these settings.

TWITTER_CONSUMER_KEY = ’Your Consumer Key’
TWITTER_CONSUMER_SECRET = ’Your Consumer Secret’
TWITTER_ACCESS_KEY = ’Your Access Key’
TWITTER_ACCESS_SECRET = ’Your Access Secret’

Note that the authentification for Twitter has changed since September 2010. The actual authentification system is
based on oAuth. That’s why now you need to set these 4 settings. If you don’t know how to get these information,
follow this excellent tutorial at:

http://jmillerinc.com/2010/05/31/twitter-from-the-command-line-in-python-using-oauth/

Now in the admin, you can post an update containing your entry’s title and the shortened url of your entry.

3.1.6 Django-CMS

If you use Django-cms 2.0, Zinnia can be integrated into your pages, thanks to the plugin system.

Simply register zinnia.plugins in the INSTALLED_APPS section of your project’s settings.

It will provides custom plugins for adding entries into your pages, an App-Hook and Menus for easy integration.

If you want to use the plugin system of django-cms in your entries, an extended EntryModel with a PlaceholderField
is provided.

8 Chapter 3. Advanced Usage

http://antispam.typepad.com/
http://www.voidspace.org.uk/python/modules.shtml#akismet
http://antispam.typepad.com/info/get-api-key.html
http://antispam.typepad.com/info/get-api-key.html
http://bit.ly
http://bitbucket.org/discovery/django-bitly/
http://github.com/joshthecoder/tweepy
http://jmillerinc.com/2010/05/31/twitter-from-the-command-line-in-python-using-oauth/
http://www.django-cms.org/

django-blog-zinnia Documentation, Release 0.9

Add this line in your project’s settings.

ZINNIA_ENTRY_BASE_MODEL = ’zinnia.plugins.placeholder.EntryPlaceholder’

3.1.7 TinyMCE

If you want to replace WYMEditor by TinyMCE install django-tinymce and follow the installation instructions.

TinyMCE can be customized by overriding the admin/zinnia/entry/tinymce_textareas.js template.

3.1.8 Markup languages

If you doesn’t want to write your entries in HTML, because you are an über coder knowing more than 42 programming
languages, you have the possibility to use a custom markup language for editing the entries.

Currently MarkDown, Textile and reStructuredText are supported, so if you want to use one of these languages, simply
set this variable as appropriate in your project’s settings.

ZINNIA_MARKUP_LANGUAGE = ’restructuredtext’

Note that the name of the language must be in lowercase.

More informations about the dependencies at this URL :

http://docs.djangoproject.com/en/1.2/ref/contrib/markup/

3.1.9 XML-RPC

Zinnia provides few webservices via XML-RPC, but before using it, you need to install django-xmlrpc.

Then register django_xmlrpc in your INSTALLED_APPS section of your project’s settings.

Now add these lines in your project’s settings.

from zinnia.xmlrpc import ZINNIA_XMLRPC_METHODS
XMLRPC_METHODS = ZINNIA_XMLRPC_METHODS

ZINNIA_XMLRPC_METHODS is a simple list of tuples containing all the webservices embedded in Zinnia.

If you only want to use the Pingback service import ZINNIA_XMLRPC_PINGBACK, or if you want you just want to
enable the MetaWeblog API import ZINNIA_XMLRPC_METAWEBLOG.

You can also use your own mixins.

Finally we need to register the url of the XML-RPC server. Insert something like this in your project’s urls.py:

url(r’^xmlrpc/$’, ’django_xmlrpc.views.handle_xmlrpc’),

Note : For the Pingback service check if your site is enabled for pingback detection. More information at
http://hixie.ch/specs/pingback/pingback-1.0#TOC2

3.2 Channels

Views by author, categories, tags is not enough :).

The idea is to create specific pages based on a query search.

3.2. Channels 9

http://code.google.com/p/django-tinymce/
http://django-tinymce.googlecode.com/svn/trunk/docs/.build/html/index.html
http://docs.djangoproject.com/en/1.2/ref/contrib/markup/
http://pypi.python.org/pypi/django-xmlrpc/
http://www.xmlrpc.com/metaWeblogApi
http://hixie.ch/specs/pingback/pingback-1.0#TOC2

django-blog-zinnia Documentation, Release 0.9

Imagine that we want to customize the homepage of the weblog, because we write on a variety of subjects and we
don’t want to bore visitors who aren’t interested in some really specific entries.

Another usage of the channels is for SEO, for aggregating entries under a well-formatted url.

For doing that Zinnia provides a view called zinnia.views.channels.entry_channel.

If we take our first example, we will do like that for customizing the weblog homepage in our project’s urls.py.

url(r’^weblog/$’, ’zinnia.views.channels.entry_channel’,
{’query’: ’category:python OR category:django’}),

url(r’^weblog/’, include(’zinnia.urls’)),

The first url will handle the homepage of the blog instead of the default url provided by Zinnia.

As we can see, the only required argument for this view is query. This parameter represents a query search string.
This string will be interpreted by the search engine activated in Zinnia and return a list of entries (See Search Engines
for more informations).

