

Kotti Documentation

Kotti is a high-level, Pythonic web application framework based on Pyramid and SQLAlchemy.
It includes an extensible Content Management System called the Kotti CMS.

If you are a user of a Kotti system, and either found this page through browsing or searching, or were referred here, you will likely want to go directly to the Kotti User Manual [https://kotti-user-manual.readthedocs.io/].

The documentation below is for developers of Kotti or applications built on top of it.

First Steps

Get an overview of what you can do with Kotti, how to install it and how to create your first Kotti project / add on.

	Overview

	Installation

	Tutorial
	Tutorial Part 1: Creating an add-on and managing static resources

	Tutorial Part 2: A Content Type

	Tutorial Part 3: User interaction

Narrative Documentation

The narrative documentation contains various topics that explain how to use Kotti.

	Basic Topics
	Developer manual

	Security

	Configuration

	Automated tests

	Translations

	Deployment

	Advanced Topics
	Using Kotti as a library

	Close your site to anonymous users

	Default views in Kotti

	Adding links and actions to the edit interface

	Events

	Use a different template for the front page (or any other page)

	Images

	Working with Blob Data in Kotti

	Static resource management

	Understanding Kotti’s startup phase

	Sanitizers

API

	API documentation
	kotti.events

	kotti.fanstatic

	kotti.interfaces

	kotti.message

	kotti.migrate

	kotti.populate

	kotti.request

	kotti.resources

	kotti.filedepot

	kotti.sanitizers

	kotti.security

	kotti.sqla

	kotti.testing

	kotti.tests

	kotti.traversal

	kotti.util

	kotti.views
	kotti.views.cache

	kotti.views.edit
	kotti.views.edit.actions

	kotti.views.edit.content

	kotti.views.edit.default_views

	kotti.views.file

	kotti.views.form

	kotti.views.login

	kotti.views.site_setup

	kotti.views.slots

	kotti.views.users

	kotti.views.util

	kotti.views.view

	kotti.workflow

Getting Help / Contributing

	Getting Help

	Contributing

Future and Past

	Roadmap [https://github.com/Kotti/Kotti/milestones]

	Changelog

Overview

Kotti is most useful when you are developing CMS-like applications that

	have complex security requirements,

	use workflows, and/or

	work with hierarchical data.

Built on top of a number of best-of-breed software components, most notably Pyramid [http://docs.pylonsproject.org/projects/pyramid/dev/] and SQLAlchemy [http://www.sqlalchemy.org/], Kotti introduces only a few concepts of its own, thus hopefully keeping the learning curve flat for the developer.

Features

You can try out the default installation on Kotti’s demo page [http://kottidemo.danielnouri.org/].

The Kotti CMS is a content management system that’s heavily inspired by Plone [http://plone.org/].
Its main features are:

	User-friendliness: editors can edit content where it appears;
thus the edit interface is contextual and intuitive

	WYSIWYG editor: includes a rich text editor

	Responsive design: Kotti builds on Twitter Bootstrap [http://twitter.github.com/bootstrap/], which
looks good both on desktop and mobile

	Templating: easily extend the CMS with your own look & feel with
little programming required (see Static resource management)

	Add-ons: install a variety of add-ons and customize them as well
as many aspects of the built-in CMS by use of an INI configuration
file (see Configuration)

	Security: the advanced user and permissions management is
intuitive and scales to fit the requirements of large organizations

	Internationalized: the user interface is fully translatable,
Unicode is used everywhere to store data (see Translations)

For developers

For developers, Kotti delivers a strong foundation for building different types of web applications that either extend or replace the built-in CMS.

Developers can add and modify through a well-defined API:

	views,

	templates and layout (both via Pyramid [http://docs.pylonsproject.org/projects/pyramid/dev/]),

	Content types,

	“portlets” (see kotti.views.slots),

	access control and the user database (see Security),

	workflows (via repoze.workflow [http://docs.repoze.org/workflow/]),

	and much more.

Kotti has a down-to-earth API.
Developers working with Kotti will most of the time make direct use of the Pyramid [http://docs.pylonsproject.org/projects/pyramid/dev/] and SQLAlchemy [http://www.sqlalchemy.org/] libraries.
Other notable components used but not enforced by Kotti are Colander [http://docs.pylonsproject.org/projects/colander/en/latest/] and Deform [http://docs.pylonsproject.org/projects/deform/en/latest/] for forms, and Chameleon [https://chameleon.readthedocs.io/] for templating.

Kotti itself is developed on Github [https://github.com/Kotti/Kotti].
You can check out Kotti’s source code via its GitHub repository.
Use this command:

git clone git@github.com:Kotti/Kotti

Continuous testing [http://travis-ci.org/Kotti/Kotti] against different versions of Python and with PostgreSQL, MySQL and SQLite and a complete test coverage make Kotti a stable platform to work with. [image: build_status] [http://travis-ci.org/Kotti/Kotti]

Support

	Python 2.7 (Python 3 coming soon)

	Support for PostgreSQL, MySQL and SQLite (tested regularly), and a list of other SQL databases [http://www.sqlalchemy.org/docs/core/engines.html#supported-databases]

	Support for WSGI and a variety of web servers [http://wsgi.org/wsgi/Servers], including Apache

Installation

Requirements

	Python 2.7 (Python 3 will be supported soon)

	virtualenv [http://pypi.python.org/pypi/virtualenv]

	build_essential and python-dev (on Debian or Ubuntu) or

	Xcode (on OS X) or

	equivalent build toolchain for your OS.

Installation using virtualenv

It is recommended to install Kotti inside a virtualenv:

virtualenv mysite
cd mysite
bin/pip install -r https://raw.github.com/Kotti/Kotti/stable/requirements.txt
bin/pip install Kotti

This will install the latest released version of Kotti and all its requirements into your virtualenv.

Kotti uses Paste Deploy [http://pythonpaste.org/deploy/#the-config-file] for configuration and deployment.
An example configuration file is included with Kotti’s source distribution.
Download it to your virtualenv directory (mysite):

wget https://raw.github.com/Kotti/Kotti/stable/app.ini

See the list of Kotti tags [https://github.com/Kotti/Kotti/tags], perhaps to find the latest released version.
You can search the Kotti listing on PyPI [https://pypi.python.org/pypi?%3Aaction=search&term=kotti&submit=search] also, for the latest Kotti release (Kotti with a capital K is Kotti itself, kotti_this and kotti_that are add-ons in the list on PyPI).

To run Kotti using the app.ini example configuration file:

bin/pserve app.ini

This command runs Waitress, Pyramid’s WSGI server, which Kotti uses as a default server.
You will see console output giving the local URL to view the site in a browser.

As you learn more, install other servers, with WSGI enabled, as needed.
For instance, for Apache, you may install the optional mod_wsgi module, or for Nginx, you may use choose to use uWSGI.
See the Pyramid documentation for a variety of server and server configuration options.

The pserve command above uses SQLite as the default database.
On first run, Kotti will create a SQLite database called Kotti.db in your mysite directory.
Kotti includes support for PostgreSQL, MySQL and SQLite (tested regularly), and
other SQL databases [http://www.sqlalchemy.org/docs/core/engines.html#supported-databases].
The default use of SQLite makes initial development easy.
Although SQLite may prove to be adequate for some deployments, Kotti is flexible for installation of your choice of database during development or at deployment.

Installation using Docker (experimental)

This assumes that you already have Docker [http://docker.io/] installed:

docker pull kotti/kotti
docker run -i -t -p 5000:5000 kotti/kotti

This should get you a running Kotti instance on port 5000.

Tutorial

Let’s learn by example.
In this tutorial, we will:

	create and register a Kotti add-on package

	modify the look and feel of Kotti with a simple CSS example

	add content types

	add forms and custom views

Note

If you have questions going through this tutorial, please post a message to the mailing list [http://groups.google.com/group/kotti] or join the #kotti channel on irc.freenode.net to chat with other Kotti users who might be able to help.

The Tutorial assumes you have a virtualenv named mysite as described in Installation.
It is split into three parts:

	Tutorial Part 1: Creating an add-on and managing static resources

	Tutorial Part 2: A Content Type

	Tutorial Part 3: User interaction

Tutorial Part 1: Creating an add-on and managing static resources

In the first part of the tutorial, we’ll create an add-on package, install and register the package with our site, and use a simple CSS example to learn how Kotti manages static resources.

Kotti add-ons are proper Python packages.
A number of them are available on PyPI [http://pypi.python.org/pypi?%3Aaction=search&term=kotti_&submit=search/].
They include kotti_media [http://pypi.python.org/pypi/kotti_media/], for adding a set of video and audio content types to a site, kotti_gallery [http://pypi.python.org/pypi/kotti_gallery/], for adding a photo album content type, kotti_blog [http://pypi.python.org/pypi/kotti_blog/], for blog and blog entry content types, etc.

The add-on we will make, kotti_mysite, will be just like those, in that it will be a proper Python package created with the same command line tools used to make kotti_media [http://pypi.python.org/pypi/kotti_media/], kotti_blog [http://pypi.python.org/pypi/kotti_blog/], and the others.
We will set up kotti_mysite for our Kotti site, in the same way that we might wish later to install, for example, kotti_media [http://pypi.python.org/pypi/kotti_media/].

So, we are working in the mysite directory, a virtualenv, as described in Installation.
You should be able to start Kotti, and load the front page.

We will create the add-on as mysite/kotti_mysite.
kotti_mysite will be a proper Python package, installable into our virtualenv.

Creating the Add-On Package

To create our add-on, we use the standard Pyramid tool pcreate, with
kotti_addon, a scaffold that was installed as part of Kotti.

bin/pcreate -s kotti kotti_mysite

The script will ask a number of questions.
It is safe to accept the defaults.
When finished, observe that a new directory called kotti_mysite was added to the current working directory, as mysite/kotti_mysite.

Installing Our New Add-On

To install the add-on (or any add-on, as discussed above) into our Kotti site, we’ll need to do two things:

	install the package into our virtualenv

	include the package inside our site’s app.ini

Note

Why two steps?
Installation of our add-on as a Python package is different from activating the add-on in our site.
Consider that you might have multiple add-ons installed in a virtualenv, but you could elect to activate a subset of them, as you experiment or develop add-ons.

To install the package into the virtualenv, we’ll change into the new kotti_mysite directory, and issue a python setup.py develop.
This will install the package in development mode:

cd kotti_mysite
../bin/python setup.py develop

Note

python setup.py install is for normal installation of a finished package, but here, for kotti_mysite, we will be developing it for some time, so we use python setup.py develop.
Using this mode, a special link file is created in the site-packages directory of your virtualenv.
This link points to the add-on directory, so that any changes you make to the software will be reflected immediately without having to do an install again.

Step two is configuring our Kotti site to include our new kotti_mysite package.
To do this, open the app.ini file, which you downloaded during Installation.
Find the line that says:

kotti.configurators = kotti_tinymce.kotti_configure

And add kotti_mysite.kotti_configure to it:

kotti.configurators =
 kotti_tinymce.kotti_configure
 kotti_mysite.kotti_configure

At this point, you should be able to restart the application, but you won’t notice anything different.
Let’s make a simple CSS change and use it to see how Kotti manages static resources.

Static Resources

Kotti uses fanstatic [http://www.fanstatic.org/] for managing its static resources.

Take a look at kotti_mysite/kotti_mysite/fanstatic.py to see how this is done:

from fanstatic import Group
from fanstatic import Library
from fanstatic import Resource

library = Library("kotti_mysite", "static")

css = Resource(
 library,
 "styles.css",
 minified="styles.min.css")
js = Resource(
 library,
 "scripts.js",
 minified="scripts.min.js")

css_and_js = Group([css, js])

The css and js resources each define files we can use for our css and js code.
We will use style.css in our example.
Also note the css_and_js group.
It shows up in the configuration code discussed below.

fanstatic [http://www.fanstatic.org/] has a number of cool features – you may want to check out their homepage to find out more.

A Simple Example

Let’s make a simple CSS change to see how this all works.
Open kotti_mysite/kotti_mysite/static/style.css and add the following code.

h1, h2, h3 {
 text-shadow: 4px 4px 2px #ccc;
}

Now, restart the application and reload the front page.

cd ..
bin/pserve app.ini

Notice how the title has a shadow now?

Configuring the Package with kotti.configurators

Remember when we added kotti_mysite.kotti_configure to the kotti.configurators setting in the app.ini configuration file?
This is how we told Kotti to call additional code on start-up, so that add-ons have a chance to configure themselves.
The function in kotti_mysite that is called on application start-up lives in kotti_mysite/kotti_mysite/__init__.py.
Let’s take a look:

def kotti_configure(settings):
 ...
 settings['kotti.fanstatic.view_needed'] += ' kotti_mysite.fanstatic.css_and_js'
 ...

Here, settings is a Python dictionary with all configuration variables in the
[app:kotti] section of our app.ini, plus the defaults.
The values of this dictionary are merely strings.
Notice how we add to the string kotti.fanstatic.view_needed.

Note

Note the initial space in ‘ kotti_mysite.static.css_and_js’.
This allows a handy use of += on different lines.
After concatenation of the string parts, blanks will delimit them.

This kotti.fanstatic.view_needed setting, in turn, controls which resources are loaded in the public interface (as compared to the edit interface).

As you might have guessed, we could have also completely replaced Kotti’s resources for the public interface by overriding the kotti.fanstatic.view_needed setting instead of adding to it, like this:

def kotti_configure(settings):
 ...
 settings['kotti.fanstatic.view_needed'] = ' kotti_mysite.fanstatic.css_and_js'
 ...

This is useful if you’ve built your own custom theme.
Alternatively, you can completely override the master template for even more control (e.g. if you don’t want to use Bootstrap).

See also Configuration for a full list of Kotti’s configuration variables, and Static resource management for a more complete discussion of how Kotti handles static resources through fanstatic.

In the next part of the tutorial, we’ll add our first content types, and add forms for them.

Tutorial Part 2: A Content Type

Kotti’s default content types include Document, Image and File.
In this part of the tutorial, we’ll add to these built-in content types by making a Poll content type which will allow visitors to view polls and vote on them.

Adding Models

When creating our add-on, the scaffolding added the file kotti_mysite/kotti_mysite/resources.py.
If you open resources.py you’ll see that it already contains code for a sample content type CustomContent along with the following imports that we will use.

from kotti.resources import Content
from sqlalchemy import Column
from sqlalchemy import ForeignKey
from sqlalchemy import Integer

Add the following definition for the Poll content type to resources.py.

class Poll(Content):
 id = Column(Integer(), ForeignKey('contents.id'), primary_key=True)

 type_info = Content.type_info.copy(
 name=u'Poll',
 title=u'Poll',
 add_view=u'add_poll',
 addable_to=[u'Document'],
)

Things to note here:

	Kotti’s content types use SQLAlchemy [http://www.sqlalchemy.org/] for definition of persistence.

	Poll derives from kotti.resources.Content, which is the common base class for all content types.

	Poll declares a sqlalchemy.Column id, which is required to hook it up with SQLAlchemy’s inheritance.

	The type_info class attribute does essential configuration.
We refer to name and title, two properties already defined as part of Content, our base class.
The add_view defines the name of the add view, which we’ll come to in a second.
Finally, addable_to defines which content types we can add Poll items to.

