

django-assets

	Jinja2 support

	Settings

django-assets helps you to integrate webassets [http://github.com/miracle2k/webassets] into your Django [https://www.djangoproject.com/]
application.

Quickstart

First, add django_assets to your INSTALLED_APPS setting:

INSTALLED_APPS = (
 ...,
 'django_assets',
)

Create an assets.py file inside your application directory. This
is where you define your assets, and like Django’s admin.py files,
they will automatically be picked up:

from django_assets import Bundle, register
js = Bundle('common/jquery.js', 'site/base.js', 'site/widgets.js',
 filters='jsmin', output='gen/packed.js')
register('js_all', js)

Note

Make sure your assets.py is inside a Django application, not in
the project. That is, the path might be something like
my_project/my_application/assets.py.

If you want to define assets in a different place, you can use the
ASSETS_MODULES setting.

Finally, include the bundle you defined in the appropriate place within your
templates:

{% load assets %}
{% assets "js_all" %}
 <script type="text/javascript" src="{{ ASSET_URL }}"></script>
{% endassets %}

django-assets will now automatically merge and compress your bundle’s
source files the first time the template is rendered, and will
automatically update the compressed file every time a source file changes.
If ASSETS_DEBUG is enabled, then each source
file will be outputted individually instead.

Templates only

If you prefer, you can also do without defining your bundles in code, and
simply define everything inside your template:

{% load assets %}
{% assets filters="jsmin", output="gen/packed.js", "common/jquery.js", "site/base.js", "site/widgets.js" %}
 <script type="text/javascript" src="{{ ASSET_URL }}"></script>
{% endassets %}

You can also pass in depends through templatetags with a slightly
modified comma-delimated syntax, e.g.
depends="myfile.js,path/to/file.js".

The management command

django-assets also provides a management command, manage.py assets.
It can be used to manually cause your bundles to be rebuilt:

$./manage.py assets build
Building asset: cache/site.js
Building asset: cache/ie7.js
Building asset: cache/site.css

Note that this is more difficult if you are defining your bundles within
your templates, rather than in code. You then need to use the
--parse-templates option, so the build command can find the bundles.

staticfiles integration

django-assets can integrate with Django’s
django.contrib.staticfiles.

Jinja2 support

See Jinja2 support if you want to use django-assets with the Jinja2
templating language.

Settings

See Settings for on overview of Django configuration values.

webassets documentation

For further information, have a look at the complete
webassets documentation, and in particular, the
following topics:

	All about bundles

	Builtin filters

	Custom filters

	CSS compilers

	FAQ

Jinja2 support

django-assets strives to offer full support for the Jinja2 template
language [http://jinja.pocoo.org/2/].

A Jinja2 extension is available as webassets.ext.jinja2.AssetsExtension.
It will provide a {% assets %} tag that functions pretty much like the
Django template version, except inheriting the more expressive syntax of
Jinja. For example, filters may be specified as tuples:

{% assets filters=("coffeescript", "jsmin") ... %}

More exhaustive documentation of the Jinja2 tag can be
here [http://elsdoerfer.name/docs/webassets/integration/jinja2.html].

Installation

How you enable the Jinja2 extension depends on how you are integrating
Jinja with Django. For example:

	If you are using Coffin [https://launchpad.net/coffin], you don’t have
to do anything at all: The extension will be available at the moment
django-assets is added to INSTALLED_APPS.

	If you are creating your Jinja2 environment manually, you can
simply use its extensions parameter and specify
webassets.ext.jinja2.AssetsExtension.

However, there is a minor difficulty if you intend to use the management
command to manually build assets: Since that step involves parsing your
templates, the command needs to know what other Jinja2 extensions you are
using to successfully do so. Because there is no “one way” to integrate
Jinja and Django, it can’t determine the extensions you are using all by
itself. Instead, it expects you to specify the ASSETS_JINJA2_EXTENSIONS
setting. In most cases, you would simply to something like:

ASSETS_JINJA2_EXTENSIONS = JINJA2_EXTENSIONS

i.e. aliasing it to the actual setting you are using.

Again, if you are using Coffin, you may disgard this step as well, since
your Coffin environment will automatically be used.

Settings

There are a bunch of values which you can define in your Django settings
module to modify the behaviour of webassets.

Note

This document places those values inside the django_assets.settings
module. This is irrelevant. To change the values, you need to define them
in your project’s global settings.

	
django_assets.settings.ASSETS_ROOT

	The base directory to which all paths will be relative to,
unless load_paths are given, in which case this will
only serve as the output directory.