So our homepage will only display entries filled under the categories Python and Django.

The others parameters handled by the channel view are the same that the generic object_list view bundled in Django
can handle.

3.3 Search Engines

Zinnia like almost all blogging systems contains a search engine feature.

But in fact there are 2 search engines, a basic and an advanced, the advanced search engine is enabled by default, but
if he fails the basic search engine will resume the job.

3.3.1 Basic Search Engine

The basic search engine is the original engine of Zinnia, and will be used if the advanced engine cannot be used.

It will always returns more results than the advanced engine, because each terms of the query will be searched in the
entries and the results are added to a main result list. We can say that the results are inclusives.

Example of a query : love paris

This will returns all the entries containing the terms love or paris.

3.3.2 Advanced Search Engine

The advanced search engine has several possibilities for making more elaborated queries, with it’s own grammar
system.

The grammar of the search is close to the main search engines like Google or Yahoo.

The main difference with the basic engine is that the results are exclusives.

For enabling the advanced search engine, you simply need to install the pyparsing package. Otherelse the basic engine
will be used.

10 Chapter 3. Advanced Usage

http://docs.djangoproject.com/en/dev/ref/generic-views/#django-views-generic-list-detail-object-list

django-blog-zinnia Documentation, Release 0.9

Query examples

Here a list of examples and possibilities :

Example of a query with terms : love paris

This will returns all the entries containing the terms love and paris.

Example of a query with excluded terms : paris -hate

This will returns all the entries containing the term paris without the term hate.

Example of a query with expressions : "Paris, I love you"

This will returns all the entries containing the expression Paris, I love you.

Example of a query with category operator : love category:paris

This will returns all the entries containing the term love filled in the category named paris.

Example of a query with tag operator : paris tag:love

This will returns all the entries containing the term paris with the tag love.

Example of a query with author operator : paris author:john

This will returns all the entries containing the term paris writed by john.

Example of a query with boolean operator : paris or berlin

This will returns all the entries containing the term paris or berlin.

Example of e query with parenthesis : (paris or berlin) love

This will returns all the entries containing the terms paris or berlin with the term love.

Complex example : ((paris or berlin) and (tag:love or category:meet*) girl -money

This will returns all the entries containing the terms paris or berlin with the tag love or filled under the
categories starting by meet also containing the term girl excluding entries with the term money.

Note that the query is stripped of common words known as stop words. These are words such as on, the or which that
are generally not meaningful and cause irrelevant results.

The list of stop words is stored in the ZINNIA_STOP_WORDS setting.

3.4 URL Shortener

The URL shortening has becoming a big deal of the Internet especially for transfering long URLs.

And so many URL shortening services exist, each with his own features.

Originally Zinnia provided a only way to generate short urls for your entries, and you needed to install django_bitly.

One way it’s not bad, but it’s not enough.

First of all Zinnia now provides his own short URLs for the entries, ex :

http://mydomain.com/blog/1/

Of course the URL is short (and can be shorter) but if you have a long domain, the URL can be not so short, ex :

http://mysuperverylongdomain.com/blog/1/ (40 characters !)

But now you can easily change this behavior and use your favorite URL shortener service by writing a backend.

3.4. URL Shortener 11

http://mydomain.com/blog/1/
http://mysuperverylongdomain.com/blog/1/

django-blog-zinnia Documentation, Release 0.9

3.4.1 Writing your own URL shortener backend

Writing a backend for using your custom URL shortener is simple as possible, you only needs to follows 4 rules.

1. In a new python file write a function named backend taking an Entry instance in parameters.

2. The backend function should returns an URL including the protocol and the domain.

3. If the backend requires initial configuration you must raise a django.core.exceptions.ImproperlyConfigured
exception if the configuration is not valid. The error will be displayed in the console.

4. Register your backend to be used in your project with this setting :

ZINNIA_URL_SHORTENER_BACKEND = ’path.to.your.url.shortener.module’

Here the source code of the default backend.

from django.contrib.sites.models import Site
from django.core.urlresolvers import reverse
from zinnia.settings import PROTOCOL

def backend(entry):
return ’%s://%s%s’ % (PROTOCOL, Site.objects.get_current().domain,

reverse(’zinnia_entry_shortlink’, args=[entry.pk]))

For a more examples take a look in this folder : zinnia/url_shortener/backends/.

3.5 Spam Checker

Spam protection is mandatory when you want to let your users to comment your entries.

Originally Zinnia provided a only one type of spam protection with the support of Akismet.

One it’s not bad, but it’s not enough, because depend of a third-party service may be a little bit risky.

Now Akismet has been moved in a dedicated module and the moderation system let you choose the spam checkers
to use. With this new feature you can now write a custom spam checker corresponding to your needs and use it for
moderation your comments.

We can imagine for example that you want to authorize comments from a white-list of IPs, it’s possible by writing a
backend.

Note that you can use multiple backends, they are chained, useful for an maximum protection.

3.5.1 Writing your own spam checker backend

Writing a backend for using a custom spam checker is simple as possible, you only needs to follows 4 rules.

