

django-ad-code

django-ad-code is a reusable application for managing and rendering ad tags
from third-party ad server or ad network such Adsense, DoubleClick or OpenX.

django-ad-code is not an ad server or full ad management system. It is simply a tool
to help you manage the ad tags needed to use an ad network.

[image: _images/django-ad-code.svg]
 [https://travis-ci.org/mlavin/django-ad-code][image: _images/coverage.svg]
 [https://codecov.io/github/mlavin/django-ad-code?branch=master]
Installation

django-ad-code requires Django >= 1.8 and Python 2.7 or 3.3+.

To install from PyPi:

pip install django-ad-code

Documentation

Documentation on using django-ad-code is available on
Read The Docs [http://readthedocs.org/docs/django-ad-code/].

License

django-ad-code is released under the BSD License. See the
LICENSE [https://github.com/mlavin/django-ad-code/blob/master/LICENSE] file for more details.

Contributing

If you think you’ve found a bug or are interested in contributing to this project
check out django-ad-code on Github [https://github.com/mlavin/django-ad-code].

Contents

	Getting Started
	Installation

	Configure Settings

	Create Database Tables

	Using Ad Data in the Template

	Customizing the Ad Templates
	Customizing render_section_header Template

	Customizing render_placement Template

	Using django-ad-code with DoubleClick
	Header Template

	Placement Template

	Using django-ad-code with OpenX
	Header Template

	Placement Template

	Available Settings
	ADCODE_PLACEHOLDER_TEMPLATE

	ADCODE_CACHE_TIMEOUT

	Release History
	v1.0.0 (Released 2018-04-21)

	v0.5.0 (Released 2014-09-07)

	v0.4.1 (Released 2013-06-08)

	v0.4.0 (Released 2012-12-19)

	v0.3.1 (Released 2012-05-19)

	v0.3.0 (Released 2012-05-16)

	v0.2.0 (Released 2012-05-12)

	v0.1.0 (No public release)

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Below are the basic steps need to get django-ad-code integrated into your
Django project.

Installation

It is easiest to install django-ad-code from PyPi using pip:

pip install django-ad-code

Configure Settings

You need to include adcode to your installed apps as well as include a
context processor in your project settings.

INSTALLED_APPS = (
 # Other installed apps would go here
 'adcode',
)

TEMPLATE_CONTEXT_PROCESSORS = (
 # Other context processors would go here
 'adcode.context_processors.current_placements',
)

Note that TEMPLATE_CONTEXT_PROCESSORS is not included in the default settings
created by startproject. You should take care to ensure that the default
context processors are included in this list. For a list of default
TEMPLATE_CONTEXT_PROCESSORS please see
the official Django docs [https://docs.djangoproject.com/en/1.3/ref/settings/#template-context-processors].

For the context processor to have any effect you need to make sure that the template
is rendered using a RequestContext. This is done for you with the
render [https://docs.djangoproject.com/en/1.4/topics/http/shortcuts/#render] shortcut.

Create Database Tables

You’ll need to create the necessary database tables for storing ad sections and
placements. This is done with the syncdb management command built into Django:

python manage.py syncdb

django-ad-code uses South [http://south.aeracode.org/] to handle database migrations.
If you are also using South then you should run migrate instead:

python manage.py migrate adcode

There is an optional fixture with IAB ad sizes based on the
2012 guidelines [http://www.iab.net/guidelines/508676/508767/displayguidelines]. To
load this fixture run:

python manage.py loaddata iab_sizes.json

Using Ad Data in the Template

The django-ad-code includes two template tags to help rendering ad placements.
render_section_header would be included in your html <head> and would include
and step JS needed. In your <body> you would render individual placements with
render_placement which takes the slug for the placement.

{% load adcode_tags %}
<!DOCTYPE html>
<html lang="en">
<head>
 <!-- Other meta, css, js -->
 {% render_section_header %}
</head>
<body>
 <!-- Various body content -->
 {% render_placement 'footer' %}
</body>
</html>

Continue on to learn about customizing how these tags render.

Customizing the Ad Templates

Setting up the templates to render your ad code is straight forward. This
section details how the appropriate templates are discovered when using
the django-ad-code template tags.

Customizing render_section_header Template

render_section_header renders the header content for the current section. If
no section was matched then it will not render anything. This template tag looks
for the template adcode/{{ section.slug }}/header.html then adcode/header.html
where {{ section.slug }} is the slug of the current matched section. In most
cases it will be sufficient to define adcode/header.html to use for all
sections.

The following items are passed into the context for this template.

	section: The current adcode Section

	placements: The full list of Placements for this section

	debug: The value of settings.DEBUG

	MEDIA_URL: The value of settings.MEDIA_URL

	STATIC_URL: The value of settings.STATIC_URL

Customizing render_placement Template

render_placement renders a given placement by the slug. If the placement could
not be found then it will not render anything. The template search order is
adcode/{{ section.slug }}/{{ placement.slug }}-placement.html,
adcode/{{ section.slug }}/placement.html then adcode/placement.html. This
allows you to customize each placement individually if needed or on a section or
simply a global basis. Many use cases will only require defining adcode/placement.html.

