

Welcome to django-admin2’s documentation!

[image: Build Status]
 [https://travis-ci.org/jazzband/django-admin2]Warning: This project is currently in an alpha state and currently not meant for real projects.

One of the most useful parts of django.contrib.admin is the ability to configure various views that touch and alter data. django-admin2 is a complete rewrite of that library using modern Class-Based Views and enjoying a design focused on extendibility and adaptability. By starting over, we can avoid the legacy code and make it easier to write extensions and themes.

django-admin2 aims to replace django’s built-in admin that lives in
django.contrib.admin. Come and help us, read the Design and
Contributing pages, and visit the GitHub [https://github.com/twoscoops/django-admin2] project.

This project is intentionally backwards-incompatible with django.contrib.admin.

Features

	Rewrite of the Django Admin backend

	Drop-in themes

	Built-in RESTful API

Basic API

If you’ve worked with Django, this implementation should look familiar:

myapp/admin2.py
Import your custom models
from django.contrib.auth.forms import UserCreationForm, UserChangeForm
from django.contrib.auth.models import User

from .models import Post, Comment

from djadmin2.site import djadmin2_site
from djadmin2.types import ModelAdmin2

class UserAdmin2(ModelAdmin2):
 create_form_class = UserCreationForm
 update_form_class = UserChangeForm

Register each model with the admin
djadmin2_site.register(Post)
djadmin2_site.register(Comment)
djadmin2_site.register(User, UserAdmin2)

Content

	Installation
	Adding django-admin2 to your project

	Development Installation

	Migrating from 0.6.x

	Migrating from 0.5.x

	Contributing
	Setup

	Issues!

	Setting up topic branches and generating pull requests

	Pull upstream changes into your fork regularly

	How to get your pull request accepted

	How pull requests are checked, tested, and done

	Design
	Constraints

	Backend Goals

	REST API Goals

	UI Goals

	Frequently Asked Questions
	Is this intended to go into Django contrib?

	What’s wrong with the Django Admin?

	Internationalization and localization
	Enabling i18n in Django

	Translating django-admin2

	Using i18n in the django-admin2 project development

	Tutorial

Reference

	Themes
	How To Create a Theme

	Installing the custom theme

	Views and their Templates

	Available Themes

	Future

	RESTful API

	Actions
	Writing List Actions

	Forms
	Replicating django.contrib.admin‘s user management

	Things to Do

	Permissions
	Built-in permission classes

	Writing your own permission class

	Permissions in Templates

	Views
	Customizing the Dashboard view

	Customizing the Login view

	ModelAdmin2
	Adding a new view

	Replacing an existing view

	Built-In Views
	View Constants

	View Descriptions

	Custom Renderers
	Renderers

	Using Renderers

	Builtin Renderers

	Django’s Model._meta
	Trivia

	Attributes copied from Meta

	Attributes

	Methods

Indices and tables

	Index

	Search Page

Installation

Adding django-admin2 to your project

Use pip to install from PyPI:

pip install django-admin2

Add djadmin2 and rest_framework to your settings file:

INSTALLED_APPS = (
 ...
 'djadmin2',
 'djadmin2.themes.djadmin2theme_bootstrap3', # for the default theme
 'rest_framework', # for the browsable API templates
 ...
)

REST_FRAMEWORK = {
 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.PageNumberPagination',
 'PAGE_SIZE': 10
}
ADMIN2_THEME_DIRECTORY = "djadmin2theme_bootstrap3"

Add djadmin2 urls to your URLconf:

urls.py
from django.conf.urls import include

from djadmin2.site import djadmin2_site

djadmin2_site.autodiscover()

urlpatterns = [
 ...
 url(r'^admin2/', include(djadmin2_site.urls)),
]

Development Installation

See Contributing.

Migrating from 0.6.x

	The default theme has been updated to bootstrap3, be sure to replace your reference to the new one.

	Django rest framework also include multiple pagination system, the only one supported now is the PageNumberPagination.

Therefore, your settings need to include this:

In settings.py
INSTALLED_APPS += ('djadmin2.themes.djadmin2theme_bootstrap3',)
ADMIN2_THEME_DIRECTORY = "djadmin2theme_bootstrap3"

REST_FRAMEWORK = {
 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.PageNumberPagination',
 'PAGE_SIZE': 10
}

The default admin2 site has move into djadmin2.site make sure your use the news djadmin2_site in your urls.py:

urls.py
from django.conf.urls import include

from djadmin2.site import djadmin2_site

djadmin2_site.autodiscover()

urlpatterns = [
 ...
 url(r'^admin2/', include(djadmin2_site.urls)),
]

Migrating from 0.5.x

Themes are now defined explicitly, including the default theme. Therefore, your settings need to include this:

In settings.py
INSTALLED_APPS += ('djadmin2.themes.djadmin2theme_default',)
ADMIN2_THEME_DIRECTORY = "djadmin2theme_default"

Contributing

Warning

Before you begin working on your contribution, please read and become familiar with the design [https://django-admin2.readthedocs.io/en/latest/design.html] of django-admin2. The design [https://django-admin2.readthedocs.io/en/latest/design.html] document should hopefully make it clear what our constraints and goals are for the project.

Setup

Fork on GitHub

Before you do anything else, login/signup on GitHub and fork django-admin2 from the GitHub project [https://github.com/twoscoops/django-admin2].

Clone your fork locally

If you have git-scm installed, you now clone your git repo using the following command-line argument where <my-github-name> is your account name on GitHub:

git clone git@github.com:<my-github-name>/django-admin2.git

Local Installation

	Create a virtualenv [http://www.virtualenv.org/en/latest/] (or use virtualenvwrapper [https://virtualenvwrapper.readthedocs.io/en/latest/]). Activate it.

	cd into django-admin2

	type $ pip install -r requirements.txt

	type $ python setup.py develop

Try the example projects

	cd into example/

	create the database: $ python manage.py migrate

	run the dev server: $ python manage.py runserver

Issues!

The list of outstanding django-admin2 feature requests and bugs can be found on our on our GitHub issue tracker [https://github.com/twoscoops/django-admin2/issues]. Pick an unassigned issue that you think you can accomplish, add a comment that you are attempting to do it, and shortly your own personal label matching your GitHub ID will be assigned to that issue.

Feel free to propose issues that aren’t described!

Tips

	starter labeled issues are deemed to be good low-hanging fruit for newcomers to the project, Django, or even Python.

	doc labeled issues must only touch content in the docs folder.

	Since this project will live on inheritance, all views are Class-Based.

	Familiarize yourself with the project design [https://django-admin2.readthedocs.io/en/latest/design.html] document.