	We do not need to define any additional sqlalchemy.Column properties, as the title
is the only property we need for this content type.

We’ll add another content class to hold the choices for the poll.
Add this into the same resources.py file:

class Choice(Content):
 id = Column(Integer(), ForeignKey('contents.id'), primary_key=True)
 votes = Column(Integer())

 type_info = Content.type_info.copy(
 name=u'Choice',
 title=u'Choice',
 add_view=u'add_choice',
 addable_to=[u'Poll'],
)

 def __init__(self, votes=0, **kwargs):
 super(Choice, self).__init__(**kwargs)
 self.votes = votes

The Choice class looks very similar to Poll.
Notable differences are:

	It has an additional sqla.Column property called votes.
We’ll use this to store how many votes were given for the particular choice.
We’ll again use the inherited title column to store the title of our choice.

	The type_info defines the title, the add_view view, and that choices may only be added into Poll items, with the line addable_to=[u'Poll'].

Adding Forms and a View

Views (including forms) are typically put into a module called views.
The Kotti scaffolding further separates this into view and edit files inside a views directory.

Open the file at kotti_mysite/kotti_mysite/views/edit.py.
It already contains code for the CustomContent sample content type.
We will take advantage of the imports already there.

import colander
from kotti.views.edit import ContentSchema
from kotti.views.form import AddFormView
from kotti.views.form import EditFormView
from pyramid.view import view_config

from kotti_mysite import _

Some things to note:

	Colander [https://colander.readthedocs.io/] is the library that we use to define our schemas.
Colander allows us to validate schemas against form data.

	Our class inherits from kotti.views.edit.ContentSchema which itself inherits from colander.MappingSchema.

	_ is how we hook into i18n for translations.

Add the following code to views/edit.py:

class PollSchema(ContentSchema):
 """Schema for Poll"""

 title = colander.SchemaNode(
 colander.String(),
 title=_(u'Question'),
)

class ChoiceSchema(ContentSchema):
 """Schema for Choice"""

 title = colander.SchemaNode(
 colander.String(),
 title=_(u'Choice'),
)

The two classes define the schemas for our forms.
The schemas specify which fields we want to display in the forms.
We want to display the title field.

Let’s move on to building the actual forms.
Add this to views/edit.py:

from kotti_mysite.resources import Choice
from kotti_mysite.resources import Poll

@view_config(name='edit', context=Poll, permission='edit',
 renderer='kotti:templates/edit/node.pt')
class PollEditForm(EditFormView):
 schema_factory = PollSchema

@view_config(name=Poll.type_info.add_view, permission='add',
 renderer='kotti:templates/edit/node.pt')
class PollAddForm(AddFormView):
 schema_factory = PollSchema
 add = Poll
 item_type = u"Poll"

@view_config(name='edit', context=Choice, permission='edit',
 renderer='kotti:templates/edit/node.pt')
class ChoiceEditForm(EditFormView):
 schema_factory = ChoiceSchema

@view_config(name=Choice.type_info.add_view, permission='add',
 renderer='kotti:templates/edit/node.pt')
class ChoiceAddForm(AddFormView):
 schema_factory = ChoiceSchema
 add = Choice
 item_type = u"Choice"

Using the AddFormView and EditFormView base classes from Kotti, these forms are simple to define.
We associate the schemas defined above, setting them as the schema_factory for each form, and we specify the content types to be added by each.

We use @view_config to add our views to the application.
This takes advantage of a config.scan() call in __init__.py discussed below.
Notice that we can declare permission, context, and a template for each form, along with its name.

Wiring up the Content Types and Forms

Before we can see things in action, we need to add a reference to our new content types in kotti_mysite/kotti_mysite/__init__.py.

Open __init__.py and modify the kotti_configure method so that the
settings['kotti.available_types'] line looks like this.

 def kotti_configure(settings):
 ...
 settings['pyramid.includes'] += ' kotti_mysite'
 settings['kotti.available_types'] += (
 ' kotti_mysite.resources.Poll' +
 ' kotti_mysite.resources.Choice')
 settings['kotti.fanstatic.view_needed'] += (
 ' kotti_mysite.fanstatic.css_and_js')
 ...

Here, we’ve added our two content types to the site’s available_types, a global
registry.
We also removed the CustomContent content type included with the scaffolding.

Notice the includeme method at the bottom of __init__.py.
It includes the call to config.scan() that we mentioned above while discussing the @view_config statements in our views.

def includeme(config):
 ...
 config.scan(__name__)

You can see the Pyramid documentation for scan [http://docs.pylonsproject.org/docs/pyramid/en/latest/api/config.html#pyramid.config.Configurator.scan] for more information.

Adding a Poll and Choices to the site

Let’s try adding a Poll and some choices to the site.
Start the site up with the command

bin/pserve app.ini

Login with the username admin and password qwerty and click on the Add menu button.
You should see a few choices, namely the base Kotti classes Document, File and Image and the Content Type we added, Poll.

Lets go ahead and click on Poll.
For the question, let’s write “What is your favourite color?”.
Now let’s add three choices, “Red”, “Green” and “Blue” in the same way we added the poll.
Remember that you must be in the context of the poll to add each choice.

If we now go to the poll we added, we can see the question, but not our choices, which is definitely not what we wanted.
Let us fix this, shall we?

Adding a custom View to the Poll

First, we need to write a view that will send the needed data (in our case, the choices we added to our poll).
Here is the code, added to view.py.

from kotti_mysite.fanstatic import css_and_js
from kotti_mysite.resources import Poll

@view_defaults(context=Poll)
class PollViews(BaseView):
 """ Views for :class:`kotti_mysite.resources.Poll` """

 @view_config(name='view', permission='view',
 renderer='kotti_mysite:templates/poll.pt')
 def poll_view(self):
 css_and_js.need()
 choices = self.context.children
 return {
 'choices': choices,
 }

Since we want to show all Choices added to a Poll we can simply use the children attribute. This will return a list of all the ‘children’ of a Poll which are exactly the Choices added to that particular Poll.
The view returns a dictionary of all choices under the keyword ‘choices’.
The keywords a view returns are automatically available in it’s template.

Next on, we need a template to actually show our data.
It could look something like this.
Create a folder named templates and put the file poll.pt into it.

<!DOCTYPE html>
<html xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 metal:use-macro="api.macro('kotti:templates/view/master.pt')">

 <article metal:fill-slot="content" class="poll-view content">
 <h1>${context.title}</h1>

 <li tal:repeat="choice choices">${choice.title}

 </article>

</html>

The first 6 lines are needed so our template plays nicely with the master template (so we keep the add/edit bar, base site structure etc.).
The next line prints out the context.title (our question) inside the <h1> tag and then prints all choices (with links to the choice) as an unordered list.

Note

We are using two ‘magically available’ attributes in the template - context and choices.

	context is automatically available in all templates and as the name implies it is the context of the view (in this case the Poll we are currently viewing).

	choices is available because we sent it to the template in the Python part of the view.
You can of course send multiple variables to the template, you just need to return them in your Python code.

With this, we are done with the second tutorial.
Restart the application, take a look at the new Poll view and play around with the template until you are completely satisfied with how our data is presented.

Note

If you will work with templates for a while (or any time you’re developing basically) using the pyramid ‘reload_templates’ and ‘debug_templates’ options is recommended, as they allow you to see changes to the template without having to restart the application.
These options need to be put in your configuration INI under the ‘[app:kotti]’ section.

[app:kotti]
pyramid.reload_templates = true
pyramid.debug_templates = true

In the next tutorial, we will learn how to enable our users to actually vote for one of the Poll options.

Tutorial Part 3: User interaction

In this part of the tutorial, we will change the site we made in the previous one so our users can actually vote on our polls.

Enabling voting on Poll Choices

We will enable users to vote using a new view.
When the user goes to that link, his or her vote will be saved and they will be redirected back to the Poll.

First, let’s construct a new view. As before, add the following code to kotti_mysite/kotti_mysite/views/view.py.

from kotti_mysite.resources import Choice
from pyramid.httpexceptions import HTTPFound

@view_defaults(context=Choice)
class ChoiceViews(BaseView):
 """ Views for :class:`kotti_mysite.resources.Choice` """

 @view_config(name='vote', permission='view')
 def vote_view(self):
 self.context.votes += 1
 return HTTPFound(
 location=self.request.resource_url(self.context.parent))

The view will be called on the Choice content type, so the context is the Choice itself.
We add 1 to the current votes of the Choice, then we do a redirect using pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound].
The location is the parent of our context - the Poll in which our Choice resides.

With this, we can now vote on a Choice by appending /vote at the end of the Choice URL.

Changing the Poll view so we see the votes

First, we will add some extra content into our poll_view so we are able to show the distribution of votes across all choices.

def poll_view(self):
 css_and_js.need()
 choices = self.context.values()
 all_votes = sum(choice.votes for choice in choices)
 return {
 'choices': choices,
 'all_votes': all_votes
 }

Our view will now be able to get the sum of all votes in the poll via the all_votes variable.
We will also want to change the choices list to link to our new vote view.
Open poll.pt and change the link into:

...
<li tal:repeat="choice choices">

 ${choice.title}
 (${choice.votes}/${all_votes})

...

This will add the number of votes/all_votes after each choice and enable us to vote by clicking on the choice.
Fire up the server and go test it now.

Adding an info block about voting on the view

As you can see, the voting now works, but it doesn’t look particularly good.
Let us at least add a nice information bubble when we vote.
The easiest way to go about that is to use request.session.flash, which allows us to flash different messages (success, error, info etc.).
Change the vote_view to include the the flash message before redirecting.

def vote_view(self):
 self.context.votes += 1
 self.request.session.flash(
 u'You have just voted for the choice "{0}"'.format(
 self.context.title), 'info')
 return HTTPFound(
 location=self.request.resource_url(self.context.parent))

Note

Don’t forget that since we changed the Python code, we need to restart the application, even if we enabled template reloading and debugging!

As before, you are encouraged to play around a bit more, as you learn much by trying out new things.
A few ideas on what you could work on are:

	Change the Choice content type so it has an extra description field that is not required (if you change database content, you will need to delete the database or do a migration).
Then make a new Choice view that will list the extra information.

	Make sure only authenticated users can vote, anonymous users should see the results but when trying to vote, it should move them to the login page.
Also make sure that each user can vote only once, and list all users who voted for the Choice on the Choice’s view.

Basic Topics

	Developer manual

	Security

	Configuration

	Automated tests

	Translations

	Deployment

Developer manual

Read the Configuration section first to understand which hooks
both integrators and developers can use to customize and extend Kotti.

Contents

	Developer manual

	Screencast tutorial

	Content types

	Add views, subscribers and more

	Working with content objects

	kotti.configurators

	Security

Screencast tutorial

Here’s a screencast that guides you through the process of creating a
simple Kotti add-on for visitor comments:

 Security

Security

Kotti security is based on the concepts of users, groups, roles, permissions and workflow.

[image: ../../_images/user-group-role-permission.svg]
	User

	A user is an entity that can authenticate himself.

	Group

	A group is a collection of users or other groups.

	Permission

	A permission describes what is allowed on an object.

Permissions are never directly assigned to users or groups but always
aggregated in roles.

	Role

	A Role is a collection of permissions.

Users or groups can have global or local roles.

	Global Roles

	Global roles are assigned to a user or group via Kotti’s user management
screens. They apply to every object in a site. You should use them
very rarely, maybe only assign the “Adminsitrator” role to the
“Administrator” group. This assignment is present by default in a fresh
Kotti site.

	Local Roles

	Local roles are assigned to a user or group via the “Sharing” screen
of a content object. They apply only to this object and its children.

	Workflow

	The workflow keeps track of the current state of each object lifecycle to manage content security.
There is an initial state and you can move to other states thanks to transitions; each state defines a security matrix with roles and permissions.
By default Kotti provides a two-state workflow (private and public) for all object types except files and images.
Kotti’s workflow implementation is based on repoze.workflow [http://docs.repoze.org/workflow/].

How to create a new role

Small recipe you can use if you want to create a new role:

from kotti.security import (
 Principal,
 ROLES,
 SHARING_ROLES,
 set_roles,
 set_sharing_roles,
 set_user_management_roles,
)
from kotti_yourpackage import _

def add_role(role_id, role_title):
 """ Add role in share view and user management views """
 UPDATED_ROLES = ROLES.copy()
 UPDATED_ROLES[role_id] = Principal(role_id,
 title=role_title)
 UPDATED_SHARING_ROLES = list(SHARING_ROLES)
 UPDATED_SHARING_ROLES.append(role_id)
 set_roles(UPDATED_ROLES)
 set_sharing_roles(UPDATED_SHARING_ROLES)
 set_user_management_roles(UPDATED_SHARING_ROLES + ['role:admin'])

add_role(u'role:customer', _(u'Customer'))

Practically you can add the code above to any file, as long as it is imported on application startup.
However, good practice would be to add it to your add on’s __init__.py for small amounts of changes (like in the example) or to a separate file for larger amounts.

Workflows

You can use an XML file (zcml) in order to describe your workflow.
You can see an example here: workflow.zcml [https://github.com/Kotti/Kotti/blob/master/kotti/workflow.zcml.].

As you can see it is quite straightforward to add new states, transitions, permissions, etc.
You can easily turn the default 2-state website workflow into something completely different or turn your Kotti app into an intranet application.

The default workflow definition is loaded from your project’s .ini file (using the kotti.use_workflow setting).
The kotti.use_workflow setting’s default value is:

kotti.use_workflow = kotti:workflow.zcml

You can change change the default workflow for your site, register new workflows related to specific content types or disable it completely.

How to disable the default workflow

Kotti is shipped with a simple workflow definition based on private and public states.
If your particular use case does not require workflows at all, you can disable this feature with a non true value. For example:

kotti.use_workflow = 0

How to override the default workflow for all content types

The default workflow is quite useful for websites, but sometimes you need something different.
Just point the kotti.use_workflow setting to your zcml file:

kotti.use_workflow = kotti_yourplugin:workflow.zcml

The simplest way to deal with workflow definitions is:

	create a copy of the default workflow definition and

	customize it (change permissions, add new states, permissions, transitions, initial state and so on).

If you change workflow settings, you need to reset all your content’s workflow states and thus the permissions for all objects under workflow control using the kotti-reset-workflow console script.

kotti-reset-workflow command usage

If you change workflow settings you’ll need to update security.

$ kotti-reset-workflow --help
Reset the workflow of all content objects in the database.

 This is useful when you want to migrate an existing database to
 use a different workflow. When run, this script will reset all
 your content objects to use the new workflow, while trying to
 preserve workflow state information.

 For this command to work, all currently persisted states must map
 directly to a state in the new workflow. As an example, if
 there's a 'public' object in the database, the new workflow must
 define 'public' also.

 If this is not the case, you may choose to reset all your content
 objects to the new workflow's *initial state* by passing the
 '--purge-existing' option.

 Usage:
 kotti-reset-workflow <config_uri> [--purge-existing]

 Options:
 -h --help Show this screen.
 --purge-existing Reset all objects to new workflow's initial state.

How to enable the standard workflow for images and files

Images and files are not associated with the default workflow.
If you need a workflow for these items you need to attach the IDefaultWorkflow marker interface.

