

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-autofixture 0.9.2 documentation

Welcome to django-autofixture’s documentation!

This app aims to provide a simple way of loading masses of randomly generated
test data into your development database. You can use a management
command to load test data through command line.

It is named autofixture because of the similarity of how I mainly used
django’s fixtures. Usually you add test data through the admin to see how your
site looks with non static pages. You export data by using dumpdata to
send it to your colleagues or to preserve it before you make a manage.py
reset app and so on. Your site gets more and more complex and adding test
data gets more and more annoying.

This is the usecase where autofixtures should help you to save time that can
actually be spent on hacking.

Contents

	Installation
	Download and install with pip or easy_install

	Add autofixture to your django project

	Using the development version

	The loadtestdata management command

	Howto use the library
	Creating model instances

	Using the AutoFixture class

	The AutoFixture registry

	Subclassing AutoFixture

	Builtin AutoFixture subclasses

	Contribute

 Copyright 2013, Gregor Müllegger.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-autofixture 0.9.2 documentation

Installation

Download and install with pip or easy_install

You can install the django-autofixture like any other python package. The
prefered way is to use pip [http://pypi.python.org/pypi/pip]. Please run the
following command in your terminal:

pip install django-autofixture

This will install the package in your system wide python installation.

You can fall back to the easy_install command if pip is
not available on your system:

easy_install django-autofixture

Note

In most cases you need admin previlegies to install a package into
your system. You can get these previlegies by prefixing the commands above
with sudo.

Add autofixture to your django project

Usually you want to add autofixture to your INSTALLED_APPS in the
settings file of your django project. This will make the loadtestdata management command available to your use.

Using the development version

You can ofcourse also install and use the current development version. All you
need is to have the git [http://git-scm.com/] and setuptools [http://pypi.python.org/pypi/setuptools] installed.

Now get the repository from github [http://github.net/gregmuellegger/django-autofixture] and run:

git clone git://github.com/gregmuellegger/django-autofixture.git

This will download the project into your local directory. cd to the
django-autofixture directory and run:

python setup.py install

Now follow the instructions under Add autofixture to your django project and everything will be
in place to use django-autofixture.

 Copyright 2013, Gregor Müllegger.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-autofixture 0.9.2 documentation

The loadtestdata management command

Use the loadtestdata command like this:

django-admin.py loadtestdata [options] app.Model:# [app.Model:# ...]

Its nearly self explanatory. Supply names of models, prefixed with their app
name. After that, place a colon and tell the command how many objects you want
to create. Here is an example of how to create three categories and twenty
entries for you blogging app:

django-admin.py loadtestdata blog.Category:3 blog.Entry:20

Voila! You have ready to use testing data populated to your database. The
model fields are filled with data by producing randomly generated values
depending on the type of the field. E.g. text fields are filled with lorem
ipsum dummies, date fields are populated with random dates from the last
years etc.

There are a few command line options available. Mainly to control the
behavior of related fields. If foreingkey or many to many fields should be
populated with existing data or if the related models are also generated on
the fly. Please have a look at the help page of the command for more
information:

django-admin.py help loadtestdata

 Copyright 2013, Gregor Müllegger.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-autofixture 0.9.2 documentation

Howto use the library

Its easy to get started with the loadtestdata management command but its quite limited if you want to have more control of how
your test data should be created. This chapter describes how you use the
library in your python environment like the shell, a custom script or in
unittests.

Creating model instances

The autofixture module contains a few shortcuts to make the creation of
test data as fast as possible.

	
autofixture.create(model, count, *args, **kwargs)

	Create count instances of model using the either an appropiate
autofixture that was registry or fall back to the
default:class:AutoFixture class. model can be a model class or its
string representation (e.g. "app.ModelClass").

All positional and keyword arguments are passed to the autofixture
constructor. It is demonstrated in the example below which will create ten
superusers:

import autofixture
admins = autofixture.create('auth.User', 10, field_values={'is_superuser': True})

Note

See Using the AutoFixture class for more information.

create() will return a list of the created objects.

	
autofixture.create_one(model, *args, **kwargs)

	create_one() is exactly the as the create() function but a
shortcut if you only want to generate one model instance.

The function returns the instanciated model.