In the url space, it is mapped to urls.

By default,
STATIC_ROOT will be used for this, or the older MEDIA_ROOT
setting.

	
django_assets.settings.ASSETS_URL

	The url prefix used to construct urls for files in
directory.

To define url spaces for other directories, see
url_mapping.

By default, STATIC_URL
will be used for this, or the older MEDIA_URL setting.

	
django_assets.settings.ASSETS_DEBUG

	Enable/disable debug mode. Possible values are:

	False

	Production mode. Bundles will be merged and filters applied.

	True

	Enable debug mode. Bundles will output their individual source
files.

	“merge”

	Merge the source files, but do not apply filters.

	
django_assets.settings.ASSETS_AUTO_BUILD

	Controls whether bundles should be automatically built, and
rebuilt, when required (if set to True), or whether they
must be built manually be the user, for example via a management
command.

This is a good setting to have enabled during debugging, and can
be very convenient for low-traffic sites in production as well.
However, there is a cost in checking whether the source files
have changed, so if you care about performance, or if your build
process takes very long, then you may want to disable this.

By default automatic building is enabled.

	
django_assets.settings.ASSETS_URL_EXPIRE

	If you send your assets to the client using a
far future expires header (to minimize the 304 responses
your server has to send), you need to make sure that assets
will be reloaded by the browser when they change.

If this is set to True, then the Bundle URLs generated by
webassets will have their version (see Environment.versions)
appended as a querystring.

An alternative approach would be to use the %(version)s
placeholder in the bundle output file.

The default behavior (indicated by a None value) is to add
an expiry querystring if the bundle does not use a version
placeholder.

	
django_assets.settings.ASSETS_VERSIONS

	Defines what should be used as a Bundle version.

A bundle’s version is what is appended to URLs when the
url_expire option is enabled, and the version can be part
of a Bundle’s output filename by use of the %(version)s
placeholder.

Valid values are:

	timestamp

	The version is determined by looking at the mtime of a
bundle’s output file.

	hash (default)

	The version is a hash over the output file’s content.

	False, None

	Functionality that requires a version is disabled. This
includes the url_expire option, the auto_build
option, and support for the %(version)s placeholder.

Any custom version implementation.

	
django_assets.settings.ASSETS_MANIFEST

	A manifest persists information about the versions bundles
are at.

The Manifest plays a role only if you insert the bundle version
in your output filenames, or append the version as a querystring
to the url (via the url_expire option). It serves two
purposes:

	Without a manifest, it may be impossible to determine the
version at runtime. In a deployed app, the media files may
be stored on a different server entirely, and be
inaccessible from the application code. The manifest,
if shipped with your application, is what still allows to
construct the proper URLs.

	Even if it were possible to determine the version at
runtime without a manifest, it may be a costly process,
and using a manifest may give you better performance. If
you use a hash-based version for example, this hash would
need to be recalculated every time a new process is
started.

Valid values are:

	"cache" (default)

	The cache is used to remember version information. This
is useful to avoid recalculating the version hash.

	"file:{path}"

	Stores version information in a file at {path}. If not
path is given, the manifest will be stored as
.webassets-manifest in Environment.directory.

	"json:{path}"

	Same as “file:{path}”, but uses JSON to store the information.

	False, None

	No manifest is used.

Any custom manifest implementation.

	
django_assets.settings.ASSETS_CACHE

	Controls the behavior of the cache. The cache will speed up rebuilding
of your bundles, by caching individual filter results. This can be
particularly useful while developing, if your bundles would otherwise take
a long time to rebuild.

Possible values are:

	False

	Do not use the cache.

	True (default)

	Cache using default location, a .webassets-cache folder inside
directory.

	custom path

	Use the given directory as the cache directory.

	
django_assets.settings.ASSETS_CACHE_FILE_MODE

	Controls the mode of files created in the cache. The default mode
is 0600. Follows standard unix mode.
Possible values are any unix mode, e.g.:

	0660

	Enable the group read+write bits

	0666

	Enable world read+write bits

	
django_assets.settings.ASSETS_JINJA2_EXTENSIONS

	This is needed in some cases when you want to use django-assets with
the Jinja 2 template system. It should be a list of extensions you are
using with Jinja 2, using which it should be possible to construct a
Jinja 2 environment which can parse your templates. For more information,
see Jinja2 support.