You can add the following lines in your includeme function:

from zope.interface import implementer
from kotti.interfaces import IDefaultWorkflow
from kotti.resources import File
from kotti.resources import Image
...

def includeme(config):
 ...
 # enable workflow for images and files
 implementer(IDefaultWorkflow)(Image)
 implementer(IDefaultWorkflow)(File)
 ...

How to assign a different workflow to a content type

We are going to use the default workflow for standard content types and a custom workflow for content types providing the ICustomContent marker interface.
All other content types will still use the default workflow.
Third party developers will be able to override our custom workflow without having to touch any line of code (just a .ini configuration file)

Let’s assume you are starting with a standard Kotti package created with pcreate -s kotti kotti_wf.

Four steps are needed:

	create a new marker interface ICustomContent,

	change kotti_wf.resource (replace IDefaultWorkflow with our new ICustomContent),

	create the new workflow definition and

	register your workflow definition.

Create a new module kotti_wf/interfaces.py with this code.
This is optional but it doesn’t hurt, the important thing is to omit the IDefaultWorkflow implementer from kotti_wf.resources:

from zope.interface import Interface

class ICustomContent(Interface):
 """ Custom content marker interface """

Change your kotti_wf.resources module like so:

from kotti.resources import Content
from zope.interface import implements

from kotti_wf.interfaces import ICustomContent

class CustomContent(Content):
 """ A custom content type. """

 implements(ICustomContent)

Here it is, our “custom” workflow definition assigned to our ICustomContent marker interface:

<configure xmlns="http://namespaces.repoze.org/bfg"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 i18n:domain="Kotti">

 <include package="repoze.workflow" file="meta.zcml"/>

 <workflow
 type="security"
 name="custom"
 state_attr="state"
 initial_state="private"
 content_types="kotti_wf.interfaces.ICustomContent"
 permission_checker="pyramid.security.has_permission"
 >

 <state name="private" callback="kotti.workflow.workflow_callback">

 <key name="title" value="_(u'Private')" />
 <key name="order" value="1" />

 <key name="inherit" value="0" />
 <key name="system.Everyone" value="" />
 <key name="role:viewer" value="view" />
 <key name="role:editor" value="view add edit delete state_change" />
 <key name="role:owner" value="view add edit delete manage state_change" />

 </state>

 </workflow>

</configure>

Last you have to tell Kotti to register your new custom workflow including our zcml file:

kotti.zcml_includes = kotti_wf:workflow.zcml

Special cases:

	if you change workflow settings on a site with existing CustomContent instances, you need to update the workflow settings using the kotti-reset-workflow command.

	if you assign a new workflow definition to a content that already provides the IDefaultWorkflow marker interface (by default all content types except files and images), you will have to create and attach on your workflow definition an elector function (it is just a function accepting a context and returning True or False)

 Configuration

Configuration

Contents

	Configuration

	INI File

	Overview of settings

	kotti.secret and kotti.secret2

	Override templates (kotti.asset_overrides)

	Use add-ons

	pyramid.includes

	kotti.available_types

	kotti.populators

	kotti.search_content

	Configure the user interface language

	Configure authentication and authorization

	Sessions

	Caching

	URL normalization

	Local navigation

INI File

Kotti is configured using an INI configuration file.
The Installation section explains how to get hold of a sample configuration file.
The [app:kotti] section in it might look like this:

[app:kotti]
use = egg:Kotti
pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.debug_routematch = false
pyramid.debug_templates = true
pyramid.default_locale_name = en
pyramid.includes = pyramid_debugtoolbar
 pyramid_tm
mail.default_sender = yourname@yourhost
sqlalchemy.url = sqlite:///%(here)s/Kotti.db
kotti.site_title = Kotti
kotti.secret = changethis1

Various aspects of your site can be changed right here.

Overview of settings

This table provides an overview of available settings.
All these settings must go into the [app:kotti] section of your Paste Deploy configuration file.

Only the settings in bold letters required.
The rest has defaults.

Do take a look at the required settings (in bold) and adjust them in your site’s configuration.
A few of the settings are less important, and sometimes only used by developers, not integrators.

	Setting

	Description

	kotti.site_title

	The title of your site

	kotti.secret

	Secret token used for the initial admin password

	kotti.secret2

	Secret token used for email password reset token

	sqlalchemy.url

	SQLAlchemy database URL [http://www.sqlalchemy.org/docs/core/engines.html#database-urls]

	mail.default_sender

	Sender address for outgoing email

	kotti.asset_overrides

	Override Kotti’s templates

	kotti.authn_policy_factory

	Component used for authentication

	kotti.authz_policy_factory

	Component used for authorization

	kotti.available_types

	List of active content types

	kotti.base_includes

	List of base Python configuration hooks

	kotti.caching_policy_chooser

	Component for choosing the cache header policy

	kotti.configurators

	List of advanced functions for config

	kotti.date_format

	Date format to use, default: medium

	kotti.datetime_format

	Datetime format to use, default: medium

	kotti.depot_mountpoint

	Configure the mountpoint for the blob storage. See Working with Blob Data in Kotti for details.

	kotti.depot_replace_wsgi_file_wrapper

	Replace you WSGI server’s file wrapper with pyramid.response.FileIter [https://pyramid.readthedocs.io/en/latest/api/response.html#pyramid.response.FileIter].

	kotti.depot.*.*

	Configure the blob storage. See Working with Blob Data in Kotti for details.

	kotti.fanstatic.edit_needed

	List of static resources used for edit interface

	kotti.fanstatic.view_needed

	List of static resources used for public interface

	kotti.login_success_callback

	Override Kotti’s default login_success_callback function

	kotti.max_file_size

	Max size for file uploads, default: 10 (MB)

	kotti.modification_date_excludes

	List of attributes in dotted name notation that should not trigger an update of modification_date on change

	kotti.populators

	List of functions to fill initial database

	kotti.request_factory

	Override Kotti’s default request factory

	kotti.reset_password_callback

	Override Kotti’s default reset_password_callback function

	kotti.root_factory

	Override Kotti’s default Pyramid root factory

	kotti.sanitize_on_write

	Configure Sanitizers to be used on write access to resource objects

	kotti.sanitizers

	Configure available Sanitizers

	kotti.search_content

	Override Kotti’s default search function

	kotti.session_factory

	Component used for sessions

	kotti.templates.api

	Override api object available in templates

	kotti.time_format

	Time format to use, default: medium

	kotti.url_normalizer

	Component used for url normalization

	kotti.zcml_includes

	List of packages to include the ZCML from

	mail.host

	Email host to send from

	pyramid.default_locale_name

	Set the user interface language, default en

	pyramid.includes

	List of Python configuration hooks

kotti.secret and kotti.secret2

The value of kotti.secret will define the initial password of the admin user.
Thus, if you define kotti.secret = mysecret, the admin password will be mysecret.
Log in and change the password at any time through the web interface.

The kotti.secret token is also used for signing browser session cookies.
The kotti.secret2 token is used for signing the password reset token.

Here’s an example:

kotti.secret = myadminspassword
kotti.secret2 = $2a$12$VVpW/i1MA2wUUIUHwY6v8O

Note

Do not use these values in your site

Override templates (kotti.asset_overrides)

In your settings file, set kotti.asset_overrides to a list of asset specifications.
This allows you to set up a directory in your package that will mirror Kotti’s own and that allows you to override Kotti’s templates on a case by case basis.

As an example, image that we wanted to override Kotti’s master layout template.
Inside the Kotti source, the layout template is located at kotti/templates/view/master.pt.
To override this, we would add a directory to our own package called kotti-overrides and therein put our own version of the template so that the full path to our own custom template is mypackage/kotti-overrides/templates/view/master.pt.

We can then register our kotti-overrides directory by use of the kotti.asset_overrides setting, like so:

kotti.asset_overrides = mypackage:kotti-overrides/

Use add-ons

Add-ons will usually include in their installation instructions which settings one should modify to activate them.
Configuration settings that are used to activate add-ons are:

	pyramid.includes

	kotti.available_types

	kotti.base_includes

	kotti.configurators

pyramid.includes

pyramid.includes defines a list of hooks that will be called when your Kotti app starts up.
This gives the opportunity to third party packages to add registrations to the Pyramid Configurator API in order to configure views and more.

Here’s an example.
Let’s install the kotti_twitter [http://pypi.python.org/pypi/kotti_twitter] extension and add a Twitter profile widget to the right column of all pages.
First we install the package from PyPI:

bin/pip install kotti_twitter

Then we activate the add-on in our site by editing the pyramid.includes setting in the [app:kotti] section of our INI file (if a line with pyramid.includes does not exist, add it).

pyramid.includes = kotti_twitter.include_profile_widget

kotti_twitter also asks us to configure the Twitter widget itself, so we add some more lines right where we were:

kotti_twitter.profile_widget.user = dnouri
kotti_twitter.profile_widget.loop = true

The order in which the includes are listed matters.
For example, when you add two slots on the right hand side, the order in which you list them in pyramid.includes will control the order in which they will appear.
As an example, here’s a configuration with which the search widget will be displayed above the profile widget:

pyramid.includes =
 kotti_twitter.include_search_widget
 kotti_twitter.include_profile_widget

Read more about including packages using ‘pyramid.includes’ [http://readthedocs.org/docs/pyramid/en/1.3-branch/narr/environment.html#including-packages] in the Pyramid documentation.

kotti.available_types

The kotti.available_types setting defines the list of content types available.
The default configuration here is:

kotti.available_types = kotti.resources.Document kotti.resources.File

An example that removes File and adds two content types:

kotti.available_types =
 kotti.resources.Document
 kotti_calendar.resources.Calendar
 kotti_calendar.resources.Event

kotti.populators

The default configuration here is:

kotti.populators = kotti.populate.populate

Populators are functions with no arguments that get called on system startup.
They may then make automatic changes to the database (before calling transaction.commit()).

kotti.search_content

Kotti provides a simple search over the content types based on kotti.resources.Content.
The default configuration here is:

kotti.search_content = kotti.views.util.default_search_content

You can provide an own search function in an add-on and register this in your INI file.
The return value of the search function is a list of dictionaries, each representing a search result:

[{'title': 'Title of search result 1',
 'description': 'Description of search result 1',
 'path': '/path/to/search-result-1'},
 {'title': 'Title of search result 2',
 'description': 'Description of search result 2',
 'path': '/path/to/search-result-2'},
 ...
]

An add-on that defines an alternative search function is kotti_solr [http://pypi.python.org/pypi/kotti_solr], which provides an integration with the Solr [http://lucene.apache.org/solr/] search engine.

Configure the user interface language

By default, Kotti will display its user interface in English.
The default configuration is:

pyramid.default_locale_name = en

You can configure Kotti to serve a German user interface by saying:

pyramid.default_locale_name = de_DE

The list of available languages is here [https://github.com/Kotti/Kotti/tree/master/kotti/locale].

Configure authentication and authorization

You can override the authentication and authorization policy that Kotti uses.
By default, Kotti uses these factories:

kotti.authn_policy_factory = kotti.authtkt_factory
kotti.authz_policy_factory = kotti.acl_factory

These settings correspond to pyramid.authentication.AuthTktAuthenticationPolicy [http://docs.pylonsproject.org/projects/pyramid/dev/api/authentication.html] and pyramid.authorization.ACLAuthorizationPolicy [http://docs.pylonsproject.org/projects/pyramid/dev/api/authorization.html] being used.

Sessions

The kotti.session_factory configuration variable allows the overriding of the default session factory.
By default, Kotti uses pyramid_beaker for sessions.

Caching

You can override Kotti’s default set of cache headers by changing the kotti.views.cache.caching_policies dictionary, which maps policies to headers.
E.g. the Cache Resource entry there caches all static resources for 32 days.
You can also choose which responses match to which caching policy by overriding Kotti’s default cache policy chooser through the use of the kotti.caching_policy_chooser configuration variable.
The default is:

kotti.caching_policy_chooser = kotti.views.cache.default_caching_policy_chooser

URL normalization

Kotti normalizes document titles to URLs by replacing language specific characters like umlauts or accented characters with its ascii equivalents.
You can change this default behavour by setting kotti.url_normalizer.map_non_ascii_characters configuration variable to False.
If you do, Kotti will leave national characters in URLs.

You may also replace default component used for url normalization by setting kotti.url_normalizer configuation variable.

The default configuration here is:

kotti.url_normalzier = kotti.url_normalizer.url_normalizer
kotti.url_normalizer.map_non_ascii_characters = True

Local navigation

Kotti provides a build in navigation widget, which is disabled by default.
To enable the navigation widget add the following to the pyramid.includes setting:

pyramid.includes = kotti.views.slots.includeme_local_navigation

The add-on kotti_navigation [http://pypi.python.org/pypi/kotti_navigation] provides also a navigation widget with more features.
With this add-on included your configuration looks like:

pyramid.includes = kotti_navigation.include_navigation_widget

Check the documentation of kotti_navigation [http://pypi.python.org/pypi/kotti_navigation] for more options.

 Automated tests

Automated tests

Kotti uses pytest [http://pytest.org], zope.testbrowser [http://pypi.python.org/pypi/zope.testbrowser] and WebTest [http://webtest.pythonpaste.org] for automated
testing.

Before you can run the tests, you must install Kotti’s ‘testing’
extras. Inside your Kotti checkout directory, do:

bin/python setup.py dev

To then run Kotti’s test suite, do:

bin/py.test

Using Kotti’s test fixtures/funcargs in third party add-ons’ tests

To be able to use all of Kotti’s fixtures and funcargs in your own package’s
tests, you only need to “include” them with a line like this in your
conftest.py file:

pytest_plugins = "kotti"

Available fixtures

Fixture dependencies

 digraph kotti_fixtures {
 "allwarnings";
 "app" -> "webtest";
 "config" -> "db_session";
 "config" -> "depot_tween";
 "config" -> "dummy_request";
 "config" -> "events";
 "config" -> "workflow";
 "connection" -> "content";
 "connection" -> "db_session";
 "content" -> "db_session";
 "custom_settings" -> "connection";
 "custom_settings" -> "unresolved_settings";
 "db_session" -> "app";
 "db_session" -> "browser";
 "db_session" -> "filedepot";
 "db_session" -> "root";
 "depot_tween" -> "webtest";
 "dummy_mailer" -> "app";
 "dummy_mailer";
 "dummy_request" -> "depot_tween";
 "events" -> "app";
 "depot_tween" -> "filedepot";
 "depot_tween" -> "mock_filedepot";
 "mock_filedepot";
 "depot_tween" -> "no_filedepots";
 "settings" -> "config";
 "settings" -> "content";
 "setup_app" -> "app";
 "setup_app" -> "browser";
 "unresolved_settings" -> "settings";
 "unresolved_settings" -> "setup_app";
 "workflow" -> "app";
}

	
kotti.tests.browser(db_session, request, setup_app)

	returns an instance of zope.testbrowser. The kotti.testing.user
pytest marker (or pytest.mark.user) can be used to pre-authenticate
the browser with the given login name: @user(‘admin’).

	
kotti.tests.config(request, settings)

	returns a Pyramid Configurator object initialized
with Kotti’s default (test) settings.

	
kotti.tests.connection(custom_settings)

	sets up a SQLAlchemy engine and returns a connection to the database.
The connection string used for testing can be specified via the
KOTTI_TEST_DB_STRING environment variable. The custom_settings
fixture is needed to allow users to import their models easily instead of
having to override the connection.

	
kotti.tests.content(connection, settings)

	sets up some default content using Kotti’s testing populator.

	
kotti.tests.custom_settings()

	This is a dummy fixture meant to be overriden in add on package’s
conftest.py. It can be used to inject arbitrary settings for third
party test suites. The default settings dictionary will be updated
with the dictionary returned by this fixture.