Using the AutoFixture class

	
class autofixture.base.AutoFixture(model, field_values=None, none_p=None, overwrite_defaults=None, constraints=None, follow_fk=None, generate_fk=None, follow_m2m=None, generate_m2m=None)

	
	
__init__(model, field_values=None, none_p=None, overwrite_defaults=None, constraints=None, follow_fk=None, generate_fk=None, follow_m2m=None, generate_m2m=None)

	
	Parameters:

	model: A model class which is used to create the test data.

field_values: A dictionary with field names of model as
keys. Values may be static values that are assigned to the field,
a Generator instance that generates a value on the fly or a
callable which takes no arguments and returns the wanted value.

none_p: The chance (between 0 and 1, 1 equals 100%) to
assign None to nullable fields.

overwrite_defaults: All default values of fields are preserved
by default. If set to True, default values will be treated
like any other field.

constraints: A list of callables. The constraints are used to
verify if the created model instance may be used. The callable
gets the actual model as first and the instance as second
parameter. The instance is not populated yet at this moment. The
callable may raise an InvalidConstraint exception to
indicate which fields violate the constraint.

follow_fk: A boolean value indicating if foreign keys should be
set to random, already existing, instances of the related model.

generate_fk: A boolean which indicates if related models should
also be created with random values. The follow_fk parameter will
be ignored if generate_fk is set to True.

follow_m2m: A tuple containing minium and maximum of model
instances that are assigned to ManyToManyField. No new
instances will be created. Default is (1, 5). You can ignore
ManyToManyField fields by setting this parameter to False.

generate_m2m: A tuple containing minimum and maximum number of
model instance that are newly created and assigned to the
ManyToManyField. Default is False which disables the
generation of new related instances. The value of follow_m2m
will be ignored if this parameter is set.

	
add_constraint(constraint)

	Add a constraint to the autofixture.

	
add_field_value(name, value)

	Pass a value that should be assigned to the field called name.
Thats the same as specifying it in the field_values argument of the
constructor.

	
create(count=1, commit=True, **kwargs)

	Create and return count model instances. If commit is False
the instances will not be saved and many to many relations will not be
processed.

May raise CreateInstanceError if constraints are not satisfied.

The method internally calls create_one() to generate instances.

	
create_one(commit=True)

	Create and return one model instance. If commit is False the
instance will not be saved and many to many relations will not be
processed.

Subclasses that override create_one can specify arbitrary keyword
arguments. They will be passed through by the
autofixture.base.AutoFixture.create() method and the helper
functions autofixture.create() and
autofixture.create_one().

May raise CreateInstanceError if constraints are not satisfied.

The AutoFixture registry

Since AutoFixture is designed to fit for almost all
models, its very generic and doesn’t know anything about the actual logic and
meanings of relations or the purpose of your model fields. This makes it
sometimes a bit difficult to provide the correct field_values in all
places where you want autofixture to instanciate your models.

So there is a registry to register custom
AutoFixture subclasses with specific models. These
subclasses are then used by default if you generate test data either with the
loadtestdata management command or with one of the
shortcuts in autofixture.

	
autofixture.register(model, autofixture, overwrite=False, fail_silently=False)

	Register a model with the registry.

Arguments:

model can be either a model class or a string that contains the model’s
app label and class name seperated by a dot, e.g. "app.ModelClass".

autofixture is the AutoFixture subclass that shall be used to
generated instances of model.

By default register() will raise ValueError if the given
model is already registered. You can overwrite the registered model if
you pass True to the overwrite argument.

The ValueError that is usually raised if a model is already
registered can be suppressed by passing True to the fail_silently
argument.

	
autofixture.unregister(model_or_iterable, fail_silently=False)

	Remove one or more models from the autofixture registry.

	
autofixture.get(model, *args, **kwargs)

	Get an autofixture instance for the passed in model sing the either an
appropiate autofixture that was registry or fall back
to the default:class:AutoFixture class. model can be a model class or
its string representation (e.g. "app.ModelClass").

All positional and keyword arguments are passed to the autofixture
constructor.

Subclassing AutoFixture

In most cases it will by sufficient to provide a different logic to generate
the values for your model fields in AutoFixture
subclasses. This can be simply done by a nested Values class:

class EntryFixture(AutoFixture):
 class Values:
 title = 'My static title'
 status = staticmethod(lambda: random.choice((1,2)))
 pub_date = generators.DateTimeGenerator(
 min_date=datetime(2009,1,1),
 max_date=datetime(2009,12,31))

This will make sure that title is always 'My static title', status is
either 1 or 2 and that pub_date is in the somewhere in 2009.

Like you can see in the example you can apply static values, simple callables
or specific generators to specific fields. However remember to use the
staticmethod decorator when using a method as callable - like the
lambda statement in the example. It’s in fact also just a shorter
definition of a method.