	
django_assets.settings.ASSETS_MODULES

	django-assets will automatically look for assets.py files in each
application, where you can register your bundles. If you want additional
modules to be loaded, you can define this setting. It expects a list of
importable modules:

ASSETS_MODULES = [
 'myproject.assets'
]

 Python Module Index

 d

 		 	

 		
 d	

 	
 	
 django_assets	

Index

 A
 | D

A

 	
 	ASSETS_AUTO_BUILD (in module django_assets.settings)

 	ASSETS_CACHE (in module django_assets.settings)

 	ASSETS_CACHE_FILE_MODE (in module django_assets.settings)

 	ASSETS_DEBUG (in module django_assets.settings)

 	ASSETS_JINJA2_EXTENSIONS (in module django_assets.settings)

 	
 	ASSETS_MANIFEST (in module django_assets.settings)

 	ASSETS_MODULES (in module django_assets.settings)

 	ASSETS_ROOT (in module django_assets.settings)

 	ASSETS_URL (in module django_assets.settings)

 	ASSETS_URL_EXPIRE (in module django_assets.settings)

 	ASSETS_VERSIONS (in module django_assets.settings)

D

 	
 	django_assets (module)

Staticfiles support

Note

As a general rule, everything on this page only applies if
django.contrib.staticfiles is found in your INSTALLED_APPS
setting.

As a refresher, this is how Django’s staticfiles application works:

	You spread your assets across multiple directories; often, for
example, you’d have a separate static folder for each application.

	For development, a special view is provided that will search all
these static directories, and serve the the requested file from
wherever it is found.

	For production, a collectstatic management command is
provided that will copy the files from all these locations
into a single folder, and then this directory can be served by
the webserver.

All the individual static directories are thus part of the same
url space. A foo.png in one folder will overwrite a foo.png
in another.

django-assets integrates into this in the following way:

	When Django is in debug mode (DEBUG=True), webassets uses the
staticfiles mechanism to find the files you reference in bundles,
in the same way the staticfiles serve view does. You can work
with all of your assets the way you’d expect.

This even works with globs, so “*.js” will query Javascript files
from across all of your applicatnion’s static directories.

	In production, this mechanism is disabled, and you are expected to
run ./manage.py collectstatic before you deploy your application
and/or want to use ./manage.py assets build.

Warning

If you are using automatic rebuilding in production, changes
will not be picked up until you have run collectstatic.

Specific steps to make django-assets work with staticfiles

	Make sure django.contrib.staticfiles is listed in INSTALLED_APPS.

	Add django_assets.finders.AssetsFinder to your STATICFILES_FINDERS.
It might then look like this:

STATICFILES_FINDERS = (
 "django.contrib.staticfiles.finders.FileSystemFinder",
 "django.contrib.staticfiles.finders.AppDirectoriesFinder",
 "django_assets.finders.AssetsFinder"
)

This is necessary so that output files written to STATIC_ROOT are
served in debug mode by the staticfiles serve view, which is not
the case by default. If you are not building anything in debug mode
(e.g. CoffeeScript, Sass), you can get away without this addition, but
it doesn’t hurt to have it anway.

	Make sure you run ./manage.py collectstatic in production first,
before letting webassets build.

CachedStaticFileStorage

The new CachedStaticFileStorage in Django 1.4 is able to rename all
files to include their content hash in the filename, and rewrite references
to them within other static files.. This is somewhat overlapping with
webassets’ own versioning system.

If you prefer to use CachedStaticFileStorage, you shouldn’t run into
any problems. Just make sure you run ./manage.py assets build first,
and ./manage.py collectstatic second, so that collectstatic may
version the output files generated by your django-assets bundles.

The only case where this doesn’t just work is if you are defining
bundles in your templates. If that is the case, you currently need to
define an ASSETS_ROOT setting that points to a different directory
then STATIC_ROOT. Only then will collectstatic be able to find the
output files created with ./manage.py build --parse-templates, and
process them into STATIC_ROOT, like any other static file.

ManifestStaticFileStorage or White Noise

If you are using Django’s ManifestStaticFilesStorage or White Noise’s
GzipManifestStaticFilesStorage then you must build your assets after
calling collectstatic using the --manifest django option:

./manage.py assets build --manifest django

This will add the built assets to Django’s static files manifest. In particular,
this ensures that White Noise realises they are cacheable static files and
will add appropriate far-future expiry headers when serving them.

 _static/up.png

nav.xhtml

 Table of Contents

 		
 django-assets

 		
 Jinja2 support

 		
 Installation

 		
 Settings

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