This is also a good place to import your add on’s resources module to
have the corresponding tables created during create_all() in
kotti.tests.content().

	Result

	settings

	Return type

	dict

	
kotti.tests.db_session(config, content, connection, request)

	returns a db session object and sets up a db transaction
savepoint, which will be rolled back after the test.

	
kotti.tests.depot_tween(request, config, dummy_request)

	Sets up the Depot tween and patches Depot’s set_middleware to
suppress exceptions on subsequent calls

	
kotti.tests.dummy_request(config, request, monkeypatch)

	returns a dummy request object after registering it as
the currently active request. This is needed when
pyramid.threadlocal.get_current_request is used.

	
kotti.tests.events(config, request)

	sets up Kotti’s default event handlers.

	
kotti.tests.filedepot(db_session, request, depot_tween)

	Configures a dbsession integrated mock depot store for
depot.manager.DepotManager [https://depot.readthedocs.io/en/latest/api.html#depot.manager.DepotManager]

	
kotti.tests.image_asset()

	Return an image file

	
kotti.tests.image_asset2()

	Return another image file

	
kotti.tests.mock_filedepot(request, depot_tween)

	Configures a mock depot store for depot.manager.DepotManager [https://depot.readthedocs.io/en/latest/api.html#depot.manager.DepotManager]

This filedepot is not integrated with dbsession.
Can be used in simple, standalone unit tests.

	
kotti.tests.no_filedepots(db_session, request, depot_tween)

	A filedepot fixture to empty and then restore DepotManager configuration

	
kotti.tests.root(db_session)

	returns Kotti’s ‘root’ node.

	
kotti.tests.workflow(config)

	loads and activates Kotti’s default workflow rules.

Continuous Integration

Kotti itself is tested against Python versions 2.6 and 2.7 as well as SQLite,
mySQL and PostgreSQL (in every possible combination of those) on every commit
(and pull request) via the excellent GitHub [https://github.com/] / Travis CI [https://travis-ci.org/] hook.

If you want your add-on packages’ to be tested the same way with additional
testing against multiple versions of Kotti (including the current master), you
can add a .travis.yml file to your repo that looks similar to this:
https://raw.github.com/Kotti/kotti_media/master/.travis.yml.

The packages under http://kottipackages.xo7.de/ include all Kotti versions
released on PyPI (synced every night at 00:15 CET) and a package built from
the current master on GitHub (created every 15 minutes).

 Translations

Translations

You can find the list of Kotti’s translations here [https://github.com/Kotti/Kotti/tree/master/kotti/locale].
Kotti uses GNU gettext [http://www.gnu.org/software/gettext/] and .po files for internationalization.

You can set the pyramid.default_locale_name in your configuration file to choose which language Kotti should serve the user interface (see Configure the user interface language).

Extraction of new messages into the .pot file, updating the existing .po files and compiling them to .mo files is all done with subsequent runs of the included i18n.sh script:

./i18n.sh

To add a new translations run:

./i18n.sh <2 letter code of the new language>

 Deployment

Deployment

Kotti deployment is not different from deploying any other WSGI app.
You have a bunch of options on multiple layers: OS, RDBMS, Webserver, etc.

This document assumes the following Stack:

	OS

	Ubuntu 12.04

	Webserver

	Nginx

	RDBMS

	PostgreSQL

	Kotti

	
latest version available on PyPI

installed in its own virtualenv

deployed in an uWSGI application container

Manual installation

Install OS packages:

apt-get install build-essential libpq-dev python python-dev python-virtualenv

Install PostgreSQL:

apt-get install postgresql-9.1

Create a DB user:

sudo -u postgres createuser -P

Enter name of role to add: kotti
Enter password for new role:
Enter it again:
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new role be allowed to create more new roles? (y/n) n

Create a DB:

sudo -u postgres createdb -O kotti kotti

Install Nginx:

apt-get install nginx-full

Create a config file in /etc/nginx/sites-available/<your_domain>.conf:

server {
 listen 80;
 server_name <your_domain>;
 location / {
 include uwsgi_params;
 uwsgi_pass unix:/home/kotti/<your_domain>.sock;
 }
}

Create a user for your Kotti application:

useradd -m kotti

Create a virtualenv in the new user’s home directory:

sudo -u kotti virtualenv --no-site-packages /home/kotti

Install Kotti and its dependencies in the virtualenv:

sudo -u kotti /home/kotti/bin/pip install -r https://raw.github.com/Kotti/Kotti/0.8a1/requirements.txt
sudo -u kotti /home/kotti/bin/pip install Kotti==0.8a1

Create an ini file in /home/kotti/kotti.ini:

[app:main]
use = egg:kotti
pyramid.includes = pyramid_tm
sqlalchemy.url = postgresql://kotti:<db_password>@127.0.0.1:5432/kotti
kotti.configurators = kotti_tinymce.kotti_configure
kotti.site_title = Kotti deployed with fabric
kotti.secret = qwerty
filter-with = fanstatic

[filter:fanstatic]
use = egg:fanstatic#fanstatic

[alembic]
script_location = kotti:alembic

[uwsgi]
socket = /home/kotti/<your_domain>.sock
master = true
chmod-socket = 666
processes = 2
lazy = true # needed if want processes > 1
lazy-apps = true

Install Supervisor:

apt-get install supervisor

Create a supervisor config for Kotti / uWSGI in
/etc/supervisor/conf.d/kotti.conf:

[program:kotti]
autorestart=true
command=uwsgi_python --ini-paste /home/kotti/kotti.ini
directory=/home/kotti
redirect_stderr=true

Reload the supervisor config:

supervisorctl reload

That’s all.
Your Kotti deployment should now happily serve pages.

Fabfile

WARNING: this is only an example.
Do not run this unmodified against a host that is intended to do anything else or things WILL break!

For your convenience there is a fabric [http://docs.fabfile.org/] file that automates all of the above.
If you don’t know what fabric is and how it works read their documentation first.

On your local machine make a separate virtualenv first and install the fabric and fabtools packages into that virtualenv:

mkvirtualenv kotti_deployment && cdvirtualenv
pip install fabric fabtools

Get the fabfile:

wget https://gist.github.com/gists/4079191/download

Read and modify the file to fit your needs.
Then run it against your server:

fab install_all

You’re done.
Everything is installed and configured to serve Kotti under http://kotti.yourdomain.com/

 Advanced Topics

Advanced Topics

	Using Kotti as a library

	Close your site to anonymous users

	Default views in Kotti

	Adding links and actions to the edit interface

	Events

	Use a different template for the front page (or any other page)

	Images

	Working with Blob Data in Kotti

	Static resource management

	Understanding Kotti’s startup phase

	Sanitizers

 Using Kotti as a library

Using Kotti as a library

Instead of taking control of your application, and delegating to your
extension, you may use Kotti in applications where you define the
main entry point yourself.

You’ll still need to call kotti.base_configure from your
code to set up essential parts of Kotti:

default_settings = {
 'pyramid.includes': 'myapp myapp.views',
 'kotti.authn_policy_factory': 'myapp.authn_policy_factory',
 'kotti.base_includes': (
 'kotti kotti.views kotti.views.login kotti.views.users'),
 'kotti.use_tables': 'orders principals',
 'kotti.populators': 'myapp.resources.populate',
 'kotti.principals_factory': 'myapp.security.Principals',
 'kotti.root_factory': 'myapp.resources.Root',
 'kotti.site_title': 'Myapp',
 }

def main(global_config, **settings):
 settings2 = default_settings.copy()
 settings2.update(settings)
 config = kotti.base_configure(global_config, **settings2)
 engine = sqlalchemy.engine_from_config(config.registry.settings, 'sqlalchemy.')
 kotti.resources.initialize_sql(engine)
 return config.make_wsgi_app()

The above example configures Kotti so that its user database and
security subsystem are set up. Only a handful of tables
(kotti.use_tables) and a handful of Kotti’s views
(kotti.base_includes) are activated. Furthermore, our application
is configured to use a custom root factory (root node) and a custom
populator.

In your PasteDeploy configuration you’d then wire up your app
directly, maybe like this:

[app:myapp]
use = egg:myapp
pyramid.includes = pyramid_tm
mail.default_sender = yourname@yourhost
sqlalchemy.url = sqlite:///%(here)s/myapp.db
kotti.secret = secret

[filter:fanstatic]
use = egg:fanstatic#fanstatic

[pipeline:main]
pipeline =
 fanstatic
 myapp

 Close your site to anonymous users

Close your site to anonymous users

This recipe describes how to configure Kotti to require users to log
in before they can view any of your site’s pages.

To achieve this, we’ll have to set our site’s ACL. A custom populator
will help us do that (see kotti.populators).

Remember that the default site ACL gives view privileges to every
user, including anonymous (see Security). We’ll thus
have to restrict the view permission to the viewer role:

from kotti.resources import get_root

SITE_ACL = [
 (u'Allow', u'role:viewer', [u'view']),
 (u'Allow', u'role:editor', [u'view', u'add', u'edit']),
]

def populate():
 site = get_root()
 site.__acl__ = SITE_ACL

 Default views in Kotti

Default views in Kotti

In Kotti every Content node has a default_view attribute.
This allows to have different views for any instance of a
content type without having to append the view name to the URL.

You can also provide additional views for the default content
types in your third party add on. To make them show up in the
default view selector in the UI you have to append a
(view_name, view_title) tuple to the type_info attribute
of the respective content class via its class method
add_selectable_default_view(name, title).

E.g. the kotti_media add on provides a media_folder_view
for the Document content type that lists all ‘media type’
children of a Document with their title and a media player.

Registration is done like this:

from kotti.resources import Document
from kotti_media import _

def includeme(config):

 Document.type_info.add_selectable_default_view("media_folder_view",
 _("Media Folder"))

 Adding links and actions to the edit interface

Adding links and actions to the edit interface

This document covers how to customize the available links and actions of the edit interface (the extra tabs and menus that appear after you log in).

The basic building block is the link, kotti.util.Link. Instantiate it as:

link = Link('name', _(u'Title'))

The name refers to a view name available on the context.

There’s also:

	kotti.util.LinkParent, which allows grouping of links

	kotti.util.LinkRenderer, which, instead of generating a simple link, allows you to customize how it’s rendered (you can insert anything there, even another submenu based on a LinkParent).

	kotti.util.ActionButton, very similar to a simple link, but generates a button instead.

Adding a new option to the Administration menu

Adding a new link as an option in the Administration menu, in the Site Setup section is easy. In your kotti_configure function, add:

from kotti.util import Link
from kotti.views.site_setup import CONTROL_PANEL_LINKS

def kotti_configure(settings):
 link = Link('name', _(u'Title'))
 CONTROL_PANEL_LINKS.append(link)

Make a new section in the actions menu

The Set default view section looks really nice. To add your own separated section in the Action menu and make that available to all content types:

from kotti.util import LinkRenderer
from kotti.resources import default_actions

def kotti_configure(settings):
 default_actions.append(LinkRenderer("my-custom-submenu"))

So far we’ve added a LinkRenderer to the default_actions which are used by all content inheriting Content. This LinkRenderer will render a view and insert its result in the menu.

@view_config(
 name="my-custom-submenu", permission="edit",
 renderer="mypackage:templates/edit/my-custom-submenu.pt")
def my_custom_submenu(context, request):
 return {}

And the template:

<tal:menu i18n:domain="mypackage">
 <li class="divider">
 <li role="presentation" class="dropdown-header" i18n:translate="">
 My own actions

 <a i18n:translate="" href="${request.resource_url(context, 'someview')}">
 View title here

</tal:menu

 Events

Events

Kotti has a builtin event system that is based on the Publish-subscribe pattern [http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern].

The basic concept is that whenever a specific event occurs, all handler functions that have subscribed to that event will be executed.

There are two different types of events:

	Object events…

…relate to a specific object. In most cases this object will be a node
from the content tree (i.e. the same as context in view callables).

Events of type ObjectEvent have object and
request attributes. event.request may be None when no
request is available.

	Generic events…

…don’t have that kind of context.

Kotti supports such events but doesn’t use them anywhere.

The event types provided by Kotti (see API docs for
kotti.events) may be extended with your own event types. Subclass
ObjectEvent (for object events) or object (for
generic events) and follow the subscription instructions below, as you would
for Kotti-provided events.

Subscribing to Events

To add a handler for a specific event type, you must implement a function which
takes a single argument event and associate that to the
appropriate event type by decorating it with the
subscribe decorator.

That decorator takes up to two arguments that restrict the handler execution
to specific events only. When called without arguments the handler is
subscribed to all events:

from kotti.events import subscribe

@subscribe()
def all_events_handler(event):
 print event

To subscribe to a specific event type, supply the desired type as the first
argument to subscribe:

from kotti.events import ObjectInsert
from kotti.events import subscribe

@subscribe(ObjectInsert)
def document_insert_handler(event):
 print event.object, event.request

You can further narrow the subscription by adding a second argument that limits
the subscription to specific object types. For example, to subscribe to
ObjectDelete events of
Document types, write:

from kotti.events import ObjectDelete
from kotti.events import subscribe
from kotti.resources import Document

@subscribe(ObjectDelete, Document)
def document_delete_handler(event):
 print event.object, event.request

Triggering Event Handler Execution

Notifying listeners of an event is as simple as calling
notify():

from kotti.events import notify
notify(MyFunnyEvent())

Listeners are generally called in the order in which they are
registered.

 Use a different template for the front page (or any other page)

Use a different template for the front page (or any other page)

This recipe describes a way to override the template used for a
specific object in your database. Imagine you want your front page to
stand out from the rest of your site and use a unique layout.

We can set the default view for any content object by settings its
default_view attribute, which is usually None. Inside our own
populator (see kotti.populators), we write this:

from kotti.resources import get_root

def populate():
 site = get_root()
 site.default_view = 'front-page'

What’s left is to register the front-page view:

def includeme(config):
 config.add_view(
 name='front-page',
 renderer='myapp:templates/front-page.pt',
)

Note

If you want to override instead the template of all pages, not
only that of a particluar page, you should look at the
kotti.override_assets setting (Override templates (kotti.asset_overrides)).

 Images

Images

All image related functions were moved to kotti_image [https://pypi.python.org/pypi/kotti_image] as of Kotti 1.3.0.

 Working with Blob Data in Kotti

Working with Blob Data in Kotti

Kotti provides flexible mechanisms for storing and serving blob data by with the help of Depot [https://depot.readthedocs.io/en/latest/].