A note on subclassing subclasses and turtles all the way down: Some times
it’s usefull for a project to have a common base class for all the registered
AutoFixtures. This is ofcourse possible and very usable since you don’t need
to re-define all the field definitions in the nested Values class. The
AutoFixture class is caring about this and will
collect all Values of base classes and merge them together. For
clarification here a short example:

class CommonFixture(AutoFixture):
 class Values:
 tags = generators.ChoicesGenerator(
 values=('apple', 'banana', 'orange'))

class EntryFixture(AutoFixture):
 class Values:
 title = 'My static title'

all created entries will have the same title 'My static title' and one
tag out of apple, banana and orange.
EntryFixture(Entry).create(5)

If you want to digg deeper and need to customize more logic of model creation,
you can override some handy methods of the
AutoFixture class:

	
AutoFixture.prepare_class()

	This method is called after the __init__() method. It has no
semantic by default.

	
AutoFixture.post_process_instance(instance, commit)

	Overwrite this method to modify the created instance before it gets
returned by the create() or create_one().
It gets the generated instance and must return the modified
instance. The commit parameter indicates the commit value that the
user passed into the create() method. It defaults to True
and should be respected, which means if it is set to False, the
instance should not be saved.

	
AutoFixture.get_generator(field)

	Return a value generator based on the field instance that is passed to
this method. This function may return None which means that the
specified field will be ignored (e.g. if no matching generator was
found).

 Copyright 2013, Gregor Müllegger.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-autofixture 0.9.2 documentation

Builtin AutoFixture subclasses

There are some AutoFixture subclasses that are shipped by default
with django-autofixture. They are listed below.

	
class autofixture.autofixtures.UserFixture(*args, **kwargs)

	UserFixture is automatically used by default to create new
User instances. It uses the following values to assure that you can
use the generated instances without any modification:

	username only contains chars that are allowed by django’s auth forms.

	email is unique.

	first_name and last_name are single, random words of the lorem
ipsum text.

	is_staff and is_superuser are always False.

	is_active is always True.

	date_joined and last_login are always in the past and it is
assured that date_joined will be lower than last_login.

	
__init__(*args, **kwargs)

	By default the password is set to an unusable value, this makes it
impossible to login with the generated users. If you want to use for
example autofixture.create_one('auth.User') in your unittests to have
a user instance which you can use to login with the testing client you
can provide a username and a password argument. Then you can do
something like:

autofixture.create_one('auth.User', username='foo', password='bar`)
self.client.login(username='foo', password='bar')

 Copyright 2013, Gregor Müllegger.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-autofixture 0.9.2 documentation

Contribute

If you want to use an isolated environment while hacking on
django-autofixture you can run the following commands from the project’s
root directory:

virtualenv . --no-site-packages
source bin/activate
pip install -r requirements/tests.txt

Please run now the tests that are shipped with autofixture to see if
everything is working:

python runtests.py

Happy hacking!

 Copyright 2013, Gregor Müllegger.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	django-autofixture 0.9.2 documentation

 Python Module Index

 a

 			

 		
 a	

 	[image: -]
 	
 autofixture	

 	
 	
 autofixture.management.commands.loadtestdata	

 Copyright 2013, Gregor Müllegger.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	django-autofixture 0.9.2 documentation

Index

 _
 | A
 | C
 | G
 | P
 | R
 | U

_

 	

 	__init__() (autofixture.autofixtures.UserFixture method)

 	

 	(autofixture.base.AutoFixture method)

A

 	

 	add_constraint() (autofixture.base.AutoFixture method)

 	add_field_value() (autofixture.base.AutoFixture method)

 	

 	AutoFixture (class in autofixture.base)

 	autofixture.management.commands.loadtestdata (module)

C

 	

 	create() (autofixture.base.AutoFixture method)

 	

 	(in module autofixture)

 	

 	create_one() (autofixture.base.AutoFixture method)

 	

 	(in module autofixture)

G

 	

 	get() (in module autofixture)

 	

 	get_generator() (autofixture.base.AutoFixture method)

P

 	

 	post_process_instance() (autofixture.base.AutoFixture method)

 	

 	prepare_class() (autofixture.base.AutoFixture method)

R

 	

 	register() (in module autofixture)

U

 	

 	unregister() (in module autofixture)

 	

 	UserFixture (class in autofixture.autofixtures)

 Copyright 2013, Gregor Müllegger.
 Created using Sphinx 1.2.2.

 _static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		django-autofixture 0.9.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Gregor Müllegger.
 Created using Sphinx 1.2.2.

_static/down.png

