Django Auth Functional Documentation
Release 0.1.0

Anler

August 29, 2015

Contents

What is this?

Authenticating your views

2.1 Requesting client authentication
2.2 Returning a differentresponse

Authorizing your views

3.1 Returning a differentresponse
3.2 Combining multiple conditions

Improving performance by using request cache

Indices and tables

CHAPTER 1

What is this?

This library provides a set of decorators for working with authentication and authorization. These decorators can be
used to decorate plain functions or method in class-based views and you can decide what http response you want to
return in the cases where the authentication/authorization failed.

Django Auth Functional Documentation, Release 0.1.0

2 Chapter 1. What is this?

CHAPTER 2

Authenticating your views

In order to authenticate your views all you need to do is decorate your view function:

from auth_ functional import authentication
from django.template.response import TemplateResponse

@authentication
def profile(request):
return TemplateResponse (request, 'user/profile.html')

Or, in case you’re using aa class-base view:

from auth_functional import authentication
from django.template.response import TemplateResponse
from django.views.generic import View

class SomeView (View) :
@authentication
def get (self, request):
return TemplateREsponse (request, 'user/profile.html')

With that in place, all the non-authenticated requests are gonna receive an HT'TP 401 Unauthorized response.

2.1 Requesting client authentication

When you want the user agent to authenticate itself towards the server, you can send a request for authentication using
the WWW-Authenticate header. Here’s an example using basic authentication:

from auth_functional import authentication
from django.template.response import TemplateResponse

@authentication (www_authenticate='Basic realm="private area"')
def profile(request):
return TemplateResponse (request, 'user/profile.html')

2.2 Returning a different response

If you want to return a response different than the default HTTP 401 Unauthorized you can pro-
vide response_factory callable to the authentication decorator. If the authentication fails your
response_factory callable will be called with the same parameters as the view.

Django Auth Functional Documentation, Release 0.1.0

from auth_functional import authentication
from django.template.response import TemplateResponse
from django import http

def unauthorized_response (request) :
response = http.HttpResponse (status=401)
if 'application/json' in request.META.get ('HTTP_ACCEPT'") :
response['Content-Type'] = 'application/json; charset=utf-8'
return response

@authentication (response_factory=unauthorized_response)
def profile(request):
return TemplateResponse (request, 'user/profile.html')

4 Chapter 2. Authenticating your views

CHAPTER 3

Authorizing your views

In order to authorize your views all you need to do is decorate your view function with the properly named
authorization decorator passing a condition callable that is in charge of allowing or not the access to the re-
source/controller/store:

from auth_ functional import authentication, authorization
from django.template.response import TemplateResponse

def is_staff (request):
return request.user.is_staff

@authentication
@authorization (condition=is_staff)
def profile (request):
return TemplateResponse (request, 'user/profile.html')

Or, in case you’re using aa class-base view:

from auth_ functional import authentication, authorization
from django.template.response import TemplateResponse
from django.views.generic import View

def is_staff (request):
return request.user.is_staff

class SomeView (View) :
@authentication
@authorization (condition=is_staff)
def get (self, request):
return TemplateREsponse (request, 'user/profile.html')

With that in place, all the non-authorized requests are gonna receive an HTTP 403 Forbidden response which means
that the client doesn’t have access.

3.1 Returning a different response

If you want to return a response different than the default HTTP 403 Forbidden you can provide
response_factory callable to the authorization decorator. If the authorization fails your response_factory

Django Auth Functional Documentation, Release 0.1.0

callable will be called with the same parameters as the view.

from auth_functional import authentication, authorization
from django.template.response import TemplateResponse
from django import http

def forbidden_response (request) :
response = http.HttpResponse (status=403)
if 'application/json' in request.META.get ('HTTP_ACCEPT'):
response['Content-Type'] = 'application/json; charset=utf-8'
return response

def is_staff (request):
return request.user.is_staff

@authentication
@authorization(condition=is_staff, response_factory=forbidden_response)
def profile(request):

return TemplateResponse (request, 'user/profile.html')

3.2 Combining multiple conditions

You can combine different condition callables by using the and_, or__ and not__decorators:

from auth_ functional import authentication, authorization, and_, not_
from django.template.response import TemplateResponse
from django import http

def forbidden_response (request) :
response = http.HttpResponse (status=403)
if 'application/json' in request.META.get ('HTTP_ACCEPT'):
response['Content-Type'] = 'application/json; charset=utf-8'
return response

def is_staff (request):
return request.user.is_staff

def is_admin(request):
return request.user.is_admin

@authentication
@authorization (condition=and_ (is_staff, _not (is_admin)), response_factory=forbidden_resyg
def profile(request):

return TemplateResponse (request, 'user/profile.html')

6 Chapter 3. Authorizing your views

onse)

CHAPTER 4

Improving performance by using request cache

When using multiple conditions you may end repeating operations to fetch the objects and check permissions. Let’s
say you have the following two conditions, one that checks the user is the owner of a video, and the other that the user
can play the video (some sort of premium feature, whatever):

from auth_ functional import authentication, authorization, and_
from django.template.response import TemplateResponse

from django import http

from myapp.models import Video

def can_download_video (request, video_id):
video = Video.objects.filter (pk=video_id) .get ()
return video.user == request.user

def can_play_video(request, video_id):
video = Video.objects.filter (pk=video_id) .get ()
return video.has_be_played_by (request.user)

@authentication
@authorization (condition=and_ (is_owner_of_video, can_play_video)
def play_video (request, video_id):

return TemplateResponse (request, 'user/video.html')

As you <can see, you ended up fetching the same video twice from the database
Video.objects.filter (pk=video_id) .get (). You could create another condition that checks both
conditions but that would miss the point of creating smaller conditions and combine them with and__ avoiding the
conditions to be too coupled with the logic of your app.

A workaround to avoid this duplicated logic to fetch a needed objects is to use the request . fixture to fetch and
cache the object for the current request:

from auth functional import authentication, authorization, and_
from django.template.response import TemplateResponse

from django import http

from myapp.models import Video

auth_functional.install_request_fixture('video', Video.objects.get)

def can_download_video (request, video_id):
return request.fixture.video (pk=video_id) .user == request.user

Django Auth Functional Documentation, Release 0.1.0

def can_play_video(request, video_id):
return request.fixture.video (pk=video_id) .has_be_played_by (request.user)

@authentication
@authorization (condition=and_ (is_owner_of_video, can_play_video)
def play_video (request, video_id):

return TemplateResponse (request, 'user/video.html")

With that in place the first time you access the fixture your registered callable is going to be called and the result will
be cached but only during the current request lifetime. This way any subsequent call to the fixture will return only
the cached value.

8 Chapter 4. Improving performance by using request cache

CHAPTER 5

Indices and tables

¢ genindex
* modindex

e search

	What is this?
	Authenticating your views
	Requesting client authentication
	Returning a different response

	Authorizing your views
	Returning a different response
	Combining multiple conditions

	Improving performance by using request cache
	Indices and tables