Setting up topic branches and generating pull requests

Note

This is our way of describing our version of git-flow.

While it’s handy to provide useful code snippets in an issue, it is better for
you as a developer to submit pull requests. By submitting pull request your
contribution to django-admin2 will be recorded by Github.

In git it is best to isolate each topic or feature into a “topic branch”. While
individual commits allow you control over how small individual changes are made
to the code, branches are a great way to group a set of commits all related to
one feature together, or to isolate different efforts when you might be working
on multiple topics at the same time.

While it takes some experience to get the right feel about how to break up
commits, a topic branch should be limited in scope to a single issue as
submitted to an issue tracker.

Also since GitHub pegs and syncs a pull request to a specific branch, it is the
ONLY way that you can submit more than one fix at a time. If you submit
a pull from your master branch, you can’t make any more commits to your master
without those getting added to the pull.

To create a topic branch, its easiest to use the convenient -b argument to git checkout:

git checkout -b fix-broken-thing
Switched to a new branch 'fix-broken-thing'

You should use a verbose enough name for your branch so it is clear what it is
about. Now you can commit your changes and regularly merge in the upstream
develop as described below.

When you are ready to generate a pull request, either for preliminary review,
or for consideration of merging into the project you must first push your local
topic branch back up to GitHub:

git push origin fix-broken-thing

Now when you go to your fork on GitHub, you will see this branch listed under
the “Source” tab where it says “Switch Branches”. Go ahead and select your
topic branch from this list, and then click the “Pull request” button.

Your pull request should be applied to the develop branch of django-admin2.
Be sure to change from the default of master to develop.

Next, you can add a comment about your branch. If this in response to
a submitted issue, it is good to put a link to that issue in this initial
comment. The repo managers will be notified of your pull request and it will
be reviewed (see below for best practices). Note that you can continue to add
commits to your topic branch (and push them up to GitHub) either if you see
something that needs changing, or in response to a reviewer’s comments. If
a reviewer asks for changes, you do not need to close the pull and reissue it
after making changes. Just make the changes locally, push them to GitHub, then
add a comment to the discussion section of the pull request.

Pull upstream changes into your fork regularly

django-admin2 is advancing quickly. It is therefore critical that you pull upstream changes from master into your fork on a regular basis. Nothing is worse than putting in a day of hard work into a pull request only to have it rejected because it has diverged too far from master.

To pull in upstream changes:

git remote add upstream https://github.com/twoscoops/django-admin2.git
git pull upstream develop

For more info, see http://help.github.com/fork-a-repo/

Advanced git users: Pull with rebase

This will pull and then reapply your work on top of the upcoming changes:

git pull --rebase upstream develop

It saves you from an extra merge, keeping the history cleaner, but it’s potentially dangerous because you’re rewriting history. For more info, see http://gitready.com/advanced/2009/02/11/pull-with-rebase.html

How to get your pull request accepted

We want your submission. But we also want to provide a stable experience for our users and the community. Follow these rules and you should succeed without a problem!

Run the tests!

Before you submit a pull request, please run the entire django-admin2 test suite via:

python runtests.py

The first thing the core committers will do is run this command. Any pull request that fails this test suite will be immediately rejected.

If you add code/views you need to add tests!

We’ve learned the hard way that code without tests is undependable. If your pull request reduces our test coverage because it lacks tests then it will be rejected.

For now, we use the Django Test framework (based on unittest).

Also, keep your tests as simple as possible. Complex tests end up requiring their own tests. We would rather see duplicated assertions across test methods then cunning utility methods that magically determine which assertions are needed at a particular stage. Remember: Explicit is better than implicit.

You don’t need to run the whole test suite during development in order to make
the test cycles a bit faster. Just pass in the specific tests you want to run
to runtests.py as you would do with the django-admin.py test command.
Examples:

only run the tests from application ``blog``
python runtests.py blog

only run testcase class ``Admin2Test`` from app ``djadmin2``
python runtests.py djadmin2.Admin2Test

run all tests from application ``blog`` and the test named
``test_register`` on the ``djadmin2.Admin2Test`` testcase.
python runtests.py djadmin2.Admin2Test.test_register blog

Don’t mix code changes with whitespace cleanup

If you change two lines of code and correct 200 lines of whitespace issues in a file the diff on that pull request is functionally unreadable and will be immediately rejected. Whitespace cleanups need to be in their own pull request.

Keep your pull requests limited to a single issue

django-admin2 pull requests should be as small/atomic as possible. Large, wide-sweeping changes in a pull request will be rejected, with comments to isolate the specific code in your pull request. Some examples:

	If you are making spelling corrections in the docs, don’t modify the settings.py file (pydanny [http://pydanny.com] is guilty of this mistake).

	If you are fixing a view don’t ‘cleanup‘ unrelated views. That cleanup belongs in another pull request.

	Changing permissions on a file should be in its own pull request with explicit reasons why.

Best Practices

As much as possible, we follow the advice of the Two Scoops of Django [https://2scoops.org] book. Periodically the book will be referenced either for best practices or as a blunt object by the project lead in order to end bike-shedding.

Python

Follow PEP-0008 and memorize the Zen of Python:

>>> import this

Please keep your code as clean and straightforward as possible. When we see more than one or two functions/methods starting with _my_special_function or things like __builtins__.object = str we start to get worried. Rather than try and figure out your brilliant work we’ll just reject it and send along a request for simplification.

Furthermore, the pixel shortage is over. We want to see:

	options instead of opts

	model_name instead of model

	my_function_that_does_things instead of mftdt

Templates

Follow bootstrap’s coding standards for HTML [https://github.com/twitter/bootstrap/blob/master/CONTRIBUTING.md#coding-standards-html] and CSS [https://github.com/twitter/bootstrap/blob/master/CONTRIBUTING.md#coding-standards-css]. Use two spaces for indentation, and write so the templates are readable (not for the generated html).

Internationalize

Any new text visible to the user must be internationalized [https://django-admin2.readthedocs.io/en/latest/internationalization.html].

How pull requests are checked, tested, and done

First we pull the code into a local branch:

git checkout develop
git checkout -b <submitter-github-name>-<submitter-branch> develop
git pull git://github.com/<submitter-github-name>/django-admin2.git <submitter-branch> <branch-name>

Then we run the tests:

coverage run runtests.py
coverage report

We do the following:

	Any test failures or the code coverage drops and the pull request is rejected.

	We open up a browser and make sure it looks okay.

	We check the commit’s code changes and make sure that they follow our rules.

We finish with a merge and push to GitHub:

git checkout develop
git merge <branch-name>
git push origin develop

Design

Constraints

This section outlines the design constraints that django-admin2 follows:

	There will be nothing imported from django.contrib.admin.

