distcontrib_migrate Documentation
Release 0.1.0

Richard Gomes

Sep 27,2017

Contents

1 Usage 3
L1 Requirements v v v it e 4
1.2 Quick guide for the impatient L e 4
2 Concepts 7
2.1 MIGration SCript v v v v e 7
2.2 Model version e e e e e e e e e e e e e e 8
2.3 Database VErSION v v v i i e 8
24 RePOSItOIY . . . o v v i e e e e e 8
2.5 Creatinganempty model e e e e e e e e e 9
2.6 Creating a model using reverse engineering v v v v v v v e b e e e e e e e 9
2.7 Authentication e e e e e e e e e e e e 9
3 Known issues and limitations 11
4 Support 13

distcontrib_migrate Documentation, Release 0.1.0

Code | Bugs | Forums | License | Contact

Python package distcontrib-migrate contributes utility functions to Distutils, extending its functionalities,
such as database management functions and database migration functions.

The primary reason for the existence of distcontrib-migrate is making life a lot easier when dealing with
database management and schema migration. By wiring distcontrib-migrate into your setup.py file, you
make it capable of performing these tasks for you, thanks to powerful packages sqlalchemy and sqlalchemy-migrate.

See also: distcontrib

Contents 1

http://code.launchpad.net/distcontrib-migrate
http://bugs.launchpad.net/distcontrib-migrate
http://answers.launchpad.net/distcontrib-migrate
http://opensource.org/licenses/BSD-3-Clause
http://launchpad.net/~frgomes
http://www.sqlalchemy.org/
http://sqlalchemy-migrate.readthedocs.org
http://distcontrib.readthedocs.org/

distcontrib_migrate Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Usage

Below you see an example of a setup . py file which employs distcontrib and distcontrib-migrate

#!/usr/bin/env python

from distutils.core import setup

from Cython.Distutils import build_ext as cython_build
import distcontrib.tools as du

import distcontrib_migrate.api as dm

##

This block contains settings you will eventually need to change

###

import myapp as myapp #-—— adjust to your package name

PACKAGE = myapp.pkg_name

VERSION = myapp.pkg_version

DESCRIPTION = myapp.pkg_description

LICENSE = myapp.pkg_license

URL = myapp.pkg_url

AUTHOR = myapp.pkg_author

AUTHOR_EMAIL = myapp.pkg_email

KEYWORDS = myapp.pkg_keywords

REQUIREMENTS = myapp.pkg_requirements

LONG_DESCRIPTION = du.tools.read('README")

CLASSIFIERS = ['License :: ' + LICENSE,
'Operating System :: OS Independent',
'Programming Language :: Python',
'Programming Language :: Cython',
'Development Status :: 3 - Alpha',
'Intended Audience :: Developers',
'Environment :: Console']

##

From this point on, it's unlikely you will be changing anything.

http://distcontrib.readthedocs.org/

distcontrib_migrate Documentation, Release 0.1.0

###

PACKAGES
PACKAGES_DATA du.tools.findall_package_data (PACKAGES)
EXT_MODULES = du.tools.find _ext_modules (PACKAGES)

setup (

name=PACKAGE,

version=VERSION,

description=DESCRIPTION,

url=URL,

author=AUTHOR,

author_email=AUTHOR_EMATIL,

long_description=LONG_DESCRIPTION,

license=LICENSE,

keywords=KEYWORDS,

classifiers=CLASSIFIERS,

packages=PACKAGES,

package_data=PACKAGES_DATA,

cmdclass={ 'build_ext' : cython_build,
'doctest' : du.doctests,
'zap' : du.zap,
'migrate’ : dm.migrate,
'psgl’ : dm.psql, },

ext_modules=EXT_MODULES,

install requires=REQUIREMENTS

find_packages (exclude=["x.tests", "x.tests.x", "tests.

*u, "tests"])

Then create under your myapp/__init__ .py file something like this:

#!/usr/bin/env python

pkg_name = _name__ if _ package__ is None else __ package_ _
pkg_description = 'This application does everything you can imagine'
pkg_version = '0.1.0"

pkg_license = 'OSI Approved :: BSD License'

pkg_url = 'http://'" + pkg_name + '.readthedocs.org/'
pkg_author = 'Richard Gomes http://rgomes-info.blogspot.com'’
pkg_email = 'rgomes.infolgmail.com'

pkg_requirements = ['lxml', 'sqglalchemy']

pkg_keywords = ['artificial', 'intelligence', 'magic', 'sorcery', 'voodoo']

Requirements

Database management functions require sudo rights.