1. In a new python file write a function named backend taking in parameter : content the text to verify,
content_object the object related to the text and request the current request.

2. The backend function should returns True if content is spam and False otherwhise.

3. If the backend requires initial configuration you must raise a django.core.exceptions.ImproperlyConfigured
exception if the configuration is not valid. The error will be displayed in the console.

4. Register your backend to be used in your project with this setting :

ZINNIA_SPAM_CHECKER_BACKENDS = (’path.to.your.spam.checker.module’,)

12 Chapter 3. Advanced Usage

django-blog-zinnia Documentation, Release 0.9

For a more examples take a look in this folder : zinnia/spam_checker/backends/.

3.6 Extending Entry model

The Entry model bundled in Zinnia can now be extended and customized.

This feature is useful for who wants to add some fields in the model, or change its behavior. It allows Zinnia to be a
really generic and reusable application.

Imagine that I find Zinnia really great, but that is misses some fields or features to be the blog app that I need for my
django project. For example I need to add a custom field linking to an image gallery, 2 solutions :

• I search for another django blogging app fitting my needs.

• I make a monkey patch, but I won’t be able to upgrade to future releases.

These 2 solutions are really bad, that’s why Zinnia provides a third solution.

• Customizing the model noninvasively with the power of inheritance.

How do we do that ?

In fact, simply by creating an abstract model inherited from EntryBaseModel, adding fields or/and overriding his
methods, and registering it with the ZINNIA_ENTRY_BASE_MODEL setting in your project.

Example for adding a gallery field.

from django.db import models
from mygalleryapp.models import Gallery
from zinnia.models import EntryAbstractClass

class EntryGallery(EntryAbstractClass):
gallery = models.ForeignKey(Gallery)

class Meta:
abstract = True

Now you register the EntryGallery model like this in your project’s settings.

ZINNIA_ENTRY_BASE_MODEL = ’appname.custom_entry.EntryGallery’

Finally extend the entry’s admin class to show your custom field.

from django.contrib import admin
from zinnia.models import Entry
from zinnia.admin.entry import EntryAdmin
from django.utils.translation import ugettext_lazy as _

class EntryGalleryAdmin(EntryAdmin):

In our case we put the gallery field
into the ’Content’ fieldset
fieldsets = ((_(’Content’), {’fields’: (
’title’, ’content’, ’image’, ’status’, ’gallery’)})) + \
EntryAdmin.fieldsets[1:]

admin.site.unregister(Entry)
admin.site.register(Entry, EntryGalleryAdmin)

3.6. Extending Entry model 13

django-blog-zinnia Documentation, Release 0.9

You can see another example in the files zinnia/plugins/placeholder.py and
zinnia/plugins/admin.py.

Note: You have to respect 4 important rules :

1. Do not import the Entry model in your file defining the extended model because it will cause a circular impor-
tation.

2. Do not put your abstract model in a file named models.py, it will not work for a non obvious reason.

3. Don’t forget to tell that your model is abstract. Otherwise a table will be created and the extending process will
not work as expected.

4. If you extend the Entry model after the syncdb command, you will have to reset the Zinnia application to reflect
your changes.

3.7 Import / Export

If you already have a blog, Zinnia has the ability to import your posts from other blogging platforms. Useful for rapid
migration.

3.7.1 From WordPress to Zinnia

Zinnia provides a command for importing export files from WordPress.

http://codex.wordpress.org/Tools_Export_SubPanel

Once you have the XML file, you simply have to do this.

$ python manage.py wp2zinnia path/to/your/wordpress.xml

This command will associate the post’s authors to User and import the tags, categories, post and comments.

For the options execute this.

$ python manage.py help wp2zinnia

3.7.2 From Zinnia to WordPress

Zinnia also provides a command for exporting your blog to WordPress in the case you want to migrate on it.

Simply execute this command :

$ python manage.py zinnia2wp > export.xml

Once you have the XML export, you can import it into your WordPress site.

http://codex.wordpress.org/Importing_Content

3.7.3 From Blogger to Zinnia

If you are comming from Blogger, you can import your posts and comments with this simple command :

$ python manage.py blogger2zinnia

14 Chapter 3. Advanced Usage

http://codex.wordpress.org/Tools_Export_SubPanel
http://codex.wordpress.org/Importing_Content

django-blog-zinnia Documentation, Release 0.9

For the options execute this.

$ python manage.py help blogger2zinnia

Note that you need to install the gdata package to run the importation.

3.7.4 From Feed to Zinnia

If you don’t have the possibility to export your posts but have a RSS or Atom feed on your weblog, Zinnia can import
it. This command is the most generic way to import content into Zinnia. Simply execute this command:

$ python manage.py feed2zinnia http://url.of/the/feed

For the options execute this.

$ python manage.py help feed2zinnia

Note that you need to install the feedparser package to run the importation.

3.7. Import / Export 15

http://code.google.com/p/gdata-python-client/
https://code.google.com/p/feedparser/

django-blog-zinnia Documentation, Release 0.9

16 Chapter 3. Advanced Usage

CHAPTER 4

Development

4.1 Contributing to Zinnia

Zinnia is an open-source project, so yours contributions are welcomed and needed.