	The original bootstrap/ theme shall contain no UI enhancements beyond the original django.contrib.admin UI. (However, future themes can and should be experimental.)

	External package dependencies are allowed but should be very limited.

	Building a django-admin2 theme cannot involve learning Python, which explains why we are not using tools like django-crispy-forms. (One of our goals is to make it easier for designers to explore theming django-admin2).

Backend Goals

Rather than creating yet another project that skins django.contrib.admin, our goal is to rewrite django.contrib.admin from the ground up using Class-Based Views, better state management, and attention to all the lessons learned from difficult admin customizations over the years.

While the internal API for the backend may be drastically different, the end goal is to achieve relative parity with existing functionality in an extendable way:

	Relative functional parity with django.contrib.admin. This is our desire to replicate much of the existing functionality, but not have to worry too much about coding ourselves into an overly-architected corner.

	Ability handle well under high load situations with many concurrent users. This is diametrically opposite from django.contrib.admin which doesn’t work well in this regard.

	Extensible presentation and data views in such a way that it does not violate Constraint #4. To cover many cases, we will provide instructions on how to use the REST API to fetch data rather than create overly complex backend code.

	Create an architecture that follows the “Principle of least surprise”. Things should behave as you expect them to, and you should be blocked from making dangerous mistakes. This is the reason for the ImmutableAdmin type.

Clean code with substantial documentation is also a goal:

	Create a clearly understandable/testable code base.

	All classes/methods/functions documented.

	Provide a wealth of in-line code documentation.

REST API Goals

There are a lot of various cases that are hard to handle with pure HTML projects, but are trivial to resolve if a REST API is available. For example, using unmodified django.contrib.admin on projects with millions of database records combined with foreign key lookups. In order to handle these cases, rather than explore each edge case, django-admin2 provides a RESTFUL API as of version 0.2.0.

Goals:

	Provide a extendable self-documenting API (django-rest-framework).

	Reuse components from the HTML view.

	Backwards compatibility: Use a easily understood API versioning system so we can expand functionality of the API without breaking existing themes.

UI Goals

	Replicate the old admin UI as closely as possible in the bootstrap/ theme. This helps us ensure that admin2/ functionality has parity with admin/.

	Once (1) is complete and we have a stable underlying API, experiment with more interesting UI variations.

Frequently Asked Questions

Is this intended to go into Django contrib?

No.

Reasons why it won’t be going into Django core:

1. We want to rely on external dependencies

We think certain packages can do a lot of the heavy lifting for us, and rewriting them is more time taken away from fixing bugs and implementing features. Since the Django core team isn’t likely to accept external dependencies, especially ones that rely on Django itself, this alone is reason enough for django-admin2 to never make it into Django contrib.

2. We want increased Speed of Development

Django is a huge project with a lot of people relying on it. The conservative pace at which any change or enhancement is accepted is usually boon to the community of developers who work with it. Also, the committee-based management system means everyone gets a voice. This means things often happen at a slow and steady pace.

However, there are times when it’s good to be outside of core, especially for experimental replacements for core functionality. Working outside of Django core means we can do what we want, when we want it.

What’s wrong with the Django Admin?

The existing Django Admin is a powerful tool with pretty extensive extension capabilities. That said, it does have several significant issues.

Doesn’t handle a million-record foreign key relation

Say you have a million users and a model with a foreign key relation to them. You go the model detail field in the admin and you know what happens? The Django admin tries to serve out a million option links to your browser. Django doesn’t handle this well, and neither does your browser. You can fix this yourself, find a third-party package to do it for you, or use django-admin2.

Yes, before release 1.0 of django-admin2 it will handle this problem for you.

Uses an early version of Class-Based Views

TODO

Very Challenging to Theme

TODO

Internationalization and localization

Refer to the Django i18n documentation [https://docs.djangoproject.com/en/dev/topics/i18n/] to get started with
internationalization (i18n).

Enabling i18n in Django

Make sure you’ve activated translation for your project
(the fastest way is to check in your settings.py file if MIDDLEWARE_CLASSES includes
django.middleware.locale.LocaleMiddleware).

Then compile the messages so they can be used by Django.

python manage.py compilemessages

It should get you started !

Translating django-admin2

The translation of the language files is handled using Transifex [https://www.transifex.com/projects/p/django-admin2/].

Improving existing translations

To check out what languages are currently being worked on, check out the
Project page [https://www.transifex.com/projects/p/django-admin2/]. If you want to help with one of the translations, open the
team page by clicking on the language and request to join the team.

[image: Button labeled "Join team"]
Now you can start translating. Open the language page, select a language
resource (e.g. djadmin2.po).

[image: Button labeled "Translate now"]
Then select a string from the list on the left and enter a translation on the
right side. Finally, click the Save button on the top right and you’re done.

It is also possible to suggest better translations for existing ones with the
Suggest button on the bottom.

Requesting a new language

If a language is not available on Transifex [https://www.transifex.com/projects/p/django-admin2/] yet, you can request it with the
Request language button on the Project page [https://www.transifex.com/projects/p/django-admin2/].

[image: Button labeled "Request language"]

Using i18n in the django-admin2 project development

This section is mainly directed at

Marking strings for translation

Python code

Make sure to use ugettext or ugettext_lazy on strings that will be shown to the users,
with string interpolation (“%(name_of_variable)s” instead of “%s”) where needed.

Remember that all languages do not use the same word order, so try to provide flexible strings to translate !

Templates

Make sure to load the i18n tags and put trans tags and blocktrans blocks where needed.

Block variables are very useful to keep the strings simple.

Adding a new locale

cd djadmin2
django-admin.py makemessages -l $LOCALE_CODE

A new file will be created under locale/$LOCALE_CODE/LC_MESSAGES/django.po

Update the headers of the newly created file to match existing files and start the translation!

If you need help to adjust the Plural-Forms configuration in the .po file,
refer to the gettext docs [http://www.gnu.org/savannah-checkouts/gnu/gettext/manual/html_node/Plural-forms.html].

Updating existing locales

To update the language files with new strings in your .py files / templates:

cd djadmin2 # or any other package, for instance example/blog
django-admin.py makemessages -a

Then translate the files directly or upload them to Transifex [https://www.transifex.com/projects/p/django-admin2/].

When the translation is done, you need to recompile the new translations:

django-admin.py compilemessages

Tutorial

This is where the django-admin2 tutorial is in the process of being written. It will be analogous with Page 2 of the Django tutorial.

