
DiTrace
Release 1.0

January 13, 2017

Contents

1 Contents 1
1.1 Overview . 1
1.2 Installation . 2
1.3 DiTrace gate API . 4
1.4 Integration . 6
1.5 Contact DiTrace Developers . 8

2 Overview 9
2.1 How it works . 9

HTTP Routing Table 11

i

ii

CHAPTER 1

Contents

1.1 Overview

DiTrace is a distributed tracing system.

Like the others distributed tracing system as Zipkin or Dapper, DiTrace is an instrument to find the problem zones in
distributed systems.

But with different and more simple architecture.

1.1.1 How it works

Every time, when one of distributed system’s microservice made a call to another microservice, the data object, called
“span” should be created.

Span has an arbitrary number of annotations such as request and response parameters (timestamps, url, response code,
etc).

Spans are belong to one trace in hierarchic order with one root span.

Microservices are responsible for:

1. Creating traces, spans and sending traceid and spanid within requests between each other.

2. Collecting spans and sending it to the DiTrace gate.

Look DiTrace gate API for more details.

DiTrace gate are responsible for:

1. Collecting and grouping spans from multiple microservices

2. Saving traces to elasticsearch

Elasticsearch has a various stats aggregations for data analysis. UI is an visualization tool for this aggregations and
data.

1

https://github.com/openzipkin/zipkin
http://research.google.com/pubs/pub36356.html

DiTrace, Release 1.0

1.2 Installation

1.2.1 Manual Installation

There are following components you need to install before running DiTrace gate and UI:

1. golang version 1.5 or higher 3. elasticsearch version 2.2 4. web server e.g. nginx

Install DiTrace gate

export GOPATH=<your gopath>
go get github.com/ditrace/ditrace

Download Web UI Application

https://github.com/ditrace/web/releases/latest

Configure

1. Place configuration file to the default location, /etc/ditrace/config.yml

You can dive into Configuration syntax on a separate page.

2. Place nginx configuration file to /etc/nginx/conf.d/ditrace.conf

elasticsearch cluster for traces
upstream elastic {

server vm-ditrace1:9200;
server vm-ditrace2:9200;
server vm-ditrace3:9200;

}

2 Chapter 1. Contents

https://golang.org/doc/install
https://www.elastic.co/products/elasticsearch
http://nginx.org/en/download.html
https://github.com/ditrace/web/releases/latest

DiTrace, Release 1.0

server {
listen 0.0.0.0:80;
server_name vm-ditrace1;

location / {
root /var/local/www/ditrace/web/static/;
index index.html;

}

location /elasticsearch/ {
rewrite /elasticsearch/(.*) /$1 break;
proxy_pass http://elastic;

}
}

3. Place UI config.json file to /var/local/www/ditrace/config.json

Run

1. Run nginx

2. Run elasticsearch

3. Setup indices template

curl -XPUT http://elasticsearch:9200/_template/traces --data-binary @template.json

template.json

4. Run ditrace gate

$GOPATH/bin/ditrace --config=/etc/ditrace/config.yml

1.2.2 Configuration

By default, DiTrace gate will look for ./config.yml, but you can change this by command-line parameter

log_dir: stdout
log_level: debug

Send statistics to graphite
stats:

enable: true
graphite_host: "vm-graphite"
graphite_port: 2003
graphite_prefix: DevOps

http:
enable: true
address: ":8080"
List replicas of elasticsearch cluster
elasticsearch:
- "http://vm-elastic:9200"

Sampling can be used to limit part of incoming traces.
Value of N means that only one of N traces will be written to elastic.
sampling: 1
replicas:

1.2. Installation 3

https://github.com/ditrace/web/config.json

DiTrace, Release 1.0

- "http://localhost:8080"
Number of seconds to wait if trace is completed before write it to elastic,
min_ttl: 10
Number of seconds to wait if trace is not completed before it will be cleaned out.
max_ttl: 120

profiling:
https://golang.org/pkg/net/http/pprof/
enable: true

1.3 DiTrace gate API

Gate accept only the following http request.

POST /spans?system=(string)
System parameters is used if no system annotation in span json

Example request:

POST /spans?system=mysystem HTTP/1.1
Content-Type: application/x-ldjson

{
"traceId":"c38efe4edb2d4a008af2805ee4e061c1",
"spanId":"8256",
"timeline":{

"sr":"2015-04-24T09:53:49.5595869Z",
"ss":"2015-04-24T09:53:50.5595869Z"

},
"annotations":{

"url":"/url?arg1=arg1&arg2=arg2",
"host":"hostname",
"rqbl":"42",
"rsbl":"4200",
"targetId":"service-0"

}
}\r\n
{
"traceId":"c38efe4edb2d4a008af2805ee4e061c1",
"parentSpanId":"8256",
"spanId":"904a",
"timeline":{

"sr":"2015-04-24T09:53:49.5595869Z",
"ss":"2015-04-24T09:53:50.5595869Z"

},
"annotations":{

"url":"/url",
"host":"hostname",
"rqbl":"42",
"rsbl":"4200",
"targetId":"service-1"

}
}

Example response:

4 Chapter 1. Contents

DiTrace, Release 1.0

HTTP/1.1 200 OK

Query Parameters

• system – spans source system name

Status Codes

• 200 OK – no error

• 400 Bad Request – server can’t parse request content or any of required field is missing
(system, traceid, spanid)

Important: For better visibility example’s jsons are formatted with additional new lines. Only the new lines that
separate jsons should be in real requests.