Contents

	Working with Blob Data in Kotti

	How File-like Content is stored

	Configuration

	Mountpoint

	WSGI File Wrapper

	Storages

	How File-like Content is served

	Method 1

	Method 2

	Comparison

	Developing (with) File-like Content

	Add a Blob Field to your Model

	Reading Blob Data

	Testing UploadedFileField Columns

	Inheritance Issues with UploadedFileField Columns

	Migrating data between two different storages

How File-like Content is stored

Both File and Image store their data in depot.fields.sqlalchemy.UploadedFileField [https://depot.readthedocs.io/en/latest/api.html#depot.fields.sqlalchemy.UploadedFileField] and they will offload their blob data to the configured depot storage.
Working together with Depot [https://depot.readthedocs.io/en/latest/] configured storages means it is possible to store blob data in a variety of ways: filesystem, GridFS, Amazon storage, etc.

	depot.io.local.LocalFileStorage [https://depot.readthedocs.io/en/latest/api.html#depot.io.local.LocalFileStorage]

	depot.io.awss3.S3Storage [https://depot.readthedocs.io/en/latest/api.html#depot.io.awss3.S3Storage]

	depot.io.gridfs.GridFSStorage [https://depot.readthedocs.io/en/latest/api.html#depot.io.gridfs.GridFSStorage]

	etc.

By default Kotti will store its blob data in the configured SQL database, using kotti.filedepot.DBFileStorage storage, but you can configure your own preferred way of storing your blob data.
The benefit of storing files in kotti.filedepot.DBFileStorage is having all content in a single place (the DB) which makes backups, exporting and importing of your site’s data easy, as long as you don’t have too many or too large files.
The downsides of this approach appear when your database server resides on a different host (network performance becomes a greater issue) or your DB dumps become too large to be handled efficiently.

Configuration

Mountpoint

Kotti provides a Pyramid tween (pyramid.registering_tweens) that is responsible for the actual serving of blob data.
It does pretty much the same as depot.middleware.DepotMiddleware [https://depot.readthedocs.io/en/latest/api.html#depot.middleware.DepotMiddleware], but is better integrated into Pyramid and therefore Kotti.

This tween “intercepts” all requests before they reach the main application (Kotti).
If it’s a request for blob data (identified by the configured kotti.depot_mountpoint), it will be served by the tween itself (or redirected to an external storage like S3), otherwise it will be “forwarded” to the main application.
This mountpoint is also used to generate URLs to blobs.
The default value for kotti.depot_mountpoint is /depot:

kotti.depot_mountpoint = /depot

WSGI File Wrapper

In case you have issues serving files with your WSGI server, your can try to set kotti.depot_replace_wsgi_file_wrapper = true.
This forces Kotti to use pyramid.response.FileIter [https://pyramid.readthedocs.io/en/latest/api/response.html#pyramid.response.FileIter] instead of the one provided by your WSGI server.

Storages

While Depot [https://depot.readthedocs.io/en/latest/] allows storing data in any of the configured filestorages, at this time there’s no mechanism in Kotti to select, at runtime, the depot where new data will be saved.
Instead, Kotti will store new files only in the configured default store.
If, for example, you add a new depot and make that the default, you should leave the old depot configured so that Kotti will continue serving files uploaded there.

By default, Kotti comes configured with a db-based filestorage:

kotti.depot.0.name = dbfiles
kotti.depot.0.backend = kotti.filedepot.DBFileStorage

To configure a depot, several kotti.depot.*.* lines need to be added.
The number in the first position is used to group backend configuration and to order the file storages in the configuration of Depot [https://depot.readthedocs.io/en/latest/].
The depot configured with number 0 will be the default depot, where all new blob data will be saved.
There are 2 options that are required for every storage configuration: name and backend.
The name is a unique string that will be used to identify the path of saved files (it is recorded with each blob info), so once configured for a particular storage, it should never change.
The backend should point to a dotted path for the storage class.
Any further parameters for a particular backend will be passed as keyword arguments to the backend class.

See this example, in which we store, by default, files in /var/local/files/ using the depot.io.local.LocalFileStorage [https://depot.readthedocs.io/en/latest/api.html#depot.io.local.LocalFileStorage]:

kotti.depot.0.name = localfs
kotti.depot.0.backend = depot.io.local.LocalFileStorage
kotti.depot.0.storage_path = /var/local/files
kotti.depot.1.name = dbfiles
kotti.depot.1.backend = kotti.filedepot.DBFileStorage

Notice that we kept the dbfiles storage, but we moved it to position 1.
No blob data will be saved there anymore, but existing files in that storage will continue to be available from there.

How File-like Content is served

Starting with Kotti 1.3.0, file-like content can be served in two different ways.
Let’s look at an example to compare them.

Say we have a kotti.resources.File object in our resource tree, located at /foo/bar/file.

Method 1

In the default views this file is served under the URL http://localhost/foo/bar/file/attachment-view.
This URL can be created like this:

>>> from kotti.resources import File
>>> file = File.query.filter(File.name == 'file').one()
>>> request.resource_url(file, 'attachment-view')
'http://localhost/foo/bar/file/attachment-view'

When this URL is requested, a kotti.filedepot.StoredFileResponse is returned:

>>> request.uploaded_file_response(file.data)
<StoredFileResponse at 0x10c8d22d0 200 OK>

The request is processed in the same way as for every other type of content in Kotti.
It goes through the full traversal and view lookup machinery with full permission checks.

Method 2

Often these permission checks do not need to be enforced strictly.
For such cases Kotti provides a “shortcut” in form of a Pyramid tween, that directly processes all requests under a certain path befor they even reach Kotti.
This means: no traversal, no view lookup, no permission checks.
The URL for this method can be created very similarily:

>>> request.uploaded_file_url(file.data, 'attachment')
'http://localhost//depot/dbfiles/68f31e97-a7f9-11e5-be07-c82a1403e6a7/download'

Comparison

Obviously method 2 is a lot faster than method 1 - typically at least by the factor of 3.

If you take a look at the callgraphs, you’ll understand where this difference comes from:

	[image: m1kotti]

	[image: m2kotti]

	Method 1

	Method 2

The difference will be even more drastic, when you set up proper HTTP caching.
All responses for method 2 can be cached forever, because the URL will change when the file’s content changes.

Developing (with) File-like Content

Add a Blob Field to your Model

Adding a blob data attribute to your models can be as simple as:

from depot.fields.sqlalchemy import UploadedFileField
from kotti.resources import Content

class Person(Content):
 avatar = UploadedFileField()

While you can directly assign a bytes value to the avatar column, the UploadedFileField column type works best when you assign a cgi.FieldStorage instance as value:

from StringIO import StringIO
from kotti.util import _to_fieldstorage

content = '...'
data = {
 'fp': StringIO(content),
 'filename': 'avatar.png',
 'mimetype': 'image/png',
 'size': len(content),
 }
person = Person()
person.avatar = _to_fieldstorage(**data)

Note that the data dictionary described here has the same format as the deserialized value of a deform.widget.FileUploadWidget.
See kotti.views.edit.content.FileAddForm and kotti.views.edit.content.FileEditForm for a full example of how to add or edit a model with a blob field.

Reading Blob Data

If you try directly to read data from an UploadedFileField you’ll get a depot.fields.upload.UploadedFile [https://depot.readthedocs.io/en/latest/api.html#depot.fields.upload.UploadedFile] instance, which offers a dictionary-like interface to the stored file metadata and direct access to a stream with the stored file through the file attribute:

person = DBSession.query(Person).get(1)
blob = person.avatar.file.read()

You should never write to the file stream directly.
Instead, you should assign a new value to the UploadedFileField column, as described in the previous section.

Testing UploadedFileField Columns

Because depot.manager.DepotManager [https://depot.readthedocs.io/en/latest/api.html#depot.manager.DepotManager] acts as a singleton, special care needs to be taken when testing features that involve saving data into UploadedFileField columns.

UploadedFileField columns require having at least one depot file storage configured.
You can use a fixture called filedepot to have a mock file storage available for your tests.

If you’re developing new depot file storages you should use the no_filedepots fixture, which resets the configured depots for the test run and restores the default depots back, as a teardown.

Inheritance Issues with UploadedFileField Columns

You should be aware that, presently, subclassing a model with an UploadedFileField column doesn’t work properly.
As a workaround, add a __declare_last__ classmethod in your superclass model, similar to the one below, where we’re fixing the data column of the File class.

from depot.fields.sqlalchemy import _SQLAMutationTracker

class File(Content):

 data = UploadedFileField()

 @classmethod
 def __declare_last__(cls):
 event.listen(cls.data, 'set', _SQLAMutationTracker._field_set, retval=True)

Migrating data between two different storages

Kotti provides a script that can migrate blob data from one configured stored to another and update the saved fields with the new locations.
It is not needed to do this if you just want to add a new torage, or replace the default one, but you can use it if you’d like to consolidate the blob data in one place only.
You can invoke the script with:

kotti-migrate-storage <config_uri> --from-storage <name> --to-storage <name>

The storage names are those assigned in the configuration file designated in <config_uri>.
For example, let’s assume you’ve started a website that has the default blob storage, the DBFileStorage named dbfiles.
You’d like to move all the existing blob data to a depot.io.local.LocalFileStorage [https://depot.readthedocs.io/en/latest/api.html#depot.io.local.LocalFileStorage] storage and make that the default.
First, add the LocalFileStorage depot, make it the default and place the old DBFileStorage in position 1::

kotti.depot.0.backend = depot.io.local.LocalFileStorage
kotti.depot.0.name = localfs
kotti.depot.0.storage_path = /var/local/files
kotti.depot.1.backend = kotti.filedepot.DBFileStorage
kotti.depot.1.name = dbfiles

Now you can invoke the migration with::

kotti-migrate-storage <config_uri> --from-storage dbfiles --to-storage localfs

As always when dealing with migrations, make sure you backup your data first!

 Static resource management

Static resource management

In the default settings Kotti uses Fanstatic [http://www.fanstatic.org/] to manage its static resources (i.e. CSS, JS, etc.).
This is accomplished by a WSGI pipeline:

[app:kotti]
use = egg:kotti

[filter:fanstatic]
use = egg:fanstatic#fanstatic

[pipeline:main]
pipeline =
 fanstatic
 kotti

[server:main]
use = egg:waitress#main
host = 127.0.0.1
port = 5000

Defining resources in third party addons

Defining your own resources and have them rendered in the pages
produced by Kotti is also easy. You just need to define resource
objects (as described in the corresponding Fanstatic documentation [https://fanstatic.readthedocs.io/en/latest/library.html])
and add them to either edit_needed or view_needed in
kotti.fanstatic:

from fanstatic import Library
from fanstatic import Resource
from kotti.fanstatic import edit_needed
from kotti.fanstatic import view_needed

my_library = Library('my_package', 'resources')
my_resource = Resource(my_library, "my.js")

def includeme(config):
 # add to edit_needed if the resource is needed in edit views
 edit_needed.add(my_resource)
 # add to view_needed if the resource is needed in edit views
 view_needed.add(my_resource)

Don’t forget to add an entry_point to your package’s setup.py:

entry_points={
 'fanstatic.libraries': [
 'foo = my_package:my_library',
],
 },

Fanstatic has many more useful options, such as being able to define
additional minified resources for deployment. Please consult
Fanstatic’s documentation [https://fanstatic.readthedocs.io/] for a complete list of options.

Overriding Kotti’s default definitions

You can override the resources to be included in the configuration file.

The defaults are

[app:kotti]

kotti.fanstatic.edit_needed = kotti.fanstatic.edit_needed
kotti.fanstatic.view_needed = kotti.fanstatic.view_needed

which ist actually a shortcut for

[app:kotti]

kotti.fanstatic.edit_needed =
 kotti.fanstatic.edit_needed_js
 kotti.fanstatic.edit_needed_css

kotti.fanstatic.view_needed =
 kotti.fanstatic.view_needed_js
 kotti.fanstatic.view_needed_css

You may add as many kotti.fanstatic.NeededGroup,
fanstatic.Group or fanstatic.Resource (or actually anything
that provides a .need() method) objects in dotted notation as you
want.

Say you want to completely abandon Kotti’s CSS resources (and use your
own for both view and edit views) but use Kotti’s JS resources plus an
additional JS resource defined within your app (only in edit
views). Your configuration file might look like this:

[app:kotti]

kotti.fanstatic.edit_needed =
 kotti.fanstatic.edit_needed_js
 myapp.fanstatic.js_resource
 myapp.fanstatic.css_resource

kotti.fanstatic.view_needed =
 kotti.fanstatic.view_needed_js
 myapp.fanstatic.css_resource

Using Kotti without Fanstatic

To handle resources yourself, you can easily and completely turn off
fanstatic:

[app:main]
use = egg:kotti

[server:main]
use = egg:waitress#main
host = 127.0.0.1
port = 5000

 Understanding Kotti’s startup phase

Understanding Kotti’s startup phase

	When a Kotti application is started the kotti.main() function is
called by the WSGI server and is passed a settings dictionary that
contains all key / value pairs from the [app:kotti] section of the
*.ini file.

	The settings dictionary is passed to kotti.base_configure().
This is where the main work happens:

	Every key in kotti.conf_defaults that is not in the settings
dictionary (i.e. that is not in the .ini file) is copied to the
settings dictionary, together with the default value for that key.

	Add-on initializations: all functions that are listed in the
kotti.configurators parameter are resolved and called.

	pyramid.includes are removed from the settings dictionary for
later processing, i.e. after kotti.base_includes.

	A class:pyramid.config.Configurator is instanciated with the remaining
settings.

	The kotti.base_includes (containing various Kotti subsystems, such
as kotti.events, kotti.views, etc.) are passed to
config.include.

	The pyramid.includes that were removed from the settings
dictionary in step 2.3 are processed.

	The kotti.zcml_includes are processed.

	The SQLAlchemy engine is created with the connection URL that is defined
in the sqlalchemy.url parameter in the .ini file.

	The fully configured WSGI application is returned to the WSGI server and
is ready to process requests.

 Sanitizers

Sanitizers

Kotti provides a mechanism to sanitize arbitrary strings.

You can configure available sanitizers via kotti.sanitizers.
This setting takes a list of strings, with each specifying a name:callable pair.
name is the name under which this sanitizer is registered.
callable is a dotted path to a function taking an unsanitized string and returning a sanitized version of it.

The default configuration is:

kotti.sanitizers =
 xss_protection:kotti.sanitizers.xss_protection
 minimal_html:kotti.sanitizers.minimal_html
 no_html:kotti.sanitizers.no_html

For thorough explaination of the included sanitizers see kotti.sanitizers.

Explicit sanitization

You can explicitly use any configured sanitizer like this:

from kotti.sanitizers import sanitize

sanitzed = sanitize(unsanitized, 'xss_protection')

The sanitize function is also available as a method of the kotti.views.util.TemplateAPI.
This is just a convenience wrapper to ease usage in templates:

${api.sanitize(context.foo, 'minimal_html')}

Sanitize on write (implicit sanitization)

The second setting related to sanitization is kotti.sanitize_on_write.
It defines, for the specified resource classes, the attributes that are sanitized and the sanitizers that will be used when the attributes are mutated and flushed.

This setting takes a list of dotted_path:sanitizer_name(s) pairs.
dotted_path is a dotted path to a resource class attribute that will be sanitized implicitly with the respective sanitizer(s) upon write access.
sanitizer_name(s) is a comma separated list of available sanitizer names as configured above.