Themes

How To Create a Theme

A Django Admin 2 theme is merely a packaged Django app. Here are the necessary steps to create a theme called ‘dandy‘:

1. Make sure you have Django 1.8 or higher installed.

$ python -c 'import django; print(django.get_version())'

2. Create the package:

$ mkdir djadmin2theme-dandy

4. Create a setup.py module

$ cd djadmin2theme-dandy
$ touch setup.py

Then enter the following information (you will probably want to change the highlighted lines below to match your package name):

#!/usr/bin/env python
-*- coding: utf-8 -*-

from setuptools import setup
import re
import os
import sys

def get_packages(package):
 """
 Return root package and all sub-packages.
 """
 return [dirpath
 for dirpath, dirnames, filenames in os.walk(package)
 if os.path.exists(os.path.join(dirpath, '__init__.py'))]

if sys.argv[-1] == 'publish':
 os.system("python setup.py sdist upload")
 print("You probably want to also tag the version now:")
 print(" git tag -a %s -m 'version %s'" % (version, version))
 print(" git push --tags")
 sys.exit()

setup(
 name='djadmin2theme-dandy',
 version=0.1.0,
 description="A dandy theme for django-admin2.",
 long_description="A dandy theme for django-admin2.",
 classifiers=[
 "Environment :: Web Environment",
 "Framework :: Django",
 "License :: OSI Approved :: BSD License",
 "Operating System :: OS Independent",
 "Programming Language :: Python",
 "Topic :: Internet :: WWW/HTTP",
 "Topic :: Internet :: WWW/HTTP :: Dynamic Content",
 "Topic :: Software Development :: Libraries :: Python Modules",
],
 keywords='django,djadmin2',
 author="Your Name Here",
 author_email='Your Email Here',
 url='http://github.com/your-repo-here',
 license='MIT',
 packages=get_packages('djadmin2_dandy'),
 include_package_data=True,
 install_requires=[
 'django-admin2>=0.5.0',
],
 zip_safe=False,
)

5. Create a Django App called ‘dandy’ and go inside.

$ django-admin.py startapp djadmin2theme_dandy
$ cd djadmin2theme_dandy

Note

Why is the djadmin2theme prefix used everywhere?

Makes it easy to identify what is a theme and what is not.

Also we don’t pollute our Python namespaces and Django app cache with names like ‘foundation’, ‘storefront’, or other useful names.

6. Add a static/ file directory set:

$ mkdir -p static/djadmin2theme_dandy/{js,css,img}

These directories are where the dandy theme’s custom CSS, JavaScript, and Image files are placed.

7. Add a templates/djadmin2theme_dandy directory:

$ mkdir -p templates/djadmin2theme_dandy

Inside of templates/djadmin2theme_dandy is where the templates for dandy are defined.

Now you can start working on templates and static files!

Installing the custom theme

In the settings module, place the theme right after djadmin2 (change the highlighted lines to your package’s name):

########### DJANGO-ADMIN2 CONFIGURATION
ADMIN2_THEME_DIRECTORY = "djadmin2theme_dandy"
INSTALLED_APPS += (
 'djadmin2theme_dandy'
)
########### END DJANGO-ADMIN2 CONFIGURATION

Views and their Templates

See Built-In Views

Available Themes

Currently, only the default twitter bootstrap-powered “djadmin2.themes.djadmin2theme_bootstrap3” theme exists. The goal of this theme is to replicate the original Django admin UI functionality as closely as possible. This helps us ensure that we are not forgetting any functionality that Django users might be dependent on.

If you’d like to experiment with UI design that differs from the original Django admin UI, please create a new theme. It would be great to have at least 1 experimental theme!

Future

Keep in mind that this project is an experiment just to get our ideas down. We are looking at other similar projects to see if we can merge or borrow things.

RESTful API

django-admin2 comes with a builtin REST-API for accessing all the
resources you can get from the frontend via JSON.

The API can be found at the URL you choose for the admin2 and then append
api/v0/.

If the API has changed in a backwards-incompatible way we will increase the
API version to the next number. So you can be sure that you’re frontend code
should keep working even between updates to more recent django-admin2
versions.

However currently we are still in heavy development, so we are using v0
for the API, which means is subject to change and being broken at any time.

Actions

Actions are defined to work on a single view type. Currently, actions are only implemented against the ModelListView. This view contains the default DeleteSelectedAction method, which in end functionality mirrors django.contrib.admin.delete_selected.

However, under the hood, django-admin2’s actions work very differently. Instead of functions with assigned attributes, they can either be functions or full fledged objects. Which means you can more easily extend them to suit your needs.

The documentation works off a simple set of models, as listed below:

blog/models.py
from django.db import models

STATUS_CHOICES = (
 ('d', 'Draft'),
 ('p', 'Published'),
 ('w', 'Withdrawn'),
)

class Post(models.Model):
 title = models.CharField(max_length=255)
 body = models.TextField()
 status = models.CharField(max_length=1, choices=STATUS_CHOICES)

 def __unicode__(self):
 return self.title

class Comment(models.Model):
 post = models.ForeignKey(Post)
 body = models.TextField()

 def __unicode__(self):
 return self.body

Writing List Actions

The basic workflow of Django’s admin is, in a nutshell, “select an object, then change it.” This works well for a majority of use cases. However, if you need to make the same change to many objects at once, this workflow can be quite tedious.

In these cases, Django’s admin lets you write and register “actions” – simple functions that get called with a list of objects selected on the change list page.

If you look at any change list in the admin, you’ll see this feature in action; Django ships with a “delete selected objects” action available to all models. Using our sample models, let’s pretend we wrote a blog article about Django and our mother put in a whole bunch of embarressing comments. Rather than cherry-pick the comments, we want to delete the whole batch.

In our blog/admin.py module we write:

from djadmin2.actions import BaseListAction
from djadmin2.site import djadmin2_site
from djadmin2.types import ModelAdmin2

from .models import Post, Comment

class DeleteAllComments(BaseListAction):

 description = 'Delete selected items'
 default_template_name = 'actions/delete_all_comments_confirmation.html'
 success_message = 'Successfully deleted %d %s' # first argument - items count, second - verbose_name[_plural]

 def process_queryset(self):
 """Every action must provide this method"""
 self.get_queryset().delete()

def custom_function_action(request, queryset):
 print(queryset.count())

custom_function_action.description = 'Do other action'

class PostAdmin(ModelAdmin2):
 actions = [DeleteAllComments, custom_function_action]

djadmin2_site.register(Post, PostAdmin)
djadmin2_site.register(Comment)

Warning

The “delete selected objects” action uses QuerySet.delete() [https://docs.djangoproject.com/en/dev/ref/models/querysets/#django.db.models.query.QuerySet.delete] for efficiency reasons, which has an important caveat: your model’s delete() method will not be called.