Quick guide for the impatient

In all examples below, please keep in mind that you can always specify the ——ur1l parameter. If not specified, the

value assumed by default is:

’postgresql://${USER}@localhost:5432/sample

Chapter 1. Usage

distcontrib_migrate Documentation, Release 0.1.0

You can create users easily from command line:

$ python setup.py psql —--createuser # creates an user in the database
$ python setup.py psql —-dropdb # drops user and all owned objects
$ python setup.py psgl —--dropdb --createdb # drops and creates an user in one go

Then you can create a Postgres database easily from command line:

$ python setup.py psgl —--createdb # creates a database
$ python setup.py psql —-dropdb # drops a database
$ python setup.py psgl —--dropdb --createdb # drops and creates a database in one go

You can query what the model version and the database version are:

$ python setup.py migrate —--status —--url postgresql://${USER}Q@localhost:5432/sample
—# show model and database versions

$ python setup.py migrate —--status

—4# same as above

You can perform upgrade and downgrade the database easily from command line:

$ python setup.py migrate —--upgrade —--url postgresqgl://${USER}@localhost:5432/sample
— # upgrade database

$ python setup.py migrate —--upgrade

— # same as above

$ python setup.py migrate —--upgrade --changeset=17

— # upgrade to database version 17

$ python setup.py migrate —--downgrade —--url postgresqgl://${USER}Q@localhost:5432/
—sample # downgrade database

$ python setup.py migrate --downgrade

o # same as above
$ python setup.py migrate --downgrade --changeset=15 o
. # downgrade to database version 15

In order to test upgrade/downgrade scripts, you can do this:

$ python setup.py migrate —--test

Note: —-test is equirevalent to ——upgrade followed by ——downgrade

If you have an existing database which you would like to reverse engineer its model, you can try this:

$ STAGING_URL=postgresqgl://admin@staging.example.com:5432/crm_staging

$ python setup.py migrate --status —-url=${STAGING_URL}

Model version: 0

Database version: 17

$ python setup.py migrate —--create-model —--url=${STAGING_URL} # reverse engineering,
—to repository "admin" (the default)

$ python setup.py migrate —--status —-url=${STAGING_URL}

Model version: 1

Database version: 17

Now apply the model you obtained to a brand new database:

$ DEVEL_URL=postgresqgl://localhost:5432/sandbox
$ python setup.py psql —--createuser --url=${DEVEL_URL}
$ python setup.py psgl —--createdb --url=${DEVEL_URL}

1.2. Quick guide for the impatient 5

distcontrib_migrate Documentation, Release 0.1.0

$ python setup.py migrate —--status --url=${DEVEL_URL}
Model version: 1
Database version: 0
$ python setup.py migrate —-upgrade --url=${DEVEL_URL}
$ python setup.py migrate --status --url=${DEVEL_URL}
Model version: 1
Database version: 1

6 Chapter 1. Usage

CHAPTER 2

Concepts

All concepts presented here must be understood from the point of view of the migration command, which means
that they have a much narrow scope than usual.

Migration script

A migration script is a Python program which has basically only two functions: upgrade and downgrade. Below
you see an example of a migration script:

from sglalchemy import =
meta = MetaData ()

exchange_codes = Table('exchange_codes', meta,
Column ('mic', String, primary_key=True, nullable=False),
Column ('country', String, nullable=False),
Column ('iso3166', String, nullable=False),
Column ('omic', String, nullable=False),
Column('os', String, nullable=False),
Column ('name' String, nullable=False),
Column 'acronym , String, nullable=False),

(!
('
(
(
(
(
Column ('city', String, nullable=False),
(
(
(
(
(

Column ('url', String, nullable=False),
Column ('status', String, nullable=False),
Column ('sdata', String, nullable=False),
Column ('cdate' String, nullable=False),
Column 'comments String, nullable=False),

def upgrade (migrate_engine) :
meta.bind = migrate_engine
exchange_codes.create (meta.bind)

def downgrade (migrate_engine) :

distcontrib_migrate Documentation, Release 0.1.0

meta.bind = migrate_engine
exchange_codes.drop (meta.bind)

For more information, please consult sqlalchemy-migrate

Tip: distcontrib-migrate eases your life in regards to sglalchemy-migrate: the only task left to you
is the maintenance of migrations scripts. You don’t need to create the model repository, define the project name, for
example.

Model version

A model consists a set of migration scripts.