Kotti will setup listeners for the kotti.events.ObjectInsert and kotti.events.ObjectUpdate events for the given classes and attach a function that filters the respective attributes with the specified sanitizer.

This means that any write access to configured attributes through your application (also within correctly setup command line scripts) will be sanitized implicitly.

The default configuration is:

kotti.sanitize_on_write =
 kotti.resources.Document.body:xss_protection
 kotti.resources.Content.title:no_html

You can also use multiple sanitizers:

kotti.sanitize_on_write =
 kotti.resources.Document.body:xss_protection,some_other_sanitizer

Implementing a custom sanitizer

A sanitizer is just a function that takes and returns a string.
It can be as simple as:

def no_dogs_allowed(html):
 return html.replace('dogs', 'cats')

no_dogs_allowed('<p>I love dogs.</p>')
... '<p>I love cats.</p>'

You can also look at kotti.sanitizers for examples.

 API Documentation

API Documentation

	
kotti.includeme(config)

	Pyramid includeme hook.

	Parameters

	config (pyramid.config.Configurator [https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator]) – app config

	kotti.events
	Inheritance Diagram

	kotti.fanstatic

	kotti.interfaces

	kotti.message

	kotti.migrate

	kotti.populate

	kotti.request

	kotti.resources
	Inheritance Diagram

	kotti.filedepot

	kotti.sanitizers

	kotti.security

	kotti.sqla
	Inheritance Diagram

	kotti.testing
	Inheritance Diagram

	kotti.tests
	Fixture dependencies

	kotti.traversal

	kotti.util
	Inheritance Diagram

	kotti.views
	kotti.views.cache

	kotti.views.edit
	kotti.views.edit.actions

	kotti.views.edit.content

	kotti.views.edit.default_views

	kotti.views.file

	kotti.views.form
	Inheritance Diagram

	kotti.views.login

	kotti.views.site_setup

	kotti.views.slots

	kotti.views.users

	kotti.views.util

	kotti.views.view

	kotti.workflow

 kotti.events

kotti.events

This module includes a simple events system that allows users to
subscribe to specific events, and more particularly to object events
of specific object types.

See also: Events.

Inheritance Diagram

 Inheritance diagram of kotti.events

	
class kotti.events.ObjectEvent(obj, request=None)

	Event related to an object.

	
class kotti.events.ObjectInsert(obj, request=None)

	This event is emitted when an object is inserted into the DB.

	
class kotti.events.ObjectUpdate(obj, request=None)

	This event is emitted when an object in the DB is updated.

	
class kotti.events.ObjectDelete(obj, request=None)

	This event is emitted when an object is deleted from the DB.

	
class kotti.events.ObjectAfterDelete(obj, request=None)

	This event is emitted after an object has been deleted from the DB.

Deprecated since version 0.9.

	
class kotti.events.UserDeleted(obj, request=None)

	This event is emitted when an user object is deleted from the DB.

	
class kotti.events.DispatcherDict(*args, **kwargs)

	Base class for dispatchers

	
class kotti.events.Dispatcher(*args, **kwargs)

	Dispatches based on event type.

>>> class BaseEvent(object): pass
>>> class SubEvent(BaseEvent): pass
>>> class UnrelatedEvent(object): pass
>>> def base_listener(event):
... print('Called base listener')
>>> def sub_listener(event):
... print('Called sub listener')
>>> def unrelated_listener(event):
... print('Called unrelated listener')
... return 1

>>> dispatcher = Dispatcher()
>>> dispatcher[BaseEvent].append(base_listener)
>>> dispatcher[SubEvent].append(sub_listener)
>>> dispatcher[UnrelatedEvent].append(unrelated_listener)

>>> dispatcher(BaseEvent())
Called base listener
[None]
>>> dispatcher(SubEvent())
Called base listener
Called sub listener
[None, None]
>>> dispatcher(UnrelatedEvent())
Called unrelated listener
[1]

	
class kotti.events.ObjectEventDispatcher(*args, **kwargs)

	Dispatches based on both event type and object type.

>>> class BaseObject(object): pass
>>> class SubObject(BaseObject): pass
>>> def base_listener(event):
... return 'base'
>>> def subobj_insert_listener(event):
... return 'sub'
>>> def all_listener(event):
... return 'all'

>>> dispatcher = ObjectEventDispatcher()
>>> dispatcher[(ObjectEvent, BaseObject)].append(base_listener)
>>> dispatcher[(ObjectInsert, SubObject)].append(subobj_insert_listener)
>>> dispatcher[(ObjectEvent, None)].append(all_listener)

>>> dispatcher(ObjectEvent(BaseObject()))
['base', 'all']
>>> dispatcher(ObjectInsert(BaseObject()))
['base', 'all']
>>> dispatcher(ObjectEvent(SubObject()))
['base', 'all']
>>> dispatcher(ObjectInsert(SubObject()))
['base', 'sub', 'all']

	
kotti.events.set_owner(event)

	Set owner of the object that triggered the event.

	Parameters

	event (ObjectInsert) – event that trigerred this handler.

	
kotti.events.set_creation_date(event)

	Set creation_date of the object that triggered the event.

	Parameters

	event (ObjectInsert) – event that trigerred this handler.

	
kotti.events.set_modification_date(event)

	Update modification_date of the object that triggered the event.

	Parameters

	event (ObjectUpdate) – event that trigerred this handler.

	
kotti.events.delete_orphaned_tags(event)

	Delete Tag instances / records when they are not associated with any
content.

	Parameters

	event (ObjectAfterDelete) – event that trigerred this handler.

	
kotti.events.cleanup_user_groups(event)

	Remove a deleted group from the groups of a user/group and remove
all local group entries of it.

	Parameters

	event (UserDeleted) – event that trigerred this handler.

	
kotti.events.reset_content_owner(event)

	Reset the owner of the content from the deleted owner.

	Parameters

	event (UserDeleted) – event that trigerred this handler.

	
class kotti.events.subscribe(evttype=<type 'object'>, objtype=None)

	Function decorator to attach the decorated function as a handler for a
Kotti event. Example:

from kotti.events import ObjectInsert
from kotti.events import subscribe
from kotti.resources import Document

@subscribe()
def on_all_events(event):
 # this will be executed on *every* event
 print "Some kind of event occured"

@subscribe(ObjectInsert)
def on_insert(event):
 # this will be executed on every object insert
 context = event.object
 request = event.request
 print "Object insert"

@subscribe(ObjectInsert, Document)
def on_document_insert(event):
 # this will only be executed on object inserts if the object is
 # is an instance of Document
 context = event.object
 request = event.request
 print "Document insert"

	
kotti.events.wire_sqlalchemy()

	Connect SQLAlchemy events to their respective handler function (that
fires the corresponding Kotti event).

	
kotti.events.includeme(config)

	Pyramid includeme hook.

	Parameters

	config (pyramid.config.Configurator [https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator]) – app config

 kotti.fanstatic

kotti.fanstatic

	
class kotti.fanstatic.NeededGroup(resources=None)

	A collection of fanstatic resources that supports
dynamic appending of resources after initialization

	
add(resource)

	resource may be a:

	fanstatic.Resource [http://www.fanstatic.org/en/latest/api.html#fanstatic.Resource] object or

	fanstatic.Group [http://www.fanstatic.org/en/latest/api.html#fanstatic.Group] object

 kotti.interfaces

kotti.interfaces

	
interface kotti.interfaces.INode

	Extends: pyramid.interfaces.ILocation

Marker interface for all nodes (and subclasses)

	
interface kotti.interfaces.IContent

	Extends: kotti.interfaces.INode

Marker interface for all nodes of type Content
(and subclasses thereof)

	
interface kotti.interfaces.IDocument

	Extends: kotti.interfaces.IContent

Marker interface for all nodes of type Document
(and subclasses thereof)

	
interface kotti.interfaces.IFile

	Extends: kotti.interfaces.IContent

Marker interface for all nodes of type File
(and subclasses thereof)

	
interface kotti.interfaces.IDefaultWorkflow

	Marker interface for content classes that want to use the
default workflow

	
interface kotti.interfaces.INavigationRoot

	Marker interface for content nodes / classes that want to be the root
for the navigation.

Considering a content tree like this:

- /a
 - /a/a
 - /a/b (provides INavigationRoot)
 - /a/b/a
 - /a/b/b
 - /a/b/c
 - a/c

The root item for the navigation will be ``/a/b`` for everey context in
or below ``/a/b`` and ``/a`` for every other item.

 kotti.message

kotti.message

	
kotti.message.validate_token(user, token, valid_hrs=24)

	>>> from kotti.testing import setUp, tearDown
>>> ignore = setUp()
>>> class User(object):
... pass
>>> daniel = User()
>>> daniel.name = u'daniel'
>>> alice = User()
>>> alice.name = u'alice'
>>> token = make_token(daniel)
>>> validate_token(daniel, token)
True
>>> validate_token(alice, token)
False
>>> validate_token(daniel, 'foo')
False
>>> token = make_token(daniel, seconds=time.time() - 100000)
>>> validate_token(daniel, token)
False
>>> validate_token(daniel, token, valid_hrs=48)
True
>>> tearDown()

	
kotti.message.send_email(request, recipients, template_name, template_vars=None)

	General email sender.

	Parameters

	
	request (kotti.request.Request) – current request.

	recipients (list) – list of email addresses. Each email should be a
string like: u‘“John Doe” <joedoe@foo.com>’.

	template_name (string) – asset specification (e.g.
‘mypackage:templates/email.pt’)

	template_vars (dict) – set of variables present on template.

 kotti.migrate

kotti.migrate

This module aims to make it easier to run the Alembic migration
scripts of Kotti and Kotti add-ons by providing a uniform access.

Commands herein will typically be called by the console script
kotti-migrate (see the docstring of that command below).

Kotti stores the current revision of its migration in table
kotti_alembic_versions. The convention here is
<packagename>_alembic_versions. You should normally not need to
worry about the name of this table, as it is created and managed
automatically through this module. If, however, you plan to use your
own alembic.ini configuration file for your add-on or application,
keep in mind to configure a table name as described above. The table
name can be set using Alembic’s version_table option.

Kotti has start-up code that will create the database from scratch if
it doesn’t exist. This code will also call this module’s function
stamp_heads to set the current revision of all migrations
registered with this module to the latest. This assumes that when we
create the database from scratch (using metadata.create_all), we
don’t need to run any of the past migrations.

Unfortunately, this won’t help in the situation where a user adds an
add-on with migrations to the Kotti site _after_ the database was
initialized for the first time. In this case, users of the add-on
will need to run kotti-migrate stamp_head
--scripts=yourpackage:alembic, or the add-on author will have to
write equivalent code somewhere in their populate hook.

Add-on authors can register their Alembic scripts with this module by
adding their Alembic ‘script directory’ location to the
kotti.alembic_dirs setting. An example:

def kotti_configure(settings):
 # ...
 settings['kotti.alembic_dirs'] += ' kotti_contactform:alembic'

kotti-migrate commands ‘list_all’, ‘upgrade_all’ and
‘stamp_heads’ will then include the add-on.

 kotti.populate

kotti.populate

Populate contains two functions that are called on application startup
(if you haven’t modified kotti.populators).

	
kotti.populate.populate_users()

	Create the admin user with the password from the kotti.secret option
if there is no user with name ‘admin’ yet.

	
kotti.populate.populate()

	Create the root node (Document) and the ‘about’
subnode in the nodes tree if there are no nodes yet.

 kotti.request

kotti.request

	
class kotti.request.Request(environ, charset=None, unicode_errors=None, decode_param_names=None, **kw)

	Bases: pyramid.request.Request [https://pyramid.readthedocs.io/en/latest/api/request.html#pyramid.request.Request]

Kotti subclasses pyramid.request.Request [https://pyramid.readthedocs.io/en/latest/api/request.html#pyramid.request.Request] to make additional
attributes / methods available on request objects and override Pyramid’s
pyramid.request.Request.has_permission() [https://pyramid.readthedocs.io/en/latest/api/request.html#pyramid.request.Request.has_permission]. The latter is needed to
support Kotti’s concept of local roles not just for users but also for
groups (kotti.security.list_groups_callback()).

	
user

	Add the authenticated user to the request object.

	Result

	the currently authenticated user

	Return type

	kotti.security.Principal or whatever is returned by
the custom principals database defined in the
kotti.principals_factory setting

	
has_permission(permission, context=None)

	Check if the current request has the given permission on the
current or explicitly passed context. This is different from
pyramid.request.Request.has_permission`() in that a context other
than the one bound to the request can be passed. This allows to
consider local roles for the check.

	Parameters

	
	permission (str) – name of the permission to check

	context (kotti.resources.Node) – context for which the permission is checked.
Defaults to the context on which the request invoked.

	Result

	True if has_permission, False else

	Return type

	bool

 kotti.resources

kotti.resources

The resources module contains all the classes for Kotti’s
persistence layer, which is based on SQLAlchemy.

Inheritance Diagram

 Inheritance diagram of kotti.resources

	
class kotti.resources.ContainerMixin

	Bases: object, UserDict.DictMixin

Containers form the API of a Node that’s used for subitem
access and in traversal.

	
keys()

	
	Result

	children names

	Return type

	list

	
children_with_permission(request, permission='view')

	Return only those children for which the user initiating the
request has the asked permission.

	Parameters

	
	request (kotti.request.Request) – current request

	permission (str) – The permission for which you want the allowed
children

	Result

	List of child nodes

	Return type

	list

	
class kotti.resources.LocalGroup(node, principal_name, group_name)

	Bases: sqlalchemy.ext.declarative.api.Base

Local groups allow the assignment of groups or roles to principals
(users or groups) for a certain context (i.e. a Node in the
content tree).

	
id

	Primary key for the node in the DB
(sqlalchemy.types.Integer)

	
node_id

	ID of the node for this assignment
(sqlalchemy.types.Integer)

	
principal_name

	Name of the principal (user or group)
(sqlalchemy.types.Unicode)

	
group_name

	Name of the assigned group or role
(sqlalchemy.types.Unicode)

	
class kotti.resources.Node(name=None, parent=None, title=u'', annotations=None, **kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base, kotti.resources.ContainerMixin, kotti.security.PersistentACLMixin

Basic node in the persistance hierarchy.

	
id

	Primary key for the node in the DB
(sqlalchemy.types.Integer)

	
type

	Lowercase class name of the node instance
(sqlalchemy.types.String)

	
parent_id

	ID of the node’s parent
(sqlalchemy.types.Integer)

	
position

	Position of the node within its container / parent
(sqlalchemy.types.Integer)

	
path

	The path can be used to efficiently filter for child objects
(sqlalchemy.types.Unicode).

	
name

	Name of the node as used in the URL
(sqlalchemy.types.Unicode)

	
title

	Title of the node, e.g. as shown in search results
(sqlalchemy.types.Unicode)

	
annotations

	Annotations can be used to store arbitrary data in a nested dictionary
(kotti.sqla.NestedMustationDict)

	
copy(**kwargs)

	
	Result

	A copy of the current instance

	Return type

	Node

	
class kotti.resources.TypeInfo(**kwargs)

	Bases: object

TypeInfo instances contain information about the type of a node.

