Django Autoslug Documentation
Release 1.9

Andy Mikhailenko

Jun 14, 2023

Contents

1 Requirements
2 Installation

3 Examples

4 Documentation
5 Community

6 Licensing

6.1 Fields

6.2 Settings

6.3 Authors

6.4 Changelog

6.5 Indices and tables
Python Module Index
Index

11

13
13
16
17
18
19

21

23

Django Autoslug Documentation, Release 1.9

Django-autoslug is a reusable Django library that provides an improved slug field which can automatically:
a) populate itself from another field,
b) preserve uniqueness of the value and
¢) use custom slugify () functions for better i18n.

The field is highly configurable.

Contents 1

https://github.com/justinmayer/django-autoslug/actions
https://pypi.python.org/pypi/django-autoslug
https://pypi.python.org/pypi/django-autoslug
https://pypi.python.org/pypi/django-autoslug
https://pypi.python.org/pypi/django-autoslug
https://pypi.python.org/pypi/django-autoslug
https://django-autoslug.readthedocs.io/en/latest/

Django Autoslug Documentation, Release 1.9

2 Contents

CHAPTER 1

Requirements

Python 3.7+ or PyPy.
Django 3.2 or higher.

It may be possible to successfully use django-autoslug in other environments but they are not tested.

Note: PyPy3 is not officially supported only because there were some problems with permissions and ___pycache_
on CI unrelated to django-autoslug itself.

Django Autoslug Documentation, Release 1.9

4 Chapter 1. Requirements

CHAPTER 2

Installation

python -m pip install django-autoslug

Django Autoslug Documentation, Release 1.9

6 Chapter 2. Installation

CHAPTER 3

Examples

A simple example:

from django.db.models import CharField, Model
from autoslug import AutoSlugField

class Article (Model) :
title = CharField(max_length=200)
slug = AutoSlugField(populate_from='title')

More complex example:

from django.db.models import CharField, DateField, ForeignKey, Model

from django.contrib.auth.models import User
from autoslug import AutoSlugField

class Article (Model) :
title = CharField(max_length=200)
pub_date = DateField(auto_now_add=True)
author = ForeignKey (User)

slug = AutoSlugField (populate_from=lambda instance:
unique_with=["'author__name',

'pub_date

instance.title,
month'],

slugify=lambda value: value.replace(' ','-"'))

Django Autoslug Documentation, Release 1.9

8 Chapter 3. Examples

CHAPTER 4

Documentation

See the complete documentation on ReadTheDocs. It is built automatically for the latest version.

https://django-autoslug.readthedocs.org

Django Autoslug Documentation, Release 1.9

10 Chapter 4. Documentation

CHAPTER B

Community

This application is maintained by Justin Mayer. It was initially created by Andy Mikhailenko and then improved by
other developers. They are listed in AUTHORS . rst.

Please feel free to file issues and/or submit patches.

See CONTRIBUTING. rst for hints related to the preferred workflow.

11

Django Autoslug Documentation, Release 1.9

12 Chapter 5. Community

CHAPTER O

Licensing

Django-autoslug is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any
later version.

Django-autoslug is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this program; see the file
COPYING.LESSER. If not, see GNU licenses.

See detailed documentation with real-world examples:

6.1 Fields

class autoslug.fields.AutoSlugField (*args, **kwargs)
AutoSlugField is an extended SlugField able to automatically resolve name clashes.

AutoSlugField can also perform the following tasks on save:
* populate itself from another field (using populate_from),
* use custom slugify function (using slugify or Settings), and
e preserve uniqueness of the value (using unique or unique_with).

None of the tasks is mandatory, i.e. you can have auto-populated non-unique fields, manually entered unique
ones (absolutely unique or within a given date) or both.

Uniqueness is preserved by checking if the slug is unique with given constraints (unique_with) or globally
(unique) and adding a number to the slug to make it unique.