4.1.1 Writing code

So you have a great idea to program, found a bug or a way to optimize the code ? You are welcome.

Process

1. Fork the code on Github.

2. Checkout your fork.

3. Write unit tests.

4. Develop your code.

5. Test the code.

6. Update the documentation.

7. Commit your changes

8. Push to your fork.

9. Open a pull request.

Conventions

Code conventions are important in a way where they ensure the lisibility of the code in the time, that’s why the code
try to respect at most the PEP8.

If you have already run the Buildout script you can execute this Makefile rule to check your code.

$ make kwalitee

With a clear and uniform code, the development is better and faster.

17

https://github.com/Fantomas42/django-blog-zinnia/fork
http://www.python.org/dev/peps/pep-0008/

django-blog-zinnia Documentation, Release 0.9

Tests

The submited code should be covered with one or more unittests to ensure the new behavior and will make easier
future developments. Without that, your code will not be reliable and may not be integrated.

See Testing and Coverage for more informations.

4.1.2 Writing documentation

Sometimes considered like “annoying” by hard-core coders, documentation is more important than the code itself!
This is what brings fresh blood to a project, and serves as a reference for old timers.

On top of this, documentation is the one area where less technical people can help most - you just need to write a
semi-decent English. People need to understand you. We don’t care about style or correctness.

The documentation should :

• Use Sphinx and restructuredText.

• Use .rst as file extension.

• Be written in English.

• Be accessible. You should assume the reader to be moderately familiar with Python and Django, but not anything
else.

Keep it mind that documenting is most useful than coding, so your contribution will be greatly appreciated.

4.1.3 Translations

If you want to contribute by updating a translation or adding a translation in your language, it’s simple: create a
account on Transifex.net and you will be able to edit the translations at this URL :

http://www.transifex.net/projects/p/django-blog-zinnia/resource/djangopo/

The translations hosted on Transifex.net will be pulled periodically in the repository, but if you are in a hurry, send me
a message.

4.2 Testing and Coverage

“An application without tests, is a dead-born application.” Someone very serious

Writing tests is important, maybe more important than coding.

And this for a lot of reasons, but I’m not here to convince you about the benefits of software testing, some prophets
will do it better than me.

• http://en.wikipedia.org/wiki/Software_testing

• http://docs.djangoproject.com/en/dev/topics/testing/

Of course Zinnia is tested using the unittest approach. All the tests belong in the directory zinnia/tests/.

18 Chapter 4. Development

http://www.transifex.net/projects/p/django-blog-zinnia/resource/djangopo/
https://github.com/inbox/new/Fantomas42
https://github.com/inbox/new/Fantomas42
http://en.wikipedia.org/wiki/Software_testing
http://docs.djangoproject.com/en/dev/topics/testing/
http://docs.python.org/library/unittest.html

django-blog-zinnia Documentation, Release 0.9

4.2.1 Launching the test suite

If you have run the Buildout script bundled in Zinnia, the tests are run under nose by launching this command:

$./bin/test

But the tests can also be launched within a django project with the default test runner:

$ django-admin.py test zinnia --settings=zinnia.testsettings

4.2.2 Coverage

Despite my best efforts, some functionnalities are not yet tested, that’s why I need your help !

As I write these lines the 121 tests in Zinnia cover 96% of the code bundled in Zinnia. A real effort has been made to
obtain this percentage, for ensuring the quality of the code.

I know that a coverage percent does not represent the quality of the tests, but maintaining or increasing this percentage
ensures the quality of Zinnia and his future evolutions.

You can check the actual coverage percent at this url:

http://django-blog-zinnia.com/documentation/coverage/

I hope that you will write some tests and find some bugs. :)

4.3 Buildout

To increase the speed of the development process a Buildout script is provided to properly initialize the project for
anybody who wants to contribute to the project.

First of all, please use VirtualEnv to protect your system, it’s not mandatory but handy.

Follow these steps to start the development :

$ git clone git://github.com/Fantomas42/django-blog-zinnia.git
$ virtualenv --no-site-packages django-blog-zinnia
$ cd django-blog-zinnia
$ source ./bin/activate
$ python bootstrap.py
$./bin/buildout

The buildout script will resolve all the dependencies needed to develop the application.

Once these operations are done, you are ready to develop the zinnia project.

Run this command to launch the test suite.

$./bin/test

To view the code coverage run this command.

$./bin/cover

Execute these commands to check the code conventions.

$./bin/pyflakes zinnia
$./bin/pep8 --count -r --exclude=tests.py,migrations zinnia

4.3. Buildout 19

http://somethingaboutorange.com/mrl/projects/nose/0.11.2/
http://django-blog-zinnia.com/documentation/coverage/
http://pypi.python.org/pypi/zc.buildout
http://pypi.python.org/pypi/virtualenv

django-blog-zinnia Documentation, Release 0.9

To launch the demo site, execute these commands.