You can pass arbitrary keyword arguments in the constructor, they
will become instance attributes. The most common are:

	name

	title

	add_view

	addable_to

	edit_links

	selectable_default_views

	uploadable_mimetypes

	add_permission

	
copy(**kwargs)

	
	Result

	a copy of the current TypeInfo instance

	Return type

	TypeInfo

	
addable(context, request)

	
	Parameters

	
	context (Content or subclass thereof (or anything that has a
type_info attribute of type
TypeInfo)) –

	request (kotti.request.Request) – current request

	Result

	True if the type described in ‘self’ may be added to ‘context’,
False otherwise.

	Return type

	Boolean

	
add_selectable_default_view(name, title)

	Add a view to the list of default views selectable by the
user in the UI.

	Parameters

	
	name (str) – Name the view is registered with

	title (unicode or TranslationString) – Title for the view for display in the UI.

	
is_uploadable_mimetype(mimetype)

	Check if uploads of the given MIME type are allowed.

	Parameters

	mimetype (str) – MIME type

	Result

	Upload allowed (>0) or forbidden (0). The greater the result,
the better is the match. E.g. image/* (6) is a better
match for image/png than * (1).

	Return type

	int

	
class kotti.resources.Tag(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

Basic tag implementation. Instances of this class are just the tag
itself and can be mapped to instances of Content
(or any of its descendants) via instances of
TagsToContents.

	
id

	Primary key column in the DB
(sqlalchemy.types.Integer)

	
title

	Title of the tag
sqlalchemy.types.Unicode

	
items

	
	Result

	

	Return type

	list

	
class kotti.resources.TagsToContents(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

Tags to contents mapping

	
tag_id

	Foreign key referencing Tag.id
(sqlalchemy.types.Integer)

	
content_id

	Foreign key referencing Content.id
(sqlalchemy.types.Integer)

	
tag

	Relation that adds a content_tags sqlalchemy.orm.backref()
to Tag instances to allow easy access to all
content tagged with that tag.
(sqlalchemy.orm.relationship())

	
position

	Ordering position of the tag
sqlalchemy.types.Integer

	
title

	title of the associated Tag instance
(sqlalchemy.ext.associationproxy.association_proxy)

	
class kotti.resources.Content(name=None, parent=None, title=u'', annotations=None, default_view=None, description=u'', language=None, owner=None, creation_date=None, modification_date=None, in_navigation=True, tags=None, **kwargs)

	Bases: kotti.resources.Node

Content adds some attributes to Node that are
useful for content objects in a CMS.

	
id

	Primary key column in the DB
(sqlalchemy.types.Integer)

	
state

	Workflow state of the content object
(sqlalchemy.types.String)

	
type_info = <kotti.resources.TypeInfo object>

	type_info is a class attribute (TypeInfo)

	
default_view

	Name of the view that should be displayed to the user when
visiting an URL without a explicit view name appended
(sqlalchemy.types.String)

	
description

	Description of the content object. In default Kotti this is
used e.g. in the description tag in the HTML, in the search results
and rendered below the title in most views.
(sqlalchemy.types.Unicode)

	
language

	Language code (ISO 639) of the content object
(sqlalchemy.types.Unicode)

	
owner

	Owner (username) of the content object
(sqlalchemy.types.Unicode)

	
in_navigation

	Shall the content be visible in the navigation?
(sqlalchemy.types.Boolean)

	
creation_date

	Date / time the content was created
(sqlalchemy.types.DateTime)

	
modification_date

	Date / time the content was last modified
(sqlalchemy.types.DateTime)

	
tags

	Tags assigned to the content object (list of str)

	
class kotti.resources.Document(body=u'', mime_type='text/html', **kwargs)

	Bases: kotti.resources.Content

Document extends Content with a body and its
mime_type. In addition Document and its descendants implement
IDefaultWorkflow and therefore
are associated with the default workflow (at least in
unmodified Kotti installations).

	
id

	Primary key column in the DB
(sqlalchemy.types.Integer)

	
type_info = <kotti.resources.TypeInfo object>

	type_info is a class attribute
(TypeInfo)

	
body

	Body text of the Document
(sqlalchemy.types.Unicode)

	
mime_type

	MIME type of the Document
(sqlalchemy.types.String)

	
class kotti.resources.SaveDataMixin(data=None, filename=None, mimetype=None, size=None, **kwargs)

	Bases: object

The classmethods must not be implemented on a class that inherits
from Base with SQLAlchemy>=1.0, otherwise that class cannot be
subclassed further.

See http://stackoverflow.com/questions/30433960/how-to-use-declare-last-in-sqlalchemy-1-0 # noqa

	
classmethod from_field_storage(fs)

	
	Create and return an instance of this class from a file upload

	through a webbrowser.

	Parameters

	fs (cgi.FieldStorage) – FieldStorage instance as found in a
kotti.request.Request’s POST MultiDict.

	Result

	The created instance.

	Return type

	kotti.resources.File

	
filename = Column(None, Unicode(length=100), table=None)

	The filename is used in the attachment view to give downloads
the original filename it had when it was uploaded.
(sqlalchemy.types.Unicode)

	
mimetype = Column(None, String(length=100), table=None)

	MIME type of the file
(sqlalchemy.types.String)

	
size = Column(None, Integer(), table=None)

	Size of the file in bytes
(sqlalchemy.types.Integer)

	
copy(**kwargs)

	Same as Content.copy with additional data support. data needs
some special attention, because we don’t want the same depot file to be
assigned to multiple content nodes.

	
class kotti.resources.File(data=None, filename=None, mimetype=None, size=None, **kwargs)

	Bases: kotti.resources.SaveDataMixin, kotti.resources.Content

File adds some attributes to Content that are
useful for storing binary data.

	
id

	Primary key column in the DB
(sqlalchemy.types.Integer)

	
kotti.resources.get_root(request=None)

	
	Call the function defined by the kotti.root_factory setting and

	return its result.

	Parameters

	request (kotti.request.Request) – current request (optional)

	Result

	a node in the node tree

	Return type

	Node or descendant;

	
class kotti.resources.DefaultRootCache

	Bases: object

Default implementation for get_root()

	
root_id

	Query for the one node without a parent and return its id.
:result: The root node’s id.
:rtype: int

	
get_root()

	Query for the root node by its id. This enables SQLAlchemy’s
session cache (query is executed only once per session).
:result: The root node.
:rtype: Node.

 kotti.filedepot

kotti.filedepot

	
class kotti.filedepot.DBFileStorage

	Implementation of depot.io.interfaces.FileStorage [https://depot.readthedocs.io/en/latest/api.html#depot.io.interfaces.FileStorage],

Uses kotti.filedepot.DBStoredFile to store blob data in an SQL database.

	
create(content, filename=None, content_type=None)

	Saves a new file and returns the file id

	Parameters

	
	content – can either be bytes, another file object
or a cgi.FieldStorage. When filename and
content_type parameters are not provided they are
deducted from the content itself.

	filename (string) – filename for this file

	content_type (string) – Mimetype of this file

	Returns

	the unique file_id associated to this file

	Return type

	string

	
delete(file_or_id)

	Deletes a file. If the file didn’t exist it will just do nothing.

	Parameters

	file_or_id – can be either DBStoredFile or a file_id

	
exists(file_or_id)

	Returns if a file or its ID still exist.

	Returns

	Returns if a file or its ID still exist.

	Return type

	bool

	
static get(file_id)

	Returns the file given by the file_id

	Parameters

	file_id (string) – the unique id associated to the file

	Result

	a kotti.filedepot.DBStoredFile instance

	Return type

	kotti.filedepot.DBStoredFile

	
replace(file_or_id, content, filename=None, content_type=None)

	Replaces an existing file, an IOError is raised if the file
didn’t already exist.

Given a StoredFile or its ID it will replace the current
content with the provided content value. If filename and
content_type are provided or can be deducted by the content
itself they will also replace the previous values, otherwise
the current values are kept.

	Parameters

	
	file_or_id – can be either DBStoredFile or a file_id

	content – can either be bytes, another file object
or a cgi.FieldStorage. When filename and
content_type parameters are not provided they are
deducted from the content itself.

	filename (string) – filename for this file

	content_type (string) – Mimetype of this file

	
class kotti.filedepot.DBStoredFile(file_id, filename=None, content_type=None, last_modified=None, content_length=None, **kwds)

	depot.io.interfaces.StoredFile [https://depot.readthedocs.io/en/latest/api.html#depot.io.interfaces.StoredFile] implementation that stores
file data in SQL database.

Can be used together with kotti.filedepot.DBFileStorage to
implement blobs storage in the database.

	
static close(*args, **kwargs)

	Implement StoredFile.close().
DBStoredFile never closes.

	
static closed()

	Implement StoredFile.closed().

	
content_length

	Size of the blob in bytes
(sqlalchemy.types.Integer)

	
content_type

	MIME type of the blob
(sqlalchemy.types.String)

	
data

	The binary data itself
(sqlalchemy.types.LargeBinary)

	
file_id

	Unique file id given to this blob
(sqlalchemy.types.String)

	
filename

	The original filename it had when it was uploaded.
(sqlalchemy.types.String)

	
id

	Primary key column in the DB
(sqlalchemy.types.Integer)

	
last_modified

	Date / time the blob was created or last modified
(sqlalchemy.types.DateTime)

	
name

	Implement StoredFile.name().

	Result

	the filename of the saved file

	Return type

	string

	
read(n=-1)

	Reads n bytes from the file.

If n is not specified or is -1 the whole
file content is read in memory and returned

	
seek(offset, whence=0)

	Change stream position.

Change the stream position to the given byte offset. The offset is
interpreted relative to the position indicated by whence.

	Parameters

	
	offset (int) – Position for the cursor

	whence (int) –
	
	0 – start of stream (the default);

	offset should be zero or positive

	1 – current stream position; offset may be negative

	2 – end of stream; offset is usually negative

	
static seekable()

	Implement StoredFile.seekable().

	
tell()

	Returns current position of file cursor

	Result

	Current file cursor position.

	Return type

	int

	
static writable()

	Implement StoredFile.writable().

	
class kotti.filedepot.StoredFileResponse(f, request, disposition='attachment', cache_max_age=604800, content_type=None, content_encoding=None)

	A Response object that can be used to serve an UploadedFile instance.

Code adapted from pyramid.response.FileResponse [https://pyramid.readthedocs.io/en/latest/api/response.html#pyramid.response.FileResponse].

	
class kotti.filedepot.TweenFactory(handler, registry)

	Factory for a Pyramid tween in charge of serving Depot files.

This is the Pyramid tween version of
depot.middleware.DepotMiddleware [https://depot.readthedocs.io/en/latest/api.html#depot.middleware.DepotMiddleware]. It does exactly the same as
Depot’s WSGI middleware, but operates on a pyramid.request.Request [https://pyramid.readthedocs.io/en/latest/api/request.html#pyramid.request.Request]
object instead of the WSGI environment.

	
kotti.filedepot.extract_depot_settings(prefix='kotti.depot.', settings=None)

	Merges items from a dictionary that have keys that start with prefix
to a list of dictionaries.

	Parameters

	
	prefix (string) – A dotted string representing the prefix for the common values

	settings – A dictionary with settings. Result is extracted from this

	
kotti.filedepot.includeme(config)

	Pyramid includeme hook.

	Parameters

	config (pyramid.config.Configurator [https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator]) – app config

	
kotti.filedepot.set_metadata(event)

	Set DBStoredFile metadata based on data

	Parameters

	event (ObjectInsert or ObjectUpdate) – event that trigerred this handler.

 kotti.sanitizers

kotti.sanitizers

For a high level introduction and available configuration options
see Sanitizers.

	
kotti.sanitizers.sanitize(html, sanitizer)

	Sanitize HTML

	Parameters

	
	html (basestring) – HTML to be sanitized

	sanitizer (str) – name of the sanitizer to use

	Result

	sanitized HTML

	Return type

	unicode

	
kotti.sanitizers.xss_protection(html)

	Sanitizer that removes tags that are not considered XSS safe. See
bleach_whitelist.generally_xss_unsafe for a complete list of tags that
are removed. Attributes and styles are left untouched.

	Parameters

	html (basestring) – HTML to be sanitized

	Result

	sanitized HTML

	Return type

	unicode

	
kotti.sanitizers.minimal_html(html)

	Sanitizer that only leaves a basic set of tags and attributes. See
bleach_whitelist.markdown_tags, bleach_whitelist.print_tags,
bleach_whitelist.markdown_attrs, bleach_whitelist.print_attrs for a
complete list of tags and attributes that are allowed. All styles are
completely removed.

	Parameters

	html (basestring) – HTML to be sanitized

	Result

	sanitized HTML

	Return type

	unicode

	
kotti.sanitizers.no_html(html)

	Sanitizer that removes all tags.

	Parameters

	html (basestring) – HTML to be sanitized

	Result

	plain text

	Return type

	unicode

	
kotti.sanitizers.includeme(config)

	Pyramid includeme hook.

	Parameters

	config (pyramid.config.Configurator [https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator]) – app config

 kotti.security

kotti.security

	
kotti.security.has_permission(permission, context, request)

	Check if the current request has a permission on the given context.

Deprecated since version 0.9.

	Parameters

	
	permission (str) – permission to check for

	context (:class:kotti.resources.Node) – context that should be checked for the given permission

	request (kotti.request.Request) – current request

	Result

	True if request has the permission, False else

	Return type

	bool

	
class kotti.security.Principal(name, password=None, active=True, confirm_token=None, title=u'', email=None, groups=None)

	A minimal ‘Principal’ implementation.

The attributes on this object correspond to what one ought to
implement to get full support by the system. You’re free to add
additional attributes.

	As convenience, when passing ‘password’ in the initializer, it
is hashed using ‘get_principals().hash_password’

	The boolean ‘active’ attribute defines whether a principal may
log in. This allows the deactivation of accounts without
deleting them.

	The ‘confirm_token’ attribute is set whenever a user has
forgotten their password. This token is used to identify the
receiver of the email. This attribute should be set to
‘None’ once confirmation has succeeded.

	
class kotti.security.AbstractPrincipals

	This class serves as documentation and defines what methods are
expected from a Principals database.

Principals mostly provides dict-like access to the principal
objects in the database. In addition, there’s the ‘search’ method
which allows searching users and groups.

‘hash_password’ is for initial hashing of a clear text password,
while ‘validate_password’ is used by the login to see if the
entered password matches the hashed password that’s already in the
database.

Use the ‘kotti.principals’ settings variable to override Kotti’s
default Principals implementation with your own.

	
keys()

	Return a list of principal ids that are in the database.

	
search(**kwargs)

	Return an iterable with principal objects that correspond
to the search arguments passed in.

This example would return all principals with the id ‘bob’:

get_principals().search(name=u’bob’)

Here, we ask for all principals that have ‘bob’ in either
their ‘name’ or their ‘title’. We pass ‘bob’ instead of
‘bob’ to indicate that we want case-insensitive substring
matching:

get_principals().search(name=u’bob’, title=u’bob’)

This call should fail with AttributeError unless there’s a
‘foo’ attribute on principal objects that supports search:

get_principals().search(name=u’bob’, foo=u’bar’)

	
hash_password(password)

	Return a hash of the given password.

This is what’s stored in the database as ‘principal.password’.

	
validate_password(clear, hashed)

	Returns True if the clear text password matches the hash.

	
kotti.security.list_groups(name, context=None)

	List groups for principal with a given name.

