
django-auditlog Documentation
Release 0.3.3

Jan-Jelle Kester

August 17, 2016

Contents

1 Contents 3
1.1 Installation . 3
1.2 Usage . 3
1.3 Internals . 5

2 Contribute to Auditlog 7

Python Module Index 9

i

ii

django-auditlog Documentation, Release 0.3.3

django-auditlog (Auditlog) is a reusable app for Django that makes logging object changes a breeze. Auditlog tries to
use as much as Python and Django’s built in functionality to keep the list of dependencies as short as possible. Also,
Auditlog aims to be fast and simple to use.

Auditlog is created out of the need for a simple Django app that logs changes to models along with the user who made
the changes (later referred to as actor). Existing solutions seemed to offer a type of version control, which was found
excessive and expensive in terms of database storage and performance.

The core idea of Auditlog is similar to the log from Django’s admin. However, Auditlog is much more flexible than
the log from Django’s admin app (django.contrib.admin). Also, Auditlog saves a summary of the changes in
JSON format, so changes can be tracked easily.

Contents 1

django-auditlog Documentation, Release 0.3.3

2 Contents

CHAPTER 1

Contents

1.1 Installation

Installing Auditlog is simple and straightforward. First of all, you need a copy of Auditlog on your system. The easiest
way to do this is by using the Python Package Index (PyPI). Simply run the following command:

pip install django-auditlog

Instead of installing Auditlog via PyPI, you can also clone the Git repository or download the source code via GitHub.
The repository can be found at https://github.com/jjkester/django-auditlog/.

Requirements

• Python 2.7, 3.4 or higher

• Django 1.7 or higher

Auditlog is currently tested with Python 2.7 and 3.4 and Django 1.7, 1.8 and 1.9. The latest test report can be found at
https://travis-ci.org/jjkester/django-auditlog.

1.1.1 Adding Auditlog to your Django application

To use Auditlog in your application, just add ’auditlog’ to your project’s INSTALLED_APPS setting and run
manage.py migrate to create/upgrade the necessary database structure.

If you want Auditlog to automatically set the actor for log entries you also need to enable the middleware by adding
’auditlog.middleware.AuditlogMiddleware’ to your MIDDLEWARE_CLASSES setting. Please check
Usage for more information.

1.2 Usage

1.2.1 Manually logging changes

Auditlog log entries are simple LogEntry model instances. This makes creating a new log entry very easy. For even
more convenience, LogEntryManager provides a number of methods which take some work out of your hands.

See Internals for all details.

3

https://github.com/jjkester/django-auditlog/
https://travis-ci.org/jjkester/django-auditlog

django-auditlog Documentation, Release 0.3.3

1.2.2 Automatically logging changes

Auditlog can automatically log changes to objects for you. This functionality is based on Django’s signals, but linking
your models to Auditlog is even easier than using signals.

Registering your model for logging can be done with a single line of code, as the following example illustrates:

from auditlog.registry import auditlog
from django.db import models

class MyModel(models.Model):
pass
Model definition goes here

auditlog.register(MyModel)

It is recommended to place the register code (auditlog.register(MyModel)) at the bottom of your
models.py file. This ensures that every time your model is imported it will also be registered to log changes.
Auditlog makes sure that each model is only registered once, otherwise duplicate log entries would occur.

Excluding fields

Fields that are excluded will not trigger saving a new log entry and will not show up in the recorded changes.

To exclude specific fields from the log you can pass include_fields resp. exclude_fields to the register
method. If exclude_fields is specified the fields with the given names will not be included in the generated log
entries. If include_fields is specified only the fields with the given names will be included in the generated
log entries. Explicitly excluding fields through exclude_fields takes precedence over specifying which fields to
include.

For example, to exclude the field last_updated, use:

auditlog.register(MyModel, exclude_fields=['last_updated'])

New in version 0.3.0: Excluding fields

1.2.3 Actors

When using automatic logging, the actor is empty by default. However, auditlog can set the actor from the current
request automatically. This does not need any custom code, adding a middleware class is enough. When an actor is
logged the remote address of that actor will be logged as well.

To enable the automatic logging of the actors, simply add the following to your MIDDLEWARE_CLASSES setting in
your project’s configuration file:

MIDDLEWARE_CLASSES = (
Request altering middleware, e.g., Django's default middleware classes
'auditlog.middleware.AuditlogMiddleware',
Other middleware

)

It is recommended to keep all middleware that alters the request loaded before Auditlog’s middleware.

Warning: Please keep in mind that every object change in a request that gets logged automatically will have the
current request’s user as actor. To only have some object changes to be logged with the current request’s user as
actor manual logging is required.