$./bin/demo syncdb
$./bin/demo loaddata helloworld
$./bin/demo runserver

And for building the HTML documentation run this.

$./bin/docs

Pretty easy no ?

20 Chapter 4. Development

CHAPTER 5

References

5.1 List of settings

Zinnia has a lot of parameters to configure the application accordingly to your needs.

All settings described here can be found in zinnia/settings.py.

5.1.1 Entry

ZINNIA_ENTRY_TEMPLATES

Default value: ()

List of tuple for extending the list of templates availables for rendering the entry.

ZINNIA_ENTRY_BASE_MODEL

Default value: ’’

String defining the base Model path for the Entry model. See Extending Entry model for more informations.

ZINNIA_UPLOAD_TO

Default value: ’uploads’

String setting that tells Zinnia where to upload entries’ images.

5.1.2 Edition

ZINNIA_MARKUP_LANGUAGE

Default value: ’html’

String determining the markup language used for writing the entries.

21

django-blog-zinnia Documentation, Release 0.9

ZINNIA_MARKDOWN_EXTENSIONS

Default value: ’’

Extensions names to be used when rendering entries in MarkDown.

ZINNIA_WYSIWYG

Default value: ’tinymce’ if in settings.INSTALLED_APPS else ’wymeditor’ if
ZINNIA_MARKUP_LANGUAGE is ’html’. If MarkDown, Textile or reStructuredText
are used, the value will be ’markitup’.

Used for determining the WYSIWYG editor for editing an entry. Can also be used for disabling the WYSIWYG
functionnality.

5.1.3 Views

ZINNIA_PAGINATION

Default value: 10

Integer used to paginate the entries.

ZINNIA_ALLOW_EMPTY

Default value: True

Used for archives views, raise a 404 error if no entries are present at the specified date.

ZINNIA_ALLOW_FUTURE

Default value: True

Used for allowing archives views in the future.

5.1.4 Feeds

ZINNIA_FEEDS_FORMAT

Default value: ’rss’

String determining the format of the syndication feeds. Use ‘atom’ for Atom feeds.

ZINNIA_FEEDS_MAX_ITEMS

Default value: 15

Integer used to define the maximum items provided in the syndication feeds.

22 Chapter 5. References

django-blog-zinnia Documentation, Release 0.9

5.1.5 URLs

ZINNIA_PROTOCOL

Default value: ’http’

String representing the protocol of the site.

ZINNIA_MEDIA_URL

Default value: os.path.join(settings.MEDIA_URL, ’zinnia/’)

String of the url that handles the media files of Zinnia.

5.1.6 Comment moderation

ZINNIA_AUTO_MODERATE_COMMENTS

Default value: False

Determine if a new comment should be allowed to show up immediately or should be marked non-public and await
approval.

ZINNIA_AUTO_CLOSE_COMMENTS_AFTER

Default value: None

Determine the number of days where comments are open.

ZINNIA_MAIL_COMMENT_REPLY

Default value: False

Boolean used for sending an email to comment’s authors when a new comment is posted.

ZINNIA_MAIL_COMMENT_AUTHORS

Default value: True

Boolean used for sending an email to entry authors when a new comment is posted.

ZINNIA_MAIL_COMMENT_NOTIFICATION_RECIPIENTS

Default value: list of emails based on settings.MANAGERS

List of emails used for sending a notification when a new public comment has been posted.

ZINNIA_SPAM_CHECKER_BACKENDS

Default value: ()

List of strings representing the module path to a spam checker backend.

5.1. List of settings 23

django-blog-zinnia Documentation, Release 0.9

5.1.7 Pinging

ZINNIA_PING_DIRECTORIES

Default value: (’http://django-blog-zinnia.com/xmlrpc/’,)

List of the directories you want to ping.

ZINNIA_PING_EXTERNAL_URLS

Default value: True

Boolean setting for telling if you want to ping external urls when saving an entry.

ZINNIA_SAVE_PING_DIRECTORIES

Default value: bool(ZINNIA_PING_DIRECTORIES)

Boolean setting for telling if you want to ping directories when saving an entry.

ZINNIA_PINGBACK_CONTENT_LENGTH

Default value: 300

Size of the excerpt generated on pingback.

5.1.8 Similarity

ZINNIA_F_MIN

Default value: 0.1

Float setting of the minimal word frequency for similar entries.

ZINNIA_F_MAX

Default value: 1.0

Float setting of the minimal word frequency for similar entries.

5.1.9 Miscellaneous

ZINNIA_COPYRIGHT

Default value: ’Zinnia’

String used for copyrighting the syndication feeds.

24 Chapter 5. References

django-blog-zinnia Documentation, Release 0.9

ZINNIA_STOP_WORDS

Default value: See zinnia/settings.py

List of common words excluded from the advanced search engine to optimize the search querying and the results.

ZINNIA_URL_SHORTENER_BACKEND

Default value: ’zinnia.url_shortener.backends.default’

String representing the module path to the url shortener backend.

ZINNIA_USE_TWITTER

Default value: True if python-twitter is in PYTHONPATH

Boolean telling if Zinnia can use Twitter.