Parameters

* always_update — boolean: if True, the slug is updated each time the model instance
is saved. Use with care because cool URIs don’t change (and the slug is usually a part of

13

http://gnu.org/licenses/
http://w3.org/Provider/Style/URI.html

Django Autoslug Documentation, Release 1.9

object’s URI). Note that even if the field is editable, any manual changes will be lost when
this option is activated.

* populate_from — string or callable: if string is given, it is considered as the name of
attribute from which to fill the slug. If callable is given, it should accept instance parameter
and return a value to fill the slug with.

* sep - string: if defined, overrides default separator for automatically incremented slug
index (i.e. the “-” in “foo-2").

* slugify — callable: if defined, overrides AUTOSLUG_SLUGIFY_FUNCTION defined in
Settings.

* unique - boolean: ensure total slug uniqueness (unless more precise unique_with is de-
fined).

* unique_with — string or tuple of strings: name or names of attributes to check for “par-
tial uniqueness”, i.e. there will not be two objects with identical slugs if these objects
share the same values of given attributes. For instance, unique_with="'pub_date'
tells AutoSlugField to enforce slug uniqueness of all items published on given date.
The slug, however, may reappear on another date. If more than one field is given,
e.g. unique_with=('pub_date', 'author'), then the same slug may reappear
within a day or within some author’s articles but never within a day for the same au-
thor. Foreign keys are also supported, i.e. not only unique_with="author’ will do, but
also unique_with="author__name’.

Note: always place any slug attribute after attributes referenced by it (i.e. those from which you wish to
populate_from or check unique_with). The reasoning is that autosaved dates and other such fields must be
already processed before using them in the AutoSlugField.

Example usage:

from django.db import models
from autoslug import AutoSlugField

class Article (models.Model) :
"'"'An article with title, date and slug. The slug is not totally
unique but there will be no two articles with the same slug within
any month.
P
title = models.CharField (max_length=200)
pub_date = models.DateField(auto_now_add=True)
slug = AutoSlugField(populate_from='title', unique_with="'pub_date_ _month')

More options:

slugify but allow non-unique slugs
slug = AutoSlugField()

globally unique, silently fix on conflict ("foo" --> "foo-1".."foo-n")
slug = AutoSlugField (unique=True)

autoslugify value from attribute named "title"; editable defaults to False
slug = AutoSlugField(populate_from='title')

same as above but force editable=True
slug = AutoSlugField(populate_from='title', editable=True)

(continues on next page)

14

Chapter 6. Licensing

Django Autoslug Documentation, Release 1.9

(continued from previous page)

ensure that slug is unique with given date (not globally)
slug = AutoSlugField(unique_with="pub_date')

ensure that slug is unique with given date AND category
slug = AutoSlugField(unique_with=('pub_date', 'category'))

ensure that slug is unique with an external object
assuming that author=ForeignKey (Author)
slug = AutoSlugField(unique_with="author'")

ensure that slug is unique with a subset of external objects (by lookups)
assuming that author=ForeignKey (Author)
slug = AutoSlugField(unique_with="author__name')

mix above-mentioned behaviour bits
slug = AutoSlugField(populate_from='title', unique_with="'pub_date')

minimum date granularity is shifted from day to month
slug = AutoSlugField(populate_from='title', unique_with="'pub_date_month")

autoslugify value from a dynamic attribute (i.e. a method)
slug = AutoSlugField (populate_from="'get_ full name')

autoslugify value from a custom callable
(ex. usage: user profile models)
slug = AutoSlugField(populate_from=lambda instance: instance.user.get_full name())

specify model manager for looking up slugs shared by subclasses

class Article (models.Model) :

"'"'An article with title, date and slug. The slug is not totally

unique but there will be no two articles with the same slug within

any month.

objects = models.Manager ()

title = models.CharField(max_length=200)

slug = AutoSlugField(populate_from='title', unique_with='pub_date__month',
—manager=objects)

class NewsArticle (Article):
pass

autoslugify value using custom “slugify’ function
from autoslug.settings import slugify as default_slugify
def custom_slugify(value):
return default_slugify(value) .replace('-"', '_")
slug = AutoSlugField(slugify=custom_slugify)

deconstruct ()
Return enough information to recreate the field as a 4-tuple:

¢ The name of the field on the model, if contribute_to_class() has been run.