If you wish to override this behavior, simply write a custom action which accomplishes deletion in your preferred manner – for example, by calling Model.delete() for each of the selected items.

For more background on bulk deletion, see the documentation on object deletion [https://docs.djangoproject.com/en/dev/topics/db/queries/#topics-db-queries-delete].

Read on to find out how to add your own actions to this list.

Forms

Replicating django.contrib.admin‘s user management

If you have users, it’s assumed you will have a Django app to manage them, called something like accounts, users, or profiles. For this exercise, we’ll assume the app is called accounts.

Step 1 - The admin2.py module

In the accounts app, create an admin2.py module.

Step 2 - Web Integration

Enter the following code in accounts/admin2.py:

Import the User and Group model from django.contrib.auth
from django.contrib.auth import get_user_model
from django.contrib.auth.models import Group

from djadmin2.site import djadmin2_site
from djadmin2.forms import UserCreationForm, UserChangeForm
from djadmin2.types import ModelAdmin2

fetch the User model
User = get_user_model()

Incorporate the
class UserAdmin2(ModelAdmin2):
 create_form_class = UserCreationForm
 update_form_class = UserChangeForm

djadmin2_site.register(User, UserAdmin2)
djadmin2_site.register(Group)

Done! The User and Group controls will appear in your django-admin2 dashboard.

Well... almost. We still need to incorporate the API components.

Step 3 - API Integration

Change accounts/admin2.py to the following:

Import the User and Group model from django.contrib.auth
from django.contrib.auth import get_user_model
from django.contrib.auth.models import Group

from rest_framework.relations import PrimaryKeyRelatedField

import djadmin2

fetch the User model
User = get_user_model()

Serialize the groups
class GroupSerializer(Admin2APISerializer):
 permissions = PrimaryKeyRelatedField(many=True)

 class Meta:
 model = Group

The GroupAdmin2 object is synonymous with GroupAdmin
class GroupAdmin2(djadmin2.ModelAdmin2):
 api_serializer_class = GroupSerializer

Serialize the users, excluding password data
class UserSerializer(djadmin2.apiviews.Admin2APISerializer):
 user_permissions = PrimaryKeyRelatedField(many=True)

 class Meta:
 model = User
 exclude = ('passwords',)

The UserAdmin2 object is synonymous with UserAdmin
class UserAdmin2(djadmin2.ModelAdmin2):
 create_form_class = UserCreationForm
 update_form_class = UserChangeForm

 api_serializer_class = UserSerializer

djadmin2.default.register(User, UserAdmin2)
djadmin2.default.register(Group, GroupAdmin2)

Things to Do

	Consider breaking the user management reference into more steps

	Create default UserAdmin2 and GroupAdmin2 classes

	Demonstrate how to easy it is to customize and HTML5-ize forms

	Demonstrate how easy it is to customize widgets

Permissions

Permissions are handled on a per view basis. So basically each admin view can
hold its own permissions. That way you are very flexible in defining
who is allowed to access which view. For example, the edit view might need some
totally different permission checks then the delete view. However the add view
has nearly the same requirements as the edit view, you just also need to have
on extra permission. All those scenarios can be handled very easily in django-admin2.

Since the permission handling is centered around the specific views, this is
the place where you attach the permission checking logic to. You can assign one
or more permission backends to a view by setting the permission_classes
attribute:

from django.views import generic
from djadmin2.viewmixins import Admin2Mixin
from djadmin2 import permissions

class MyView(Admin2Mixin, generic.TemplateView):
 permission_classes = (
 permissions.IsStaffPermission,
 permissions.ModelViewPermission)

See the following sections on which permission classes ship with
django-admin2, ready to use and how you can roll your own.

Built-in permission classes

You can use the following permission classes directly in you views.

	
class djadmin2.permissions.IsStaffPermission

	It ensures that the user is authenticated and is a staff member.

	
class djadmin2.permissions.IsSuperuserPermission

	It ensures that the user is authenticated and is a superuser. However it
does not check if the user is a staff member.

	
class djadmin2.permissions.ModelViewPermission

	Checks if the user has the <app>.view_<model> permission.

	
class djadmin2.permissions.ModelAddPermission

	Checks if the user has the <app>.add_<model> permission.

	
class djadmin2.permissions.ModelChangePermission

	Checks if the user has the <app>.change_<model> permission.

	
class djadmin2.permissions.ModelDeletePermission

	Checks if the user has the <app>.delete_<model> permission.

Writing your own permission class

If you need it, writing your own permission class is really easy. You just need
to subclass the djadmin2.permissions.BasePermission class and
overwrite the has_permission()
method that implements the desired permission checking. The arguments that the
method takes are pretty self explanatory:

	request

	That is the request object that was sent to the server to access the
current page. This will usually have the request.user attribute which
you can use to check for user based permissions.

	view

	The view argument is the instance of the class based view that the user wants
to access.

	obj

	This argument is optional and will only be given if an object-level
permission check is performed. Take this into account if you want to
support object-level permissions, or ignore it otherwise.

Based on these arguments should the has_permission method than return
either True if the permission shall be granted or False if the access
to the user shall be diened.

Here is an example implementation of a custom permission class:

from djadmin2.permissions import BasePermission

class HasAccessToSecretInformationPermission(BasePermission):
 '''
 Only allow superusers access to secret information.
 '''

 def has_permission(self, request, view, obj=None):
 if obj is not None:
 if 'secret' in obj.title.lower() and not request.user.is_superuser:
 return False
 return True

Permissions in Templates

Since the permission handling is designed around views, the permission checks
in the template will also always access a view and return either True or
False if the user has access to the given view. There is a {{ permissions
}} variable available in the admin templates to perform these tests against a
specific view.

At the moment you can check for view, add, change and delete permissions. To do
so you use the provided permissions variable as seen below:

{% if permissions.has_change_permission %}
 Edit {{ object }}
{% endif %}

This permission check will use the ModelAdmin2 instance of the current view
that was used to render the above template to find the view it should perform
the permission check against. Since we test the change permission, it will use
the update_view to check if the user has the permission to access the
change page or not. If that’s the case, we can safely display the link to
the change page.

At the moment we can check for the following four basic permissions:

	has_view_permission

	This will check the permissions against the current admin’s detail_view.

	has_add_permission

	This will check the permissions against the current admin’s create_view.

	has_change_permission

	This will check the permissions against the current admin’s update_view.

	has_delete_permission

	This will check the permissions against the current admin’s delete_view.