5.1.10 CMS

All the settings related to the CMS can be found in zinnia/plugins/settings.py.

ZINNIA_APP_MENUS

Default value: (’zinnia.plugins.menu.EntryMenu’, ’zinnia.plugins.menu.CategoryMenu’,
’zinnia.plugins.menu.TagMenu’, ’zinnia.plugins.menu.AuthorMenu’)

List of strings representing the path to the Menu class provided for the Zinnia AppHook.

ZINNIA_HIDE_ENTRY_MENU

Default value: True

Boolean used for displaying or not the entries in the EntryMenu object.

ZINNIA_PLUGINS_TEMPLATES

Default value: ()

List of tuple for extending the CMS’s plugins rendering templates.

5.2 Template Tags

Zinnia provides several template tags based on inclusion_tag system to create some widgets in your website’s tem-
plates.

To use any of the following template tags you need to load them first at the top of your template:

{% load zinnia_tags %}

5.2. Template Tags 25

django-blog-zinnia Documentation, Release 0.9

5.2.1 get_recent_entries

Display the latest entries.

Prototype: get_recent_entries(number=5, template="zinnia/tags/recent_entries.html")

Examples:

{% get_recent_entries %}
{% get_recent_entries 3 %}
{% get_recent_entries 3 "custom_template.html" %}

5.2.2 get_featured_entries

Display the featured entries.

Prototype: get_featured_entries(number=5, template="zinnia/tags/featured_entries.html")

Examples:

{% get_featured_entries %}
{% get_featured_entries 3 %}
{% get_featured_entries 3 "custom_template.html" %}

5.2.3 get_random_entries

Display random entries.

Prototype: get_random_entries(number=5, template="zinnia/tags/random_entries.html")

Examples:

{% get_random_entries %}
{% get_random_entries 3 %}
{% get_random_entries 3 "custom_template.html" %}

5.2.4 get_popular_entries

Display popular entries.

Prototype: get_popular_entries(number=5, template="zinnia/tags/popular_entries.html")

Examples:

{% get_popular_entries %}
{% get_popular_entries 3 %}
{% get_popular_entries 3 "custom_template.html" %}

5.2.5 get_similar_entries

Display entries similar to an existing entry.

Prototype: get_similar_entries(number=5, template="zinnia/tags/similar_entries.html")

Examples:

26 Chapter 5. References

django-blog-zinnia Documentation, Release 0.9

{% get_similar_entries %}
{% get_similar_entries 3 %}
{% get_similar_entries 3 "custom_template.html" %}

5.2.6 get_calendar_entries

Display an HTML calendar with date of publications.

If you don’t set the year or the month parameter, the calendar will look in the context of the template if one of these
variables is set in this order : (month, day, object.creation_date).

If no one of these variables is found, the current month will be displayed.

Prototype: get_calendar_entries(year=auto, month=auto, template="zinnia/tags/calendar.html")

Examples:

{% get_calendar_entries %}
{% get_calendar_entries 2011 4 %}
{% get_calendar_entries 2011 4 "custom_template.html" %}

5.2.7 get_archives_entries

Display the archives by month.

Prototype: get_archives_entries(template="zinnia/tags/archives_entries.html")

Examples:

{% get_archives_entries %}
{% get_archives_entries "custom_template.html" %}

5.2.8 get_archives_entries_tree

Display all the archives as a tree.

Prototype: get_archives_entries_tree(template="zinnia/tags/archives_entries_tree.html")

Examples:

{% get_archives_entries_tree %}
{% get_archives_entries_tree "custom_template.html" %}

5.2.9 get_authors

Display all the published authors.

Prototype: get_authors(template="zinnia/tags/authors.html")

Examples:

{% get_authors %}
{% get_authors "custom_template.html" %}

5.2. Template Tags 27

django-blog-zinnia Documentation, Release 0.9

5.2.10 get_categories

Display all the categories available.

Prototype: get_categories(template="zinnia/tags/categories.html")

Examples:

{% get_categories %}
{% get_categories "custom_template.html" %}

5.2.11 get_tags

Store in a context variable a queryset of all the published tags.

Example:

{% get_tags as entry_tags %}

5.2.12 get_tag_cloud

Display a cloud of published tags.

Prototype: get_tag_cloud(steps=6, template="zinnia/tags/tag_cloud.html")

Examples:

{% get_tag_cloud %}
{% get_tag_cloud 9 %}
{% get_tag_cloud 9 "custom_template.html" %}

5.2.13 get_recent_comments

Display the latest comments.

Prototype: get_recent_comments(number=5, template="zinnia/tags/recent_comments.html")

Examples:

{% get_recent_comments %}
{% get_recent_comments 3 %}
{% get_recent_comments 3 "custom_template.html" %}

5.2.14 get_recent_linkbacks

Display the latest linkbacks.

Prototype: get_recent_linkbacks(number=5, template="zinnia/tags/recent_linkbacks.html")

Examples:

{% get_recent_linkbacks %}
{% get_recent_linkbacks 3 %}
{% get_recent_linkbacks 3 "custom_template.html" %}

28 Chapter 5. References

django-blog-zinnia Documentation, Release 0.9

5.2.15 zinnia_pagination

Display a Digg-like pagination for long list of pages.