* The import path of the field, including the class:e.g. django.db.models.IntegerField This should be
the most portable version, so less specific may be better.

* A list of positional arguments.

6.1. Fields 15

Django Autoslug Documentation, Release 1.9

* A dict of keyword arguments.

Note that the positional or keyword arguments must contain values of the following types (including inner
values of collection types):

* None, bool, str, int, float, complex, set, frozenset, list, tuple, dict

« UUID

¢ datetime.datetime (naive), datetime.date

* top-level classes, top-level functions - will be referenced by their full import path
* Storage instances - these have their own deconstruct() method

This is because the values here must be serialized into a text format (possibly new Python code, possibly
JSON) and these are the only types with encoding handlers defined.

There’s no need to return the exact way the field was instantiated this time, just ensure that the resulting
field is the same - prefer keyword arguments over positional ones, and omit parameters with their default
values.

pre_save (instance, add)
Return field’s value just before saving.

6.2 Settings

Django settings that affect django-autoslug:
AUTOSLUG_SLUGIFY_FUNCTION Allows to define a custom slugifying function.

The function can be repsesented as string or callable, e.g.:

custom function, path as string:
AUTOSLUG_SLUGIFY_FUNCTION = 'some_app.slugify_ func'

custom function, callable:
AUTOSLUG_SLUGIFY_FUNCTION = some_app.slugify_func

custom function, defined inline:
AUTOSLUG_SLUGIFY_FUNCTION = lambda slug: 'can i haz ?' % slug

If no value is given, default value is used.

Default value is one of these depending on availability in given order:
e unidecode.unidecode() if Unidecode is available;
e pytils.translit.slugify() if pytils is available;
* django.template.defaultfilters.slugify() bundled with Django.

django-autoslug also ships a couple of slugify functions that use the translitcodec Python library, e.g.:

using as many characters as needed to make a natural replacement
AUTOSLUG_SLUGIFY_FUNCTION = 'autoslug.utils.translit_long'

using the minimum number of characters to make a replacement
AUTOSLUG_SLUGIFY_FUNCTION = 'autoslug.utils.translit_short'

only performing single character replacements
AUTOSLUG_SLUGIFY_FUNCTION = 'autoslug.utils.translit_one'

16 Chapter 6. Licensing

http://pypi.python.org/pypi/Unidecode
http://pypi.python.org/pypi/pytils
http://pypi.python.org/pypi/translitcodec

Django Autoslug Documentation, Release 1.9

AUTOSLUG_MODELTRANSLATION_ENABLE Django-autoslug support of modeltranslation is still experimen-
tal. If you wish to enable it, please set this option to True in your project settings. Default is False.

6.3

The django-autoslug library is currently maintained by:
* Justin Mayer <https://justinmayer.com/>
It was originally created by:

* Andy Mikhailenko <neithere @ gmail.com>

Authors

Here is a probably incomplete list of contributors — people who have submitted patches, reported bugs, added transla-

tions and generally made django-autoslug better:

Steve Steiner
Blake Imsland
Ollie Rutherfurd
Mikhail Korobov
Remco Wendt
Johan Charpentier
Nicolds Echéniz
Aaron VanDerlip
Thomas Woolford
Jannis Leidel
Caio Ariede
Venelin Stoykov
Bertrand Bordage
Davor Teskera
Florian Apolloner
Fabio Caccamo
Thomas Schreiber
Mike Urbanski
Vadim Iskuchekov
kane-c