Object-Level Permissions

The permission handling in templates also support checking for object-level
permissions. To do so, you can use the for_object filter implemented in the
admin2_tags templatetag library:

{% load admin2_tags %}

{% if permissions.has_change_permission|for_object:object %}
 Edit {{ object }}
{% endif %}

Note

Please be aware, that the django.contrib.auth.backends.ModelBackend [http://docs.djangoproject.com/en/dev/ref/contrib/auth/#django.contrib.auth.backends.ModelBackend]
backend that ships with django and is used by default doesn’t support object
level permission. So unless you have implemented your own permission backend
that supports it, the
{{ permissions.has_change_permission|for_object:object }} will always
return False and though will be useless.

Sometimes you have the need to perform all the permission checks in a block of
template code to use one object. In that case you can bind an object to the
permissions variable for easier handling:

{% load admin2_tags %}

{% with permissions|for_object:object as object_permissions %}
 {% if object_permissions.has_change_permission %}
 Edit {{ object }}
 {% endif %}
 {% if object_permissions.has_delete_permission %}
 Delete {{ object }}
 {% endif %}
{% endwith %}

That also comes in handy if you have a rather generic template that performs
some permission checks and you want it to use object-level
permissions as well:

{% load admin2_tags %}

{% with permissions|for_object:object as object_permissions %}
 {% include "list_of_model_actions.html" with permissions=object_permissions %}
{% endwith %}

Checking for Permissions on Other Models

Sometimes you just need to check the permissions for that particular model. In
that case, you can access its permissions like this:

{% if permissions.blog_post.has_view_permission %}
 View {{ post }}
{% endif %}

So what we actually did here is that we just put the name of the
ModelAdmin2 that is used for the model you want to access between the
permissions variable and the has_view_permission. This name will be the
app label followed by the model name in lowercase with an underscore in between
for ordinary django models. That way you can break free of beeing limitted to
permission checks for the current ModelAdmin2. But that doesn’t help you
either if you don’t know from the beginning on which model admin you want to
check the permissions. Imagine the admin’s index page that should show a list
of all the available admin pages. To dynamically bind the permissions variable
to a model admin, you can use the for_admin filter:

{% load admin2_tags %}

{% for admin in list_of_model_admins %}
 {% with permissions|for_admin:admin as permissions %}
 {% if permissions.has_add_permission %}Add another {{ admin.model_name }}{% endif %}
 {% endwith %}
{% endfor %}

Dynamically Check for a Specific Permission Name

Just like you can bind a permission dynamically to a model admin, you can also
specify the actual permission name on the fly. There is the for_view filter
to do so.

{% load admin2_tags %}

{% with "add" as view_name %}
 {% if permissions|for_view:view_name %}
 {{ view_name|capfirst }} model
 {% endif %}
{% endwith %}

That way you can avoid hardcoding the has_add_permission check and make the
checking depended on a given template variable. The argument for the
for_view filter must be one of the four strings: view, add,
change or delete.

Views

TODO list

	Describe customization of model views

	Show how to use ModelAdmin2 inheritance so an entire project works off a custom base view.

Customizing the Dashboard view

When you first log into django-admin2, just like django.contrib.admin you are presented with a display of apps and models. While this is useful for developers, it isn’t friendly for end-users. Fortunately, django-admin2 makes it trivial to switch out the standard dashboard view.

However, because this is the dashboard view, the method of customization and configuration is different than other django-admin2 views.

In your Django project’s root URLconf module (urls.py) modify the code to include the commented code before the djadmin2_site.autodiscover():

from django.conf.urls import include, url

from djadmin2.site import djadmin2_site
from djadmin2.views import IndexView

######### Begin django-admin2 customization code
Create a new django-admin2 index view
class CustomIndexView(IndexView):

 # specify the template
 default_template_name = "custom_dashboard_template.html"

override the default index_view
djadmin2_site.index_view = CustomIndexView
######### end django-admin2 customization code

djadmin2_site.autodiscover()

urlpatterns = [
 url(r'^admin2/', include(djadmin2_site.urls)),
 # ... Place the rest of the project URLs here
]

In real projects the new IndexView would likely be placed into a views.py module.

Note

Considering that dashboard is more intuitive of a name, perhaps the IndexView should be renamed DashboardView?

Customizing the Login view

The login view could also be customized.

In your Django project’s root URLconf module (urls.py) modify the code to include the commented code before the djadmin2.default.autodiscover():

from django.conf.urls import patterns, include, url

from djadmin2.site import djadmin2_site
from djadmin2.views import LoginView

######### Begin django-admin2 customization code
Create a new django-admin2 index view
class CustomLoginView(LoginView):

 # specify the template
 default_template_name = "custom_login_template.html"

override the default index_view
djadmin2_site.login_view = CustomLoginView
######### end django-admin2 customization code

djadmin2_site.autodiscover()

urlpatterns = patterns('',
 url(r'^admin2/', include(djadmin2_site.urls)),
 # ... Place the rest of the project URLs here
)

In real projects the new LoginView would likely be placed into a views.py module.

ModelAdmin2

The ModelAdmin2 class is the representation of a model in the admin interface. These are stored in a file named admin2.py in your application. Let’s take a look at a very simple example of the ModelAdmin2:

from .models import Post
from djadmin2.site import djadmin2_site
from djadmin2.types import ModelAdmin2

class PostAdmin(ModelAdmin2):
 pass

djadmin2_site.register(Post, PostAdmin)

Adding a new view

To add a new view to a ModelAdmin2, it’s need add an attribute that is an
instance of the views.AdminView.

The view.AdminView takes tree parameters: url, view and name.
The url is expected a string for the url pattern for your view.
The view is expected a view and name is an optional parameter and
is expected a string that is the name of your view.

from .models import Post
from djadmin2 import views
from djadmin2.site import djadmin2_site
from djadmin2.types import ModelAdmin2

class PostAdmin(ModelAdmin2):
 preview_post = views.AdminView(r'^preview/$', views.PreviewPostView)

djadmin2_site.register(Post, PostAdmin)

Replacing an existing view

To replacing an existing admin view, it’s need add an attribute with the same name that
the view that you want replace:

from .models import Post
from djadmin2 import views
from djadmin2.site import djadmin2_site
from djadmin2.types import ModelAdmin2

class PostAdmin(ModelAdmin2):
 create_view = views.AdminView(r'^create/$', views.MyCustomCreateView)

djadmin2_site.register(Post, PostAdmin)

Built-In Views

Each of these views contains the list of context variables that are included in
their templates.

Note

TODO: Fix the capitalization of context variables!