Prototype: zinnia_pagination(page, begin_pages=3, end_pages=3, before_pages=2,
after_pages=2, template="zinnia/tags/pagination.html")

Examples:

{% zinnia_pagination page_obj %}
{% zinnia_pagination page_obj 2 2 %}
{% zinnia_pagination page_obj 2 2 3 3 %}
{% zinnia_pagination page_obj 2 2 3 3 "custom_template.html" %}

5.2.16 zinnia_breadcrumbs

Display the breadcrumbs for the pages handled by Zinnia.

Prototype: zinnia_breadcrumbs(separator="/", root_name="Blog",
template="zinnia/tags/breadcrumbs.html")

Examples:

{% zinnia_breadcrumbs %}
{% zinnia_breadcrumbs ">" "News" %}
{% zinnia_breadcrumbs ">" "News" "custom_template.html" %}

5.2.17 get_gravatar

Display the Gravatar image associated to an email, useful for comments.

Prototype: get_gravatar(email, size=80, rating=’g’, default=None)

Examples:

{% get_gravatar user.email %}
{% get_gravatar user.email 50 %}
{% get_gravatar user.email 50 "PG" %}
{% get_gravatar user.email 50 "PG" "identicon" %}

The usage of the template argument allow you to reuse and customize the rendering of a template tag in a generic
way. Like this you can display the same template tag many times in your pages but with a different appearance.

5.2. Template Tags 29

http://gravater.com

django-blog-zinnia Documentation, Release 0.9

30 Chapter 5. References

CHAPTER 6

Notes

6.1 Frequently Asked Questions

Contents

• Frequently Asked Questions
– Templates

* The templates does not fit to my wishes. What can I do ?
– Comments

* Is it possible to have a better comment system, with reply feature for example ?
– Edition

* I want to write my entries in MarkDown, RestructuredText or any lightweight markup language,
is it possible ?

– Authors
* Is Zinnia able to allow multiple users to edit it’s own blog ?

– Images
* How can I use the image field for fitting to my skin ?
* I want an image gallery in my posts, what can I do ?

6.1.1 Templates

The templates does not fit to my wishes. What can I do ?

The templates provided for Zinnia are simple but complete and as generic as possible. But you can easily change them
by specifying a template directory.

A good starting point is to copy-paste the zinnia/base.html template, and edit the extends instruction for fitting to
your skin.

Note:
• The main content is displayed in block named content.

• Additional datas are displayed in a block named sidebar.

You can also create your own app containing some Zinnia’s templates based on inheritance. You can find an app
example with HTML5 templates for Zinnia which can be a good starting point to make your own at : Django Blog
Quintet.

31

http://docs.djangoproject.com/en/dev/ref/templates/api/#loading-templates
http://github.com/franckbret/django-blog-quintet
http://github.com/franckbret/django-blog-quintet

django-blog-zinnia Documentation, Release 0.9

6.1.2 Comments

Is it possible to have a better comment system, with reply feature for example ?

Yes the comment system integrated in Zinnia is based on django.contrib.comments and can be extended or replaced.

If you want the ability to reply on comments, you can take a look at django-threadcomments for example.

6.1.3 Edition

I want to write my entries in MarkDown, RestructuredText or any lightweight markup language, is it
possible ?

Yes of course, Zinnia currently support MarkDown, Textile and reStructuredText as markup languages, but if you want
to write your entries in a custom markup language a solution is to disable the WYSIWYG editor in the admin site with
the ZINNIA_WYSIWYG setting, and use the appropriate template filter in your templates.

6.1.4 Authors

Is Zinnia able to allow multiple users to edit it’s own blog ?

Zinnia is designed to be multi-site. That’s mean you can publish entries on several sites or share an admin interface
for all the sites handled.

Zinnia also provides a new permission that’s allow or not the user to change the authors. Useful for collaborative
works.

But if you want to restrict the edition of the entries by site, authors or whatever you want, it’s your job to implement
this functionality in your project.

The simple way to do that, respecting the Django rules, is to override the admin classes provided by Zinnia, and
register those classes in another admin site.

6.1.5 Images

How can I use the image field for fitting to my skin ?

Take a looks at sorl.thumbnail and use his templatetags.

You can do something like this in your templates :

I want an image gallery in my posts, what can I do ?

Simply create a new application with a model named EntryImage with a ForeignKey to the Entry model.

Then in the admin module of your app, unregister the EntryAdmin class, and use ModelInline in your new admin
class.