Supose that you are creating CRM application. You start by representing people in the database. You think that name
and SSN is all you need for a person, initially. As time passes, you also need to represent deparments in the database.
Then you realize that you need to link people and departments. Your model would have three iterations:

¢ 001_creating_table_person
* 002_creating_table_department
* 003_linking_people_and_departments

In other works, your model consists of three migration scripts. When you run the command migrate --status,
it basically tells you how many migration scripts you have defined.

Database version

Suppose you have defined a model consisting of three migration scripts, like explained above. Also suppose that you
created an empty database, which means that no migration scripts have been applied yet. In this case, the migrate
—--status command will show:

$ python setup.py migrate --status
Model version: 3
Database version: 0

Now suppose you have applied only two migration scripts because you are still working on the code which links people
with departments. the migrate —--status command will show:

$ python setup.py migrate -—--upgrade --changeset=2
$ python setup.py migrate --status

Model version: 3

Database version: 2

Repository

A repository is the location in the file system where your model is stored. The repository consists on control files
which are automagically created for you and migration scripts. You don’t need to bother about creating a repository,
since it is created by you the first time you run the migrate --status command.

8 Chapter 2. Concepts

http://sqlalchemy-migrate.readthedocs.org

distcontrib_migrate Documentation, Release 0.1.0

Creating an empty model

Supposing you are starting from scratch:

$ python setup.py migrate —--status
Model version: 0
Database version: 0

In the example above, a new repository is created under the directory admin. You can choose another directory name
if you pass argument ——scripts, like this:

$ python setup.py migrate --status —--scripts=woodpecker
Model version: 0
Database version: 0

Creating a model using reverse engineering

The command migrate —--create-model retrieves the database schema from an existing database accessible
thru a connection URL and creates a new migration script onto a giving repository. For example:

$ STAGING_URL=postgresqgl://admin@staging.example.com:5432/crm_staging
$ python setup.py migrate --status —-url=${STAGING_URL}

Model version: 0

Database version: 17

$ python setup.py migrate —--create-model —--url=${STAGING_URL} # reverse engineering

—to repository "admin" (the default)
$ python setup.py migrate —--status ——url=${STAGING_URL}
Model version: 1

Database version: 17

This functionality depends on sqlalchemy-migrate and it is considered experimental. If you find issues, pleare report
to sqlalchemy-migrate user’s mailing list

Authentication

Commands migrate and psqgl also honour the convention of storing passwords for Postgres databases onto file
~/ .pgpass. The first time you try to access a database which does not have its password stored in ~/ . pgpass,
you will be prompted to enter the password and it will be stored in the file.

2.5. Creating an empty model 9

http://sqlalchemy-migrate.readthedocs.org
http://groups.google.com/group/migrate-users

distcontrib_migrate Documentation, Release 0.1.0

10 Chapter 2. Concepts

CHAPTER 3

Known issues and limitations

* (issue 1208083): Installation with pip onto a fresh environment may fail. Workaround: attempting to install a
second time is expected to work:

$ pip install sglalchemy-migrate # eventually may fail
$ pip install sglalchemy-migrate # expected to suceed

» Database management functions (createuser, dropuser, createdb, dropdb) support only Postgres databases at the
moment. However, database migrations are supported on all databases supported by sqlalchemy.

11

https://bugs.launchpad.net/distcontrib-migrate/+bug/1208083
http://www.sqlalchemy.org/

distcontrib_migrate Documentation, Release 0.1.0

12 Chapter 3. Known issues and limitations

CHAPTER 4

Support

* Bugs: https://bugs.launchpad.net/distcontrib-migrate
» Forums : https://answers.launchpad.net/distcontrib-migrate

 Sources: https://code.launchpad.net/distcontrib-migrate

Note: Issues related to command ——create-model are, in most situations, originated in sqlalchemy-migrate, since
the reverse engineering is considered experimental. Please report these issues at sqlalchemy-migrate user’s mailing
list.

13

https://bugs.launchpad.net/distcontrib-migrate
https://answers.launchpad.net/distcontrib-migrate
https://code.launchpad.net/distcontrib-migrate
http://sqlalchemy-migrate.readthedocs.org
http://groups.google.com/group/migrate-users
http://groups.google.com/group/migrate-users

	Usage
	Requirements
	Quick guide for the impatient

	Concepts
	Migration script
	Model version
	Database version
	Repository
	Creating an empty model
	Creating a model using reverse engineering
	Authentication

	Known issues and limitations
	Support

