
django-audit-log Documentation
Release 0.7.0

Vasil Vangelovski (Atomidata)

January 28, 2015

Contents

1 Installation 3

2 Tracking Users that Created/Modified a Model 5
2.1 Tracking Who Created a Model . 6
2.2 Tracking Who Made the Last Changes to a Model . 6

3 Tracking full model history 7
3.1 Querying the audit log . 7
3.2 M2M Relations . 8
3.3 Abstract Base Models . 8
3.4 Disabling/Enabling Tracking on a Model Instance . 8

4 Indices and tables 9

i

ii

django-audit-log Documentation, Release 0.7.0

Adds support for tracking who changed what models through your Django application.

• Tracking creators and modifiers of your model instances.

• Tracking full model history.

Contents:

Contents 1

django-audit-log Documentation, Release 0.7.0

2 Contents

CHAPTER 1

Installation

Install from PyPI with easy_install or pip:

pip install django-audit-log

to hack on the code you can symlink the package in your site-packages from the source tree:

python setup.py develop

The package audit_log doesn’t need to be in your INSTALLED_APPS. The only thing you need to
modify in your settings.py is add audit_log.middleware.UserLoggingMiddleware to the
MIDDLEWARE_CLASSES tupple:

MIDDLEWARE_CLASSES = (
’django.middleware.common.CommonMiddleware’,
’django.contrib.sessions.middleware.SessionMiddleware’,
’django.contrib.auth.middleware.AuthenticationMiddleware’,
’audit_log.middleware.UserLoggingMiddleware’,

)

3

django-audit-log Documentation, Release 0.7.0

4 Chapter 1. Installation

CHAPTER 2

Tracking Users that Created/Modified a Model

AuthStampedModel is an abstract model base class in the vein of TimeStampedModel from
django-extensions. It has 4 fields used for tracking the user and the session key with which a model instance
was created/modified:

from audit_log.models import AuthStampedModel

class WarehouseEntry(AuthStampedModel):
product = models.ForeignKey(Product)
quantity = models.DecimalField(max_digits = 10, decimal_places = 2)

This will add 4 fields to the WarehouseEntry model:

• created_by - A foreign key to the user that created the model instance.

• created_with_session_key - Stores the session key with which the model instance was first created.

• modified_by - A foreign key to the user that last saved a model instance.

• modified_with_session_key - Stores the session key with which the model instance was last saved.

The related names for the created_by and modified_by fields are created_%(class)s_set and
modified_%(class)s_set respectively:

In [3]: admin = User.objects.get(username = ’admin’)
In [4]: admin.created_warehouseentry_set.all()
Out[4]: [<WarehouseEntry: WarehouseEntry object>, <WarehouseEntry: WarehouseEntry object>]
In [5]: vasil = User.objects.get(username = ’vasil’)
In [6]: vasil.modified_warehouseentry_set.all()
Out[6]: [<WarehouseEntry: WarehouseEntry object>]

This was done to keep in line with Django’s naming for the related_name. If you want to change that or other
things you can create your own abstract base class with the proviced fields.

This is very useful when used in conjuction with TimeStampedModel from django-extensions:

from django_extensions.db.models import TimeStampedModel
from audit_log.models import AuthStampedModel

class Invoice(TimeStampedModel, AuthStampedModel):
group = models.ForeignKey(InvoiceGroup, verbose_name = _("group"))
client = models.ForeignKey(ClientContact, verbose_name = _("client"))
currency = models.ForeignKey(Currency, verbose_name = _("currency"))
invoice_number = models.CharField(_("invoice number"), blank = False, max_length = 15)
date_issued = models.DateField(_("date issued"))

5

django-audit-log Documentation, Release 0.7.0

date_due = models.DateField(verbose_name = _("date due"))
comment = models.TextField(_("comment"), blank = True)
is_paid = models.BooleanField(_("is paid"), default = False)
date_paid = models.DateField(_("date paid"), blank = True, null = True)

2.1 Tracking Who Created a Model

You can track user information when model instances get created with the CreatingUserField and
CreatingSessionKeyField. For example:

from audit_log.models.fields import CreatingUserField, CreatingSessionKeyField

class ProductCategory(models.Model):
created_by = CreatingUserField(related_name = "created_categories")
created_with_session_key = CreatingSessionKeyField()
name = models.CharField(max_length=15)

This is useful for tracking owners of model objects within your app.