Here an simple example :

32 Chapter 6. Notes

http://github.com/ericflo/django-threadedcomments
http://daringfireball.net/projects/markdown/
http://redcloth.org/hobix.com/textile/
http://docutils.sourceforge.net/rst.html
http://code.google.com/p/sorl-thumbnail/

django-blog-zinnia Documentation, Release 0.9

The model
from django.db import models
from django.utils.translation import ugettext_lazy as _

from zinnia.models import Entry

class EntryImage(models.Model):
"""Image Model"""
entry = models.ForeignKey(Entry, verbose_name=_(’entry’))

image = models.ImageField(_(’image’), upload_to=’uploads/gallery’)
title = models.CharField(_(’title’), max_length=250)
description = models.TextField(_(’description’), blank=True)

def __unicode__(self):
return self.title

The admin

from django.contrib import admin

from zinnia.models import Entry
from zinnia.admin import EntryAdmin
from gallery.models import EntryImage

class EntryImageInline(admin.TabularInline):
model = EntryImage

class EntryAdminImage(EntryAdmin):
inlines = (EntryImageInline,)

admin.site.unregister(Entry)
admin.site.register(Entry, EntryAdminImage)

Another solution is to extend the Entry model Extending Entry model.

6.2 Compatibility

Zinnia tries to fit a maximum to the Django’s standards to gain in readability and to be always present when the version
3.4.2 will be here. :)

Predicting the future is a good thing, because it will be soon. Actually Zinnia is designed to handle the 1.2.x version
and will reach the release 1.5 easily without major changes.

http://docs.djangoproject.com/en/dev/internals/deprecation/

If you are running on the 1.1.x versions you can also use Zinnia by applying the patch located in
patches/compatibility_django_1.1.patch.

But the patch is not 100% efficient for 1 thing.

The feeds API provided by the django.contrib.syndication in the 1.1 versions is deprecated and the Feed classes
provided by has been migrated to the new API. This migration is actually incompatible with the 1.1 versions.

The patch only avoid the generation of errors when the tests are runned.

So if someone find a good solution to this problem, the patch will be integrated in the development branch.

6.2. Compatibility 33

http://docs.djangoproject.com/en/dev/internals/deprecation/

django-blog-zinnia Documentation, Release 0.9

6.3 Thanks

Zinnia cannot be a great application without great contributors who make this application greatest each day.

• Bjorn Meyer (bmeyer71)

• Jannis Leideil (jezdez)

• Tobias von Klipstein (klipstein)

• Mark Renton (indexofire)

• Bill Mill (llimllib)

• Kevin Renskers (Bolhoed)

• Jonathan Stoppani (GaretJax)

• Elijah Rutschman (elijahr)

• Thomas Bartelmess (tbartelmess)

• Franck Bret

• Jason Davies

• Brandon Taylor

• bernhardvallant

• nl0

• esauro

• 0Chuzz

• un33K

• orblivion

• kjikaqawej

• igalarzab

• jtrain

• and You.

I also want to thanks Transifex.net and ReadTheDocs.org for their services of great quality.

6.4 CHANGELOG

6.4.1 0.9

• Improved URL shortening

• Improved moderation system

• Better support of django-tagging

• Blogger to Zinnia utility command

• OpenSearch capabilities

• Upgraded search engine

34 Chapter 6. Notes

http://www.transifex.net/
http://readthedocs.org/

django-blog-zinnia Documentation, Release 0.9

• Feed to Zinnia utility command

• And a lot of bug fixes

6.4.2 0.8

• Admin dashboard

• Featured entries

• Using Microformats

• Mails for comment reply

• Entry model can be extended

• More plugins for django-cms

• Zinnia to Wordpress utility command

• Code cleaning and optimizations

• And a lot of bug fixes

6.4.3 0.7

• Using signals

• Trackback support

• Ping external urls

• Private posts

• Hierarchical categories

• TinyMCE integration

• Code optimizations

• And a lot of bug fixes

6.4.4 0.6

• Handling PingBacks

• Support MetaWeblog API

• Passing to Django 1.2.x

• Breadcrumbs templatetag

• Bug correction in calendar widget

• Wordpress to Zinnia utility command

• Major bug correction on publication system

• And a lot of bug fixes

6.4. CHANGELOG 35

django-blog-zinnia Documentation, Release 0.9

6.4.5 0.5

• Packaging

• Tests added

• Translations

• Better templates

• New templatetags

• Plugins for django-cms

• Twitter and Bit.ly support

• Publishing sources on Github.com

6.4.6 0.4 and before

• The previous versions of Zinnia were not packaged, and were destinated for a personnal use.

36 Chapter 6. Notes

CHAPTER 7

Related

• Zinnia’s API

• Code coverage

37

http://django-blog-zinnia.com/docs/api/
http://django-blog-zinnia.com/documentation/coverage/

django-blog-zinnia Documentation, Release 0.9

38 Chapter 7. Related

CHAPTER 8

Indices and tables

• search

39

	Django Blog Zinnia
	Features
	Examples
	Online resources

	Getting Started
	Installation
	Upgrading Zinnia

	Advanced Usage
	Advanced Configuration
	Channels
	Search Engines
	URL Shortener
	Spam Checker
	Extending Entry model
	Import / Export

	Development
	Contributing to Zinnia
	Testing and Coverage
	Buildout

	References
	List of settings
	Template Tags

	Notes
	Frequently Asked Questions
	Compatibility
	Thanks
	CHANGELOG

	Related
	Indices and tables