Julien Dubiel
Tony Shtarev

Eloi Rivard

Peter Baumgartner
Jernej Kos

Sutrisno Efendi

6.3. Authors

17

http://django-modeltranslation.readthedocs.org
https://justinmayer.com/
mailto:neithere@gmail.com

Django Autoslug Documentation, Release 1.9

* Your Name Here ;)

6.4 Changelog

6.4.1 1.9.9 - 2023-04-03

* Prevent situation in which slug could end in dash or underscore

* Remove support for end-of-life Python & Django versions

6.4.2 1.9.8 - 2020-07-22

Move FieldDoesNotExist import for compatibility with Django 3.1

6.4.3 1.9.7 - 2020-04-14

Fix assertion error on empty slug

6.4.4 1.9.6 - 2019-07-30

Handle timezones for datetime fields

6.4.5 1.9.5 - 2019-07-28

Add license to sdist and wheels

6.4.6 Version 1.9.4

New features:
* Add manager_name kwarg to enable using custom managers from abstract models
¢ Add compatibility for Django versions 1.10, 1.11, 2.0, and 2.1

* Transfer project to new maintainer

6.4.7 Version 1.9.3

* Add allow_unicode attribute for django 1.9 compatibility.

» Tweak packaging

6.4.8 Version 1.9.1,1.9.2

Bugs fixed:
» #43 — Packaging error

18 Chapter 6. Licensing

Django Autoslug Documentation, Release 1.9

6.4.9 Version 1.9.0

Backwards incompatible changes:

* Limited supported versions of Python to 2.7, 3.5 and PyPy.

* Limited supported Django versions to 1.7.10 and higher.

* Turned off modeltranslation support by default (can be enabled)
Bugs fixed:

* #25 — max_length ignored in django 1.7 migrations.

o #42 — Added setting to enable/disable modeltranslation support.
Other changes:

* Converted the test suite from doctest to unittest.

* The project has moved from Bitbucket to GitHub.

6.4.10 Old versions

Changelog before extracting to a separate repository:

changeset: 23:34210c5b5b72

user: Andy Mikhailenko <neithere@gmail.com>

date: Sat Sep 27 05:55:42 2008 +0600

summary: Fixed bug in AutoSlugField: unigqueness check by date was broken
changeset: 22:8b13c99f2164

user: Andy Mikhailenko <neithere@gmail.com>

date: Sat Sep 27 04:14:04 2008 +0600

summary : Rewrite AutoSlugField. Add optional attributes "unique" and "unique_for_
—date". Preserve "populate_ from" as optional.

changeset: 21:072a85898221

parent: 19:2e6294ball62

user: Andy Mikhailenko <neithere@gmail.com>

date: Fri Sep 26 23:57:29 2008 +0600

summary: Use pytils for transliteration is AutoSlugField

changeset: 12:e8b861b632d7

user: Andy Mikhailenko <neithere@gmail.com>

date: Wed Aug 06 07:26:39 2008 +0600

summary: Fix bug in custom_forms.auto_slug_field (missing import directive)
changeset: 10:ac217f7edbb53

user: Andy Mikhailenko <neithere@gmail.com>

date: Wed Aug 06 07:19:17 2008 +0600

summary: Add custom_models, including AutoSlugField

6.5 Indices and tables

¢ genindex

¢ modindex

6.5. Indices and tables 19

Django Autoslug Documentation, Release 1.9

e search

20

Chapter 6. Licensing

Python Module Index

a

autoslug.fields, 13
autoslug.settings, 16

21

Django Autoslug Documentation, Release 1.9

22

Python Module Index

Index

A

autoslug.fields (module), 13
autoslug.settings (module), 16
AutoSlugField (class in autoslug.fields), 13

D

deconstruct () (autoslug.fields.AutoSlugField
method), 15

P

pre_save () (autoslug.fields.AutoSlugField method),
16

23

	Requirements
	Installation
	Examples
	Documentation
	Community
	Licensing
	Fields
	Settings
	Authors
	Changelog
	Indices and tables

	Python Module Index
	Index