The following items are passed into the context for this template.

	section: The current adcode Section

	placement: The current Placement to be rendered

	debug: The value of settings.DEBUG

	MEDIA_URL: The value of settings.MEDIA_URL

	STATIC_URL: The value of settings.STATIC_URL

The Placement model contains a placeholder property that can be used for local
development to test the layout. An example adcode/placement.html might look
something like below.

{% if debug %}

{% else %}
 <!-- Here you would put the actual ad code needed -->
{% endif %}

This placeholder image will match the size of the placement. By default this will
use Placehold.it [http://placehold.it/] but you are free to customize it with
the ADCODE_PLACEHOLDER_TEMPLATE setting.

Default setting (not required in settings.py)
ADCODE_PLACEHOLDER_TEMPLATE = 'http://placehold.it/{width}x{height}'

Use placekitten instead
ADCODE_PLACEHOLDER_TEMPLATE = 'http://placekitten.com/{width}/{height}'

Using django-ad-code with DoubleClick

DoubleClick [http://www.google.com/doubleclick/index.html] is an ad serving and ad
management tool owned and run by Google [https://www.google.com/]. There is also a
DoubleClick for Publishers (DFP) Small Business [http://www.google.com/dfp/info/sb/index.html].
This section details using django-ad-code to work with the asynchronous Google Publisher Tag
code.

This not meant to be a comprehensive guide on using DoubleClick only a guide on
integrating your DoubleClick inventory with django-ad-code.

Note

This documentation is primarily for example purposes and should not be
taken as an endorsement of DoubleClick.

Header Template

The adcode/header.html should contain the asynchronous googletag code as well
as define the slots for your page based on the current set of placements. An
example of what this might look like is given below.

{% if section and placements and not debug %}
<script>
 var googletag = googletag || {};
 googletag.cmd = googletag.cmd || [];
 (function() {
 var gads = document.createElement('script');
 gads.async = true;
 gads.type = 'text/javascript';
 var useSSL = 'https:' == document.location.protocol;
 gads.src = (useSSL ? 'https:' : 'http:') +
 '//www.googletagservices.com/tag/js/gpt.js';
 var node = document.getElementsByTagName('script')[0];
 node.parentNode.insertBefore(gads, node);
 })();
</script>
<script>
 googletag.cmd.push(function() {
 {% for placement in placements %}
 googletag.defineSlot(
 '{{ placement.remote_id }}', [{{ placement.width }}, {{ placement.height }}], 'div-gpt-ad-{{ placement.id }}'
).addService(googletag.pubads());
 {% endfor %}
 googletag.pubads().enableSingleRequest();
 googletag.enableServices();
 });
</script>
{% endif %}

Here you can see that the Placement.remote_id stores the ad unit name.
You can adapt this to fit your needs to include additional targetting. See the prior
section on customizing the header template.

Placement Template

The adcode/placement.html is responsible for rendering the individual placements
in the body content. The element id needs to match the id given in defineSlot
call in the header. In this example we used 'div-gpt-ad-{{ placement.id }}' so
we will be consistant in the placement template.

<div id="div-gpt-ad-{{ placement.id }}">
 {% if debug %}

 {% else %}
 <script type="text/javascript">
 googletag.cmd.push(function() {
 googletag.display("div-gpt-ad-{{ placement.id }}");
 });
 </script>
 {% endif %}
</div>

This will render the placeholder image if DEBUG=True. If necessary this can
be customized on a per section or per placement basis.

Using django-ad-code with OpenX

OpenX [http://www.openx.com/publisher/enterprise-ad-server] is an ad server
solution with both enterprise/managed and open source editions. It integrates
with the OpenX Market for advertisers to bid on your available ad space. Here
we will detail how you can configure django-ad-code to work with the OpenX
single page call configuration based on http://www.openx.com/docs/2.8/userguide/single%20page%20call.

This will not cover setting a managed OpenX account or a self-managed server. It
will only cover integrating an existing OpenX setup with django-ad-code. It is
primarily based on using the managed OpenX server.

Note

This documentation is primarily for example purposes and should not be
taken as an endorsement of OpenX.

Header Template

The adcode/header.html should contain the spcjs.php script tag including
the account id. The below example is using a managed OpenX account server.

{% if section and placements and not debug %}
<script type='text/javascript' src='http://d1.openx.org/spcjs.php?id=XXXX'></script>
{% endif %}

Here XXXX is account id for the managed account id. There are additional options
that can be configured with this script tag. See Websites & Zones -> Website properties ->
Invocation Code tab for more options.