1.3.1 Span format

Field, preferrable format, description

• (required) TraceId, UUID, unique identifier to group multiple spans into one trace

• (required) SpanId, part of UUID, unique identifier of span within one trace

• (required) Annotations, object of arbitrary annotations

• (required) Timeline, object of timestamps annotations

• (optional) ParentSpanId, identifier of parent span

• (optional) ProfileId, UUID, unique identifier to group multiple traces

• (optional) System, string, unique identifier of distributed system

1.3.2 Known annotations

UI counts on following annotations

• (required) url string (/path)

• (optional) url_method string (POST, GET, DELETE, etc)

• (required) host string (hostname of target host, taken from URL)

• (required) targetId string (target service unique name)

• (optional) targetHost string (human-readable name of target host, overrides host annotation)

• (optional) srcId string (source service unique name)

• (optional) srcHost string (human-readable name of source host)

• (optional) rc int (response code)

• (optional) rqbl long (request body length)

• (optional) rsbl long (response body length)

• (optional) wrapper empty string (marks span as a wrapper of child spans to override targetid)

• (optional) root empty string (marks span as a root span)

1.3. DiTrace gate API 5

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

DiTrace, Release 1.0

• (optional) revision int (revision number to overwrite old annotations value)

1.3.3 Timeline annotations

DiTrace gate and UI are using this timeline annotations to calculate trace and spans durations. All timeline annotations
should have RFC3389 datetime format.

• (optional) cs client has sent request

• (optional) cr client has recived response

• (optional) sr server has received request

• (optional) ss server has sent response

1.4 Integration

Distributed system’s services should have an DiTrace gate API client implementation.

The main requirement for clients is low load impact.

There are following techniques for achieve low impact:

• Sampling

• Ring buffering

• Async sending

1.4.1 Sampling

There is no need to trace 100% of requests to get correct statistical results.

You can set sampling to 10% or even lower.

1.4.2 Ring buffering

Client should handle unavailability of “DiTrace” gate. In the other hand, collecting of tracing data should not consume
too much memory. Using ring buffer with certain limit is good practice to achieve that.

1.4.3 Async sending

Sending tracing data to the gate should be performed in async way, e.g. in separate thread.

1.4.4 C# client

CSharp client utilize “Logical Call Context” to flow tracing data.

6 Chapter 1. Contents

https://github.com/ditrace/csharp

DiTrace, Release 1.0

How to use

1. Implement configuration provider

using Kontur.Tracing.Core.Config;

public interface IConfigurationProvider
{

[NotNull]
ITracingConfig GetConfig();

}

2. Init tracing with your configuration provider

using Kontur.Tracing.Core.Config;

Trace.Initialize(configProvider);

3. Create traces

using Kontur.Tracing.Core;

using (var rootContext = Trace.CreateRootContext("Processing client request"))
{

rootContext.RecordTimepoint(Timepoint.Start);
rootContext.RecordAnnotation(Annotation.RequestUrl, requestUrl);

// ... somewhere deep in your code

using (var childContext = Trace.CreateChildContext("Fetching data from database"))
{

childContext.RecordTimepoint(Timepoint.Start);
data = db.Fetch();
childContext.RecordTimepoint(Timepoint.Finish);

}

// ...
rootContext.RecordTimepoint(Timepoint.Finish);

}

4. Continue traces

Assume that service A make a call to service B, so service B should continue tracing.

using Kontur.Tracing.Core;

HttpListenerContext context;

RequestExtensions.ExtractFromHttpHeaders(context.Request.Headers, out traceId, out contextId, out isActive);
using (var serverContext = Trace.ContinueContext(traceId, contextId, isActive ?? false, isRoot: false))
{

serverContext.RecordTimepoint(Timepoint.ServerReceive);
// ...
// Handle service A request
// ...
serverContext.RecordTimepoint(Timepoint.ServerSend);

}

1.4. Integration 7

DiTrace, Release 1.0

1.5 Contact DiTrace Developers

The best way to contact us is to visit our Gitter chat. We usually reply within a day, but sometimes immediately :)

8 Chapter 1. Contents

https://gitter.im/ditrace/ditrace

CHAPTER 2

Overview

DiTrace is a distributed tracing system.

Like the others distributed tracing system as Zipkin or Dapper, DiTrace is an instrument to find the problem zones in
distributed systems.

But with different and more simple architecture.

2.1 How it works

Every time, when one of distributed system’s microservice made a call to another microservice, the data object, called
“span” should be created.

Span has an arbitrary number of annotations such as request and response parameters (timestamps, url, response code,
etc).

Spans are belong to one trace in hierarchic order with one root span.

Microservices are responsible for:

1. Creating traces, spans and sending traceid and spanid within requests between each other.

2. Collecting spans and sending it to the DiTrace gate.

Look DiTrace gate API for more details.

DiTrace gate are responsible for:

1. Collecting and grouping spans from multiple microservices

2. Saving traces to elasticsearch

Elasticsearch has a various stats aggregations for data analysis. UI is an visualization tool for this aggregations and
data.

9

https://github.com/openzipkin/zipkin
http://research.google.com/pubs/pub36356.html

DiTrace, Release 1.0

10 Chapter 2. Overview

HTTP Routing Table

/spans?system=(string)
POST /spans?system=(string), 4

11

	Contents
	Overview
	Installation
	DiTrace gate API
	Integration
	Contact DiTrace Developers

	Overview
	How it works

	HTTP Routing Table