2.2 Tracking Who Made the Last Changes to a Model

LastUserField and LastSessionKeyField will store the user and session key with which a model instance
was last saved:

from django.db import models
from audit_log.models.fields import LastUserField, LastSessionKeyField

class Product(models.Model):
name = models.CharField(max_length = 150)
description = models.TextField()
price = models.DecimalField(max_digits = 10, decimal_places = 2)
category = models.ForeignKey(ProductCategory)

def __unicode__(self):
return self.name

class ProductRating(models.Model):
user = LastUserField()
session = LastSessionKeyField()
product = models.ForeignKey(Product)
rating = models.PositiveIntegerField()

Anytime someone makes changes to the ProductRating model through the web interface the reference to the user
that made the change will be stored in the user field and the session key will be stored in the session field.

6 Chapter 2. Tracking Users that Created/Modified a Model

CHAPTER 3

Tracking full model history

In order to enable historic tracking on a model, the model needs to have a property of type
audit_log.models.managers.AuditLog attached:

from django.db import models
from audit_log.models.fields import LastUserField
from audit_log.models.managers import AuditLog

class ProductCategory(models.Model):
name = models.CharField(max_length=150, primary_key = True)
description = models.TextField()

audit_log = AuditLog()

class Product(models.Model):
name = models.CharField(max_length = 150)
description = models.TextField()
price = models.DecimalField(max_digits = 10, decimal_places = 2)
category = models.ForeignKey(ProductCategory)

audit_log = AuditLog()

Each time you add an instance of AuditLog to any of your models you need to run python manage.py syncdb
so that the database table that keeps the actual audit log for the given model gets created.

3.1 Querying the audit log

An instance of audit_log.models.managers.AuditLog will behave much like a standard manager in your
model. Assuming the above model configuration you can go ahead and create/edit/delete instances of Product, to
query all the changes that were made to the products table you would need to retrieve all the entries for the audit log
for that particular model class:

In [2]: Product.audit_log.all()
Out[2]: [<ProductAuditLogEntry: Product: My widget changed at 2011-02-25 06:04:29.292363>,

<ProductAuditLogEntry: Product: My widget changed at 2011-02-25 06:04:24.898991>,
<ProductAuditLogEntry: Product: My Gadget super changed at 2011-02-25 06:04:15.448934>,
<ProductAuditLogEntry: Product: My Gadget changed at 2011-02-25 06:04:06.566589>,
<ProductAuditLogEntry: Product: My Gadget created at 2011-02-25 06:03:57.751222>,
<ProductAuditLogEntry: Product: My widget created at 2011-02-25 06:03:42.027220>]

Accordingly you can get the changes made to a particular model instance like so:

7

django-audit-log Documentation, Release 0.7.0

In [4]: Product.objects.all()[0].audit_log.all()
Out[4]: [<ProductAuditLogEntry: Product: My widget changed at 2011-02-25 06:04:29.292363>,

<ProductAuditLogEntry: Product: My widget changed at 2011-02-25 06:04:24.898991>,
<ProductAuditLogEntry: Product: My widget created at 2011-02-25 06:03:42.027220>]

Instances of AuditLog behave like django model managers and can be queried in the same fashion.

The querysets yielded by AuditLog managers are querysets for models of type [X]AuditLogEntry, where X is
the tracked model class. An instance of XAuditLogEntry represents a log entry for a particular model instance and
will have the following fields that are of relevance:

• action_id - Primary key for the log entry.

• action_date - The point in time when the logged action was performed.

• action_user - The user that performed the logged action.

• action_type - The type of the action (Created/Changed/Deleted)

• Any field of the original X model that is tracked by the audit log.

3.2 M2M Relations

Tracking changes on M2M Relations doesn’t work for now. If you really need to track changes on M2M relations with
this package, explicitly define the table with another model instead of declaring the M2M relation.

3.3 Abstract Base Models

For now just attaching the AuditLog manager to an abstract base model won’t make it automagically attach itself on
the child models. Just attach it to every child separately.

3.4 Disabling/Enabling Tracking on a Model Instance

There may be times when you want a certain save() or delete() on a model instance to be ignored by the audit
log. To disable tracking on a model instance you simply call:

modelinstance.audit_log.disable_tracking()

To re-enable it do:

modelinstance.audit_log.enable_tracking()

Note that this only works on instances, trying to do that on a model class will raise an exception.

8 Chapter 3. Tracking full model history

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

9

	Installation
	Tracking Users that Created/Modified a Model
	Tracking Who Created a Model
	Tracking Who Made the Last Changes to a Model

	Tracking full model history
	Querying the audit log
	M2M Relations
	Abstract Base Models
	Disabling/Enabling Tracking on a Model Instance

	Indices and tables