Placement Template

The adcode/placement.html is responsible for rendering the individual placements
in the body content. These placements are called zones in the OpenX documentation.

<div id="div-openx-ad-{{ placement.id }}">
 {% if debug %}

 {% else %}
 <script type="text/javascript"><!--// <![CDATA[
 OA_show({{ placement.remote_id }});
 //]]> --></script>
 {% endif %}
</div>

Here you can see the remote_id in the Placement model corresponds to the OpenX
zone id. More options exist for generating this tag which could be included in this
placement template such as a noscript option. See the Zones > Invocation Code tab
for a full list of these options.

Available Settings

Below are the settings available for configuring django-ad-code.

ADCODE_PLACEHOLDER_TEMPLATE

The placement model has a placeholder property. This is used to render
a placeholder image for debugging. This setting can be used to configure
the placeholder image service used.

Default: 'http://placehold.it/{width}x{height}'

ADCODE_CACHE_TIMEOUT

This configures the cache timeout for the section and placement cache.

Default: 12 hours

Release History

Release and change history for django-ad-code

v1.0.0 (Released 2018-04-21)

This release adds support for Django 1.8-2.0. Previous versions of Django are no longer
supported. This puts this project on a stable footing for the next few years
of Django support and that is now reflected in the version.

v0.5.0 (Released 2014-09-07)

This release adds support for 1.7 and the new style migrations. If you are using Django < 1.7
and South >= 1.0 this should continue to work without issue.

For those using Django < 1.7 and South < 1.0 you’ll need
to add the SOUTH_MIGRATION_MODULES setting to point to the old South migrations.

SOUTH_MIGRATION_MODULES = {
 'adcode': 'adcode.south_migrations',
}

No new migrations were added for this release but this will be the new location for future migrations. If your
DB tables are up to date from v0.4.X then upgrading to 1.7 and running:

python manage.py migrate adcode

should automatically fake the initial migration using the new-style migrations.

	Added support for Django 1.7 migrations

	Added customizable AppConfig for Django 1.7

	Refactored signal handling for caching to use the AppConfig if available

	Dropped Django 1.3 support. Minimum version is now Django 1.4.2

	Dropped support for Python 2.6

v0.4.1 (Released 2013-06-08)

	Reorganized test suite to ensure compatibility with test runner in Django 1.6

	Refactored Travis CI integration

v0.4.0 (Released 2012-12-19)

A fairly minor release and users should feel safe to upgrade. Beyond some helpful
new documentation there is experimental support for Python 3.2+. This requires
using Django 1.5 or higher.

Features

	Documentation for integrating DoubleClick tags

	Documentation for integrating OpenX tags

	Travis CI integration

	Experimental Python 3 (3.2+) support

v0.3.1 (Released 2012-05-19)

Bug Fixes

	Added missing IAB sizes from the Universal Ad Package. (Issue #10)

	Fixed minor formatting issue with template syntax error message.

v0.3.0 (Released 2012-05-16)

This release made a few changes to the model fields. To upgrade you should run:

python manage.py migrate adcode

This assumes you are using South. Otherwise you should manually add the priority
column to your adcode_section table.

Features

	Added width/height properties to Placement model.

	Added priority field for Sections to resolve overlapping regex patterns.

	Additional defaults for model admin clases.

	Caching and performance improvements.

	Fixture for standard IAB ad sizes.

v0.2.0 (Released 2012-05-12)

Features

	Template tag for rendering section headers and individual placements.

v0.1.0 (No public release)

	Initial version.

Features

	Basic ad section/placement models.

	Context processor for accessing model data in the template.

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 django-ad-code

 		
 Getting Started

 		
 Installation

 		
 Configure Settings

 		
 Create Database Tables

 		
 Using Ad Data in the Template

 		
 Customizing the Ad Templates

 		
 Customizing render_section_header Template

 		
 Customizing render_placement Template

 		
 Using django-ad-code with DoubleClick

 		
 Header Template

 		
 Placement Template

 		
 Using django-ad-code with OpenX

 		
 Header Template

 		
 Placement Template

 		
 Available Settings

 		
 ADCODE_PLACEHOLDER_TEMPLATE

 		
 ADCODE_CACHE_TIMEOUT

 		
 Release History

 		
 v1.0.0 (Released 2018-04-21)

 		
 v0.5.0 (Released 2014-09-07)

 		
 v0.4.1 (Released 2013-06-08)

 		
 v0.4.0 (Released 2012-12-19)

 		
 Features

 		
 v0.3.1 (Released 2012-05-19)

 		
 Bug Fixes

 		
 v0.3.0 (Released 2012-05-16)

 		
 Features

 		
 v0.2.0 (Released 2012-05-12)

 		
 Features

 		
 v0.1.0 (No public release)

 		
 Features

_static/up.png

_static/up-pressed.png

