
django-autoconfig Documentation
Release 0.7.2+git.2.d775590

Mike Bryant

Sep 08, 2017





Contents

1 Basic Usage 3

2 Ordering Relationships 5

3 Autoconfig Rules 7

4 Autoconfig urlconf 9

5 Inconsistent States 11

i



ii



django-autoconfig Documentation, Release 0.7.2+git.2.d775590

Automatic configuration of a Django project based on the requirements of apps in the INSTALLED_APPS setting.

Contents 1



django-autoconfig Documentation, Release 0.7.2+git.2.d775590

2 Contents



CHAPTER 1

Basic Usage

Import django_autoconfig.autoconfig in settings.py, and call configure_settings with
globals():

from django_autoconfig.autoconfig import configure_settings
configure_settings(globals())

django-autoconfig will run through each app in INSTALLED_APPS, applying the configuration in their
autoconfig module.

Note: configure_settings must be run after INSTALLED_APPS is defined.

In your app, define a autoconfig module, that contains the settings you need defined, or the app’s requirements:

SETTINGS = {
'MY_APP_MUST_HAVE_THIS_VARIABLE_SET': False,

}

3



django-autoconfig Documentation, Release 0.7.2+git.2.d775590

4 Chapter 1. Basic Usage



CHAPTER 2

Ordering Relationships

If your app requires a particular ordering of the values in a setting, you can define a list of django_autoconfig.
autoconfig.OrderingRelationship objects specifying these relationships.

class django_autoconfig.autoconfig.OrderingRelationship(setting_name, setting_value,
before=None, after=None,
add_missing=True)

Bases: object

This class defines a relationship between an element in a setting that’s a list and one or more other entries.

It’s intended to be used in an autoconfig.py file like so:

RELATIONSHIPS = [
OrderingRelationship(

'INSTALLED_APPS',
'my.app',
before = [

'django.contrib.admin',
],
after = [
],

)
]

5



django-autoconfig Documentation, Release 0.7.2+git.2.d775590

6 Chapter 2. Ordering Relationships



CHAPTER 3

Autoconfig Rules

1. If a setting does not exist, it will be defined.

2. If a setting exists and is a list or tuple, the contents will be appended to the existing setting, ignoring any
duplicates.

3. If a setting exists and is a dict, the keys will be merged, and values merged, according to these same rules.

4. If an app is in AUTOCONFIG_DISABLED_APPS, that app won’t have its autoconfig processed.

7



django-autoconfig Documentation, Release 0.7.2+git.2.d775590

8 Chapter 3. Autoconfig Rules



CHAPTER 4

Autoconfig urlconf

To aid in URL configuration, an automatic urlconf is provided. This can be used as follows:

ROOT_URLCONF = 'django_autoconfig.autourlconf'

This will result in each application being included under it’s import path, e.g. INSTALLED_APPS = ['app'] will
result in /app/ being mapped to app.urls

In addition you may define AUTOCONFIG_INDEX_VIEW in your settings file, this may be anything that can be
passed to reverse(). This will create a redirect at the top of the url conf (/)

If you don’t want a particular app to be included in the automatic urlconf, you can include the setting
AUTOCONFIG_URLCONF_EXCLUDE_APPS, which should be a list of app names that should not be included. These
apps will be skipped when the automatic urlconf is generated.

9



django-autoconfig Documentation, Release 0.7.2+git.2.d775590

10 Chapter 4. Autoconfig urlconf



CHAPTER 5

Inconsistent States

If autoconfig cannot reach a consistent state, an ImproperlyConfigured exception will be raised. This means
that two or more apps could not agree on the required settings, and this must be manually resolved.

11



django-autoconfig Documentation, Release 0.7.2+git.2.d775590

12 Chapter 5. Inconsistent States



Index

O
OrderingRelationship (class in

django_autoconfig.autoconfig), 5

13


	Basic Usage
	Ordering Relationships
	Autoconfig Rules
	Autoconfig urlconf
	Inconsistent States