View Constants

The following are available in every view:

	next:	The page to redirect the user to after login

	MEDIA_URL:	Specify a directory where file uploads for users who use your site go

	STATIC_URL:	Specify a directory for JavaScript, CSS and image files.

	user:	Currently logged in user

View Descriptions

Custom Renderers

It is possible to create custom renderers for specific fields. Currently they
are only used in the object list view, for example to render boolean values
using icons. Another example would be to customize the rendering of dates.

Renderers

A renderer is a function that accepts a value and the field and returns a HTML
representation of it. For example, the very simple builtin datetime renderer
works like this:

def title_renderer(value, field):
 """Render a string in title case (capitalize every word)."""
 return unicode(value).title()

In this case the field argument is not used. Sometimes it useful though:

def number_renderer(value, field):
 """Format a number."""
 if isinstance(field, models.DecimalField):
 return formats.number_format(value, field.decimal_places)
 return formats.number_format(value)

You can create your renderers anywhere in your code, but it is recommended to
put them in a file called renderers.py in your project.

Using Renderers

The renderers can be specified in the Admin2 class using the
field_renderers attribute. The attribute contains a dictionary that maps a
field name to a renderer function.

By default, some renderers are automatically applied, for example the boolean
renderer when processing boolean values. If you want to suppress that renderer,
you can assign None to the field in the field_renderers dictionary.

class PostAdmin(djadmin2.ModelAdmin2):
 list_display = ('title', 'body', 'published')
 field_renderers = {
 'title': renderers.title_renderer,
 'published': None,
 }

Builtin Renderers

Django’s Model._meta

Currently django implements most of its behaviour that makes using models so
nice using a metaclass. A metaclass is invoked when an actual class is created
and can change that class’ behaviour by adding or modifing its attributes and
methods. This means that django is actually changing your model class at the
moment when the models.py file of your app is loaded.

One of those changes is that the model’s metaclass takes the specified
Meta options that the model has attached to and uses it’s attributes in
conjunction with the model’s fields to create a new attribute on the model
that is called _meta. This is then responsible for providing an API to
access all database related information like the name of the database table or
a list of all available fields.

Django doesn’t currently have an official documentation of the _meta‘s
semantics, however it is kind of a stable API since many projects and all the
db related django internals depend on it. And this page is about documenting
the semantics of _meta.

Trivia

The Model._meta attribute is an instance of the
django.db.models.options.Options class. It gets attached to the model at
that time when the model class is created by the
django.db.models.base.ModelBase metaclass.

If _meta is mentioned we speak about the autogenerated _meta
attribute that is attached to the model class.

Some clarifying: In the following text Meta is referring to the actual
class Meta: definition that the app author has put inside the model class.
Like here:

class Restaurant(models.Model):
 # ... some fields here ...

 class Meta:
 ordering = ('name',)

Attributes copied from Meta

Some of _meta‘s attributes are just copied from the Meta options. The
following attributes are those. Their behaviour is more detailed described in
the django documentation [https://docs.djangoproject.com/en/dev/ref/models/options/].

	abstract

	A boolean value.

See the django documentation on abstract [http://docs.djangoproject.com/en/dev/ref/models/options/#django.db.models.Options.abstract]
for more information.

	app_label

	By default it is the name of the app module that the model was created in.
This can be overriden in Meta to make a model part of a specific
app.

Also see the django documentation about
app_label [http://docs.djangoproject.com/en/dev/ref/models/options/#django.db.models.Options.app_label].

	db_table

	Contains the name of the database table used for this model. This is
either what was set on Meta or defaults to a string that is built
from app_label and model_name seperated by an underscore. So for
example the db_table for django.contrib.auth.models.User is
'auth_user'.

Also see the django documentation about
db_table [http://docs.djangoproject.com/en/dev/ref/models/options/#django.db.models.Options.db_table].

	db_tablespace

	See the django documentation on
db_tablespace [http://docs.djangoproject.com/en/dev/ref/models/options/#django.db.models.Options.db_tablespace] for more information.

	get_latest_by

	The name of the field that should be used during ordering to make
latest() [http://docs.djangoproject.com/en/dev/ref/models/querysets/#django.db.models.query.QuerySet.latest] and
earliest() [http://docs.djangoproject.com/en/dev/ref/models/querysets/#django.db.models.query.QuerySet.earliest] work.

Also see the django documentation about
get_latest_by [http://docs.djangoproject.com/en/dev/ref/models/options/#django.db.models.Options.get_latest_by].

	managed

	If managed is True then the syncdb management
command will take care of creating the database tables. Defaults to
True.

Also see the django documentation about
managed [http://docs.djangoproject.com/en/dev/ref/models/options/#django.db.models.Options.managed].

	order_with_respect_to

	See the django documentation on
order_with_respect_to [http://docs.djangoproject.com/en/dev/ref/models/options/#django.db.models.Options.order_with_respect_to] for more information.

	ordering

	See the django documentation on
ordering [http://docs.djangoproject.com/en/dev/ref/models/options/#django.db.models.Options.ordering] for more information.

	permissions

	See the django documentation on
permissions [http://docs.djangoproject.com/en/dev/ref/models/options/#django.db.models.Options.permissions] for more information.

	proxy

	If set to True then this model will be treated a proxy model [http://docs.djangoproject.com/en/dev/topics/db/models/#proxy-models].

Also see the django documentation about
proxy [http://docs.djangoproject.com/en/dev/ref/models/options/#django.db.models.Options.proxy].

	index_together

	See the django documentation on
index_together [http://docs.djangoproject.com/en/dev/ref/models/options/#django.db.models.Options.index_together] for more information.

	unique_together

	See the django documentation on
unique_together [http://docs.djangoproject.com/en/dev/ref/models/options/#django.db.models.Options.unique_together] for more information.

	verbose_name

	A human-readable name of the models name, singular. If this is not set in
Meta, django will try to guess a human readable name by using the
object_name and inserting appropriate spaces for the CamelCased model
name and then making everything lowercase.

See the django documentation on
verbose_name [http://docs.djangoproject.com/en/dev/ref/models/options/#django.db.models.Options.verbose_name] for more information.

	verbose_name_plural

	A human-readable name of the models name, plural. If this is not set in
Meta, it will default to verbose_name + "s".

See the django documentation on
verbose_name_plural [http://docs.djangoproject.com/en/dev/ref/models/options/#django.db.models.Options.verbose_name_plural] for more information.