4 Chapter 1. Contents

django-auditlog Documentation, Release 0.3.3

1.2.4 Object history

Auditlog ships with a custom field that enables you to easily get the log entries that are relevant to your object. This
functionality is built on Django’s content types framework (django.contrib.contenttypes). Using this field
in your models is equally easy as any other field:

from auditlog.models import AuditlogHistoryField
from auditlog.registry import auditlog
from django.db import models

class MyModel(models.Model):
history = AuditlogHistoryField()
Model definition goes here

auditlog.register(MyModel)

AuditlogHistoryField accepts an optional pk_indexable parameter, which is either True or False, this
defaults to True. If your model has a custom primary key that is not an integer value, pk_indexable needs to be
set to False. Keep in mind that this might slow down queries.

1.2.5 Many-to-many relationships

New in version 0.3.0.

Warning: To-many relations are not officially supported. However, this section shows a workaround which can
be used for now. In the future, this workaround may be used in an official API or a completly different strategy
might be chosen. Do not rely on the workaround here to be stable across releases.

By default, many-to-many relationships are not tracked by Auditlog.

The history for a many-to-many relationship without an explicit ‘through’ model can be recorded by registering this
model as follows:

auditlog.register(MyModel.related.through)

The log entries for all instances of the ‘through’ model that are related to a MyModel instance can be retrieved with
the LogEntryManager.get_for_objects()method. The resulting QuerySet can be combined with any other
queryset of LogEntry instances. This way it is possible to get a list of all changes on an object and its related objects:

obj = MyModel.objects.first()
rel_history = LogEntry.objects.get_for_objects(obj.related.all())
full_history = (obj.history.all() | rel_history.all()).order_by('-timestamp')

1.3 Internals

You might be interested in the way things work on the inside of Auditlog. This section covers the internal APIs of
Auditlog which is very useful when you are looking for more advanced ways to use the application or if you like to
contribute to the project.

The documentation below is automatically generated from the source code.

1.3. Internals 5

django-auditlog Documentation, Release 0.3.3

1.3.1 Models and fields

1.3.2 Middleware

1.3.3 Signal receivers

1.3.4 Calculating changes

auditlog.diff.get_fields_in_model(instance)
Returns the list of fields in the given model instance. Checks whether to use the official _meta API or use the
raw data. This method excludes many to many fields.

Parameters instance (Model) – The model instance to get the fields for

Returns The list of fields for the given model (instance)

Return type list

auditlog.diff.model_instance_diff(old, new)
Calculates the differences between two model instances. One of the instances may be None (i.e., a newly
created model or deleted model). This will cause all fields with a value to have changed (from None).

Parameters

• old (Model) – The old state of the model instance.

• new (Model) – The new state of the model instance.

Returns A dictionary with the names of the changed fields as keys and a two tuple of the old and
new field values as value.

Return type dict

auditlog.diff.track_field(field)
Returns whether the given field should be tracked by Auditlog.

Untracked fields are many-to-many relations and relations to the Auditlog LogEntry model.

Parameters field (Field) – The field to check.

Returns Whether the given field should be tracked.

Return type bool

1.3.5 Registry

6 Chapter 1. Contents

CHAPTER 2

Contribute to Auditlog

Note: Due to multiple reasons the development of Auditlog is not a priority for me at this moment. Therefore progress
might be slow. This does not mean that this project is abandoned! Community involvement in the form of pull requests
is very much appreciated. Also, if you like to take Auditlog to the next level and be a permanent contributor, please
contact the author. Contact information can be found via GitHub.

If you discovered a bug or want to improve the code, please submit an issue and/or pull request via GitHub. Before
submitting a new issue, please make sure there is no issue submitted that involves the same problem.

GitHub repository: https://github.com/jjkester/django-auditlog
Issues: https://github.com/jjkester/django-auditlog/issues

7

https://github.com/jjkester/django-auditlog
https://github.com/jjkester/django-auditlog/issues

django-auditlog Documentation, Release 0.3.3

8 Chapter 2. Contribute to Auditlog

Python Module Index

a
auditlog.diff, 6

9

django-auditlog Documentation, Release 0.3.3

10 Python Module Index

Index

A
auditlog.diff (module), 6

G
get_fields_in_model() (in module auditlog.diff), 6

M
model_instance_diff() (in module auditlog.diff), 6

T
track_field() (in module auditlog.diff), 6

11

	Contents
	Installation
	Usage
	Internals

	Contribute to Auditlog
	Python Module Index