Attributes

	abstract_managers

	To handle various inheritance situations, we need to track where
managers came from (concrete or abstract base classes).

	auto_created

	TODO ...

	auto_field

	TODO ...

	concrete_managers

	TODO ...

	concrete_model

	TODO ...

	has_auto_field

	TODO ...

	local_fields

	TODO ...

	local_many_to_many

	TODO ...

	model

	This is the actual django.db.models.Model that the _meta attribute
is attached to.

	model_name

	TODO ...

	object_name

	It is the actual name of the model class.

	parents

	TODO ...

	pk

	TODO ...

	proxy_for_model

	For any class that is a proxy (including automatically created
classes for deferred object loading), proxy_for_model tells us
which class this model is proxying. Note that proxy_for_model
can create a chain of proxy models. For non-proxy models, the
variable is always None.

	related_fkey_lookups

	List of all lookups defined in ForeignKey ‘limit_choices_to’ options
from other models. Needed for some admin checks. Internal use only.

	swappable

	TODO ...

	virtual_fields

	TODO ...

Methods

	module_name(self)

	TODO ...

	add_field(self, field)

	TODO ...

	add_virtual_field(self, field)

	TODO ...

	setup_pk(self, field)

	TODO ...

	pk_index(self)

	TODO ...

	setup_proxy(self, target)

	TODO ...

	verbose_name_raw(self)

	TODO ...

	fields(self)

	TODO ...

	concrete_fields(self)

	TODO ...

	local_concrete_fields(self)

	TODO ...

	get_fields_with_model(self)

	TODO ...

	get_concrete_fields_with_model(self)

	TODO ...

	get_m2m_with_model(self)

	TODO ...

	get_field(self, name, many_to_many=True)

	TODO ...

	get_all_field_names(self)

	TODO ...

	init_name_map(self)

	TODO ...

	get_add_permission(self)

	TODO ...

	get_change_permission(self)

	TODO ...

	get_delete_permission(self)

	TODO ...

	get_all_related_objects(self, local_only=False, include_hidden=False

	TODO ...

	get_all_related_objects_with_model(self, local_only=False

	TODO ...

	get_all_related_many_to_many_objects(self, local_only=False)

	TODO ...

	get_all_related_m2m_objects_with_model(self)

	TODO ...

	get_base_chain(self, model)

	TODO ...

	get_parent_list(self)

	TODO ...

	get_ancestor_link(self, ancestor)

	TODO ...

Index

 A
 | C
 | D
 | G
 | I
 | M
 | P

A

 	
 	Actions

 	Writing List Actions

C

 	
 	Contributing

 	Getting your Pull Requests Accepted

 	Issues

 	Pull Requests

 	Pulling Upstream Changes

 	Pulling with Rebase

 	Setup

 	Topic Branches

D

 	
 	Design

 	Backend Goals

 	Constraints

 	REST API Goals

 	UI Goals

G

 	
 	Getting your Pull Request Accepting

 	Don't mix code changes with whitespace cleanup

 	Don't reduce test coverage!

 	Keep your pull requests limited to single issues

 	Run the tests!

I

 	
 	installation

 	internationalization

 	
 	IsStaffPermission (class in djadmin2.permissions)

 	IsSuperuserPermission (class in djadmin2.permissions)

M

 	
 	ModelAddPermission (class in djadmin2.permissions)

 	ModelChangePermission (class in djadmin2.permissions)

 	
 	ModelDeletePermission (class in djadmin2.permissions)

 	ModelViewPermission (class in djadmin2.permissions)

P

 	
 	Permissions

 	Built-In Permission Classes

 	Checking for Permissions on Other Models

 	Custom Permission Classes

 	Dynamically Check for a Specific Permission Name

 	Object-Level Permissions

 	Permissions in Templates

 _static/comment-close.png

_images/request_language.png
@ Request language

_static/join_team.png
2. jointeam

_static/translate_now.png
 Translate now.

_static/up.png

_static/minus.png

_static/down-pressed.png

_static/ajax-loader.gif

_images/join_team.png
2. jointeam

_images/translate_now.png
 Translate now.

_static/request_language.png
@ Request language

nav.xhtml

 Table of Contents

 		Welcome to django-admin2's documentation!

 		Installation

 		Adding django-admin2 to your project

 		Development Installation

 		Migrating from 0.6.x

 		Migrating from 0.5.x

 		Contributing

 		Setup

 		Fork on GitHub

 		Clone your fork locally

 		Local Installation

 		Try the example projects

 		Issues!

 		Tips

 		Setting up topic branches and generating pull requests

 		Pull upstream changes into your fork regularly

 		Advanced git users: Pull with rebase

 		How to get your pull request accepted

 		Run the tests!

 		If you add code/views you need to add tests!

 		Don't mix code changes with whitespace cleanup

 		Keep your pull requests limited to a single issue

 		Best Practices

 		How pull requests are checked, tested, and done

 		Design

 		Constraints

 		Backend Goals

 		REST API Goals

 		UI Goals

 		Frequently Asked Questions

 		Is this intended to go into Django contrib?

 		1. We want to rely on external dependencies

 		2. We want increased Speed of Development

 		What's wrong with the Django Admin?

 		Doesn't handle a million-record foreign key relation

 		Uses an early version of Class-Based Views

 		Very Challenging to Theme

 		Internationalization and localization

 		Enabling i18n in Django

 		Translating django-admin2

 		Improving existing translations

 		Requesting a new language

 		Using i18n in the django-admin2 project development

 		Marking strings for translation

 		Adding a new locale

 		Updating existing locales

 		Tutorial

 		Themes

 		How To Create a Theme

 		1. Make sure you have Django 1.8 or higher installed.

 		2. Create the package:

 		4. Create a setup.py module

 		5. Create a Django App called 'dandy' and go inside.

 		6. Add a static/ file directory set:

 		7. Add a templates/djadmin2theme_dandy directory:

 		Installing the custom theme

 		Views and their Templates

 		Available Themes

 		Future

 		RESTful API

 		Actions

 		Writing List Actions

 		Forms

 		Replicating django.contrib.admin's user management

 		Step 1 - The admin2.py module

 		Step 2 - Web Integration

 		Step 3 - API Integration

 		Things to Do

 		Permissions

 		Built-in permission classes

 		Writing your own permission class

 		Permissions in Templates

 		Object-Level Permissions

 		Checking for Permissions on Other Models

 		Dynamically Check for a Specific Permission Name

 		Views

 		Customizing the Dashboard view

 		Customizing the Login view

 		ModelAdmin2

 		Adding a new view

 		Replacing an existing view

 		Built-In Views

 		View Constants

 		View Descriptions

 		Custom Renderers

 		Renderers

 		Using Renderers

 		Builtin Renderers

 		Django's Model._meta

 		Trivia

 		Attributes copied from Meta

 		Attributes

 		Methods

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/comment.png