The optional context argument may be passed to check the list
of groups in a given context.

	
kotti.security.set_groups(name, context, groups_to_set=())

	Set the list of groups for principal with given name and in
given context.

	
kotti.security.list_groups_callback(name, request)

	List the groups for the principal identified by name. Consider
authz_context to support assigment of local roles to groups.

	
kotti.security.principals_with_local_roles(context, inherit=True)

	Return a list of principal names that have local roles in the
context.

	
class kotti.security.Principals

	Kotti’s default principal database.

Look at ‘AbstractPrincipals’ for documentation.

This is a default implementation that may be replaced by using the
‘kotti.principals’ settings variable.

	
factory

	alias of Principal

	
search(match='any', **kwargs)

	Search the principal database.

	Parameters

	
	match (str) – any to return all principals matching any search
param, all to return only principals matching
all params

	kwargs (varying.) – Search conditions, e.g. name='bob', active=True.

	Result

	SQLAlchemy query object

	Return type

	sqlalchemy.orm.query.Query`

 kotti.sqla

kotti.sqla

Inheritance Diagram

 Inheritance diagram of kotti.sqla

	
class kotti.sqla.JsonType(*args, **kwargs)

	http://www.sqlalchemy.org/docs/core/types.html#marshal-json-strings

	
impl

	alias of Text

	
class kotti.sqla.MutationDict(data)

	http://www.sqlalchemy.org/docs/orm/extensions/mutable.html

 kotti.testing

kotti.testing

Inheritance Diagram

 Inheritance diagram of kotti.testing

	
kotti.testing.includeme_login(config)

	Pyramid includeme hook.

	Parameters

	config (pyramid.config.Configurator [https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator]) – app config

	
kotti.testing.includeme_layout(config)

	Pyramid includeme hook.

	Parameters

	config (pyramid.config.Configurator [https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator]) – app config

	
kotti.testing.include_testing_view(config)

	Pyramid includeme hook.

	Parameters

	config (pyramid.config.Configurator [https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator]) – app config

 kotti.tests

kotti.tests

Fixture dependencies

 digraph kotti_fixtures {
 "allwarnings";
 "app" -> "webtest";
 "config" -> "db_session";
 "config" -> "depot_tween";
 "config" -> "dummy_request";
 "config" -> "events";
 "config" -> "workflow";
 "connection" -> "content";
 "connection" -> "db_session";
 "content" -> "db_session";
 "custom_settings" -> "connection";
 "custom_settings" -> "unresolved_settings";
 "db_session" -> "app";
 "db_session" -> "browser";
 "db_session" -> "filedepot";
 "db_session" -> "root";
 "depot_tween" -> "webtest";
 "dummy_mailer" -> "app";
 "dummy_mailer";
 "dummy_request" -> "depot_tween";
 "events" -> "app";
 "depot_tween" -> "filedepot";
 "depot_tween" -> "mock_filedepot";
 "mock_filedepot";
 "depot_tween" -> "no_filedepots";
 "settings" -> "config";
 "settings" -> "content";
 "setup_app" -> "app";
 "setup_app" -> "browser";
 "unresolved_settings" -> "settings";
 "unresolved_settings" -> "setup_app";
 "workflow" -> "app";
}

	
kotti.tests.image_asset()

	Return an image file

	
kotti.tests.image_asset2()

	Return another image file

	
kotti.tests.custom_settings()

	This is a dummy fixture meant to be overriden in add on package’s
conftest.py. It can be used to inject arbitrary settings for third
party test suites. The default settings dictionary will be updated
with the dictionary returned by this fixture.

This is also a good place to import your add on’s resources module to
have the corresponding tables created during create_all() in
kotti.tests.content().

	Result

	settings

	Return type

	dict

	
kotti.tests.config(request, settings)

	returns a Pyramid Configurator object initialized
with Kotti’s default (test) settings.

	
kotti.tests.connection(custom_settings)

	sets up a SQLAlchemy engine and returns a connection to the database.
The connection string used for testing can be specified via the
KOTTI_TEST_DB_STRING environment variable. The custom_settings
fixture is needed to allow users to import their models easily instead of
having to override the connection.

	
kotti.tests.content(connection, settings)

	sets up some default content using Kotti’s testing populator.

	
kotti.tests.db_session(config, content, connection, request)

	returns a db session object and sets up a db transaction
savepoint, which will be rolled back after the test.

	
kotti.tests.dummy_request(config, request, monkeypatch)

	returns a dummy request object after registering it as
the currently active request. This is needed when
pyramid.threadlocal.get_current_request is used.

	
kotti.tests.events(config, request)

	sets up Kotti’s default event handlers.

	
kotti.tests.browser(db_session, request, setup_app)

	returns an instance of zope.testbrowser. The kotti.testing.user
pytest marker (or pytest.mark.user) can be used to pre-authenticate
the browser with the given login name: @user(‘admin’).

	
kotti.tests.root(db_session)

	returns Kotti’s ‘root’ node.

	
kotti.tests.workflow(config)

	loads and activates Kotti’s default workflow rules.

	
kotti.tests.depot_tween(request, config, dummy_request)

	Sets up the Depot tween and patches Depot’s set_middleware to
suppress exceptions on subsequent calls

	
kotti.tests.mock_filedepot(request, depot_tween)

	Configures a mock depot store for depot.manager.DepotManager [https://depot.readthedocs.io/en/latest/api.html#depot.manager.DepotManager]

This filedepot is not integrated with dbsession.
Can be used in simple, standalone unit tests.

	
kotti.tests.filedepot(db_session, request, depot_tween)

	Configures a dbsession integrated mock depot store for
depot.manager.DepotManager [https://depot.readthedocs.io/en/latest/api.html#depot.manager.DepotManager]

	
kotti.tests.no_filedepots(db_session, request, depot_tween)

	A filedepot fixture to empty and then restore DepotManager configuration

 kotti.traversal

kotti.traversal

This module contains Kotti’s node tree traverser.

In Kotti versions < 1.3.0, Pyramid’s default traverser
(pyramid.traversal.ResourceTreeTraverser) was used. This traverser
still works, but it becomes decreasingly performant the deeper your resource
tree is nested. This is caused by the fact, that it generates one DB query per
level, whereas the Kotti traverser (kotti.traversal.NodeTreeTraverser)
generates a single DB query, regardless of the number of request path segments.
This query not only finds the context, but also returns all node items in its
lineage. This means, that neither accessing context.parent nor calling
pyramid.location.lineage() [https://pyramid.readthedocs.io/en/latest/api/location.html#pyramid.location.lineage] will result in additional DB queries.

The performance benefits are huge. The table below compares the requests per
seconds (rps) that were reached on a developer’s notebook against a PostgreSQL
database with 4419 kotti.resources.Document nodes.

	request.path

	Pyramid traverser (rps)

	Kotti traverser (rps)

	/

	49

	49

	/a/

	41

	36

	/a/b/

	30

	35

	/a/b/c/

	23

	34

	/a/b/c/d/

	19

	33

	/a/b/c/d/e/

	16

	33

	/a/b/c/d/e/f/

	14

	33

	/a/b/c/d/e/f/g/

	12

	32

	/a/b/c/d/e/f/g/h/

	11

	31

	/a/b/c/d/e/f/g/h/i/

	10

	30

	/a/b/c/d/e/f/g/h/i/j/

	8

	29

	
class kotti.traversal.NodeTreeTraverser(root)

	An optimized resource tree traverser for kotti.resources.Node
based resource trees.

	
static traverse(root, vpath_tuple)

	
	Parameters

	
	root (kotti.resources.Node) – The node where traversal should start

	vpath_tuple (tuple) – Tuple of path segments to be traversed

	Returns

	List of nodes, from root (excluded) to context (included).
Each node has its parent set already, so that no subsequent
queries will be be performed, e.g. when calling
lineage(context)

	Return type

	list of kotti.resources.Node

	
kotti.traversal.includeme(config)

	Pyramid includeme hook.

	Parameters

	config (pyramid.config.Configurator [https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator]) – app config

 kotti.util

kotti.util

Inheritance Diagram

 Inheritance diagram of kotti.util

	
class kotti.util.LinkRenderer(name, predicate=None)

	Bases: kotti.util.LinkBase

A menu link that renders a view to render the link.

	
class kotti.util.LinkParent(title, children)

	Bases: kotti.util.LinkBase

A menu link that renders sublinks in a dropdown.

	
kotti.util.extract_from_settings(prefix, settings=None)

	>>> settings = {
... 'kotti_twitter.foo_bar': '1', 'kotti.spam_eggs': '2'}
>>> print(extract_from_settings('kotti_twitter.', settings))
{'foo_bar': '1'}

	
kotti.util.title_to_name(title, blacklist=(), max_length=None)

	If max_length is None, fallback to the name column
size (kotti.resources.Node)

	
kotti.util.camel_case_to_name(text)

	>>> camel_case_to_name('FooBar')
'foo_bar'
>>> camel_case_to_name('TXTFile')
'txt_file'
>>> camel_case_to_name ('MyTXTFile')
'my_txt_file'
>>> camel_case_to_name('froBOZ')
'fro_boz'
>>> camel_case_to_name('f')
'f'

 kotti.views

kotti.views

	
class kotti.views.BaseView(context, request)

	Very basic view class that can be subclassed. Does nothing more than
assignment of context and request to instance attributes on
initialization.

	
kotti.views.includeme(config)

	Pyramid includeme hook.

	Parameters

	config (pyramid.config.Configurator [https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator]) – app config

	kotti.views.cache

	kotti.views.edit
	kotti.views.edit.actions

	kotti.views.edit.content

	kotti.views.edit.default_views

	kotti.views.file

	kotti.views.form
	Inheritance Diagram

	kotti.views.login

	kotti.views.site_setup

	kotti.views.slots

	kotti.views.users

	kotti.views.util

	kotti.views.view

 kotti.views.cache

kotti.views.cache

	
kotti.views.cache.set_max_age(response, delta, cache_ctrl=None)

	Sets max-age and expires headers based on the timedelta delta.

If cache_ctrl is not None, I’ll add items found therein to the
Cache-Control header.

Will overwrite existing values and preserve non overwritten ones.

	
kotti.views.cache.includeme(config)

	Pyramid includeme hook.

	Parameters

	config (pyramid.config.Configurator [https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator]) – app config

 kotti.views.edit

kotti.views.edit

Edit views.

	
kotti.views.edit.includeme(config)

	Pyramid includeme hook.

	Parameters

	config (pyramid.config.Configurator [https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator]) – app config

	kotti.views.edit.actions

	kotti.views.edit.content

	kotti.views.edit.default_views

 kotti.views.edit.actions

kotti.views.edit.actions

Action views

	
class kotti.views.edit.actions.NodeActions(context, request)

	Bases: object

Actions related to content nodes.

	
back(view=None)

	Redirect to the given view of the context, the referrer of the request
or the default_view of the context.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound]

	
workflow_change()

	Handle workflow change requests from workflow dropdown.

	Result

	Redirect response to the referrer of the request.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound]

	
copy_node()

	Copy nodes view. Copy the current node or the selected nodes in the
contents view and save the result in the session of the request.

	Result

	Redirect response to the referrer of the request.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound]

	
cut_nodes()

	Cut nodes view. Cut the current node or the selected nodes in the
contents view and save the result in the session of the request.

	Result

	Redirect response to the referrer of the request.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound]

	
paste_nodes()

	Paste nodes view. Paste formerly copied or cutted nodes into the
current context. Note that a cutted node can not be pasted into itself.

	Result

	Redirect response to the referrer of the request.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound]

	
move(move)

	Do the real work to move the selected nodes up or down. Called
by the up and the down view.

	Result

	Redirect response to the referrer of the request.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound]

	
up()

	Move up nodes view. Move the selected nodes up by 1 position
and get back to the referrer of the request.

	Result

	Redirect response to the referrer of the request.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound]

	
down()

	Move down nodes view. Move the selected nodes down by 1 position
and get back to the referrer of the request.

	Result

	Redirect response to the referrer of the request.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound]

	
set_visibility(show)

	Do the real work to set the visibility of nodes in the menu. Called
by the show and the hide view.

	Result

	Redirect response to the referrer of the request.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound]

	
show()

	Show nodes view. Switch the in_navigation attribute of selected nodes
to True and get back to the referrer of the request.

	Result

	Redirect response to the referrer of the request.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound]

	
hide()

	Hide nodes view. Switch the in_navigation attribute of selected nodes
to False and get back to the referrer of the request.

	Result

	Redirect response to the referrer of the request.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound]

	
delete_node()

	Delete node view. Renders either a view to delete the current node
or handle the deletion of the current node and get back to the
default view of the node.

	Result

	Either a redirect response or a dictionary passed to the
template for rendering.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound] or dict

	
delete_nodes()

	Delete nodes view. Renders either a view to delete multiple nodes or
delete the selected nodes and get back to the referrer of the request.

	Result

	Either a redirect response or a dictionary passed to the
template for rendering.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound] or dict

	
rename_node()

	Rename node view. Renders either a view to change the title and
name for the current node or handle the changes and get back to the
default view of the node.

	Result

	Either a redirect response or a dictionary passed to the
template for rendering.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound] or dict

	
rename_nodes()

	Rename nodes view. Renders either a view to change the titles and
names for multiple nodes or handle the changes and get back to the
referrer of the request.

	Result

	Either a redirect response or a dictionary passed to the
template for rendering.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound] or dict

	
change_state()

	Change state view. Renders either a view to handle workflow changes
for multiple nodes or handle the selected workflow changes and get
back to the referrer of the request.

	Result

	Either a redirect response or a dictionary passed to the
template for rendering.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound] or dict

	
kotti.views.edit.actions.contents_buttons(context, request)

	Build the action buttons for the contents view based on the current
state and the persmissions of the user.

	Result

	List of ActionButtons.

	Return type

	list

	
kotti.views.edit.actions.content_type_factories(context, request)

	Renders the drop down menu for Add button in editor bar.

	Result

	Dictionary passed to the template for rendering.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound] or dict

	
kotti.views.edit.actions.contents(context, request)

	Contents view. Renders either the contents view or handle the action
button actions of the view.

	Result

	Either a redirect response or a dictionary passed to the
template for rendering.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound] or dict

	
kotti.views.edit.actions.move_child_position(context, request)

	Move the child from one position to another.

	Parameters

	
	context (:class:kotti.resources.Node or descendant) – “Container” node in which the child changes its position.

	request – Current request (of method POST). Must contain either
“from” and “to” params or a json_body that contain(s) the
0-based old (i.e. the current index of the child to be
moved) and new position (its new index) values.

	Result

	JSON serializable object with a single attribute (“result”) that is
either “success” or “error”.

	Return type

	dict

	
kotti.views.edit.actions.workflow(context, request)

	Renders the drop down menu for workflow actions.

	Result

	Dictionary passed to the template for rendering.

	Return type

	dict

	
kotti.views.edit.actions.actions(context, request)

	Renders the drop down menu for Actions button in editor bar.

	Result

	Dictionary passed to the template for rendering.

	Return type

	dict

	
kotti.views.edit.actions.includeme(config)

	Pyramid includeme hook.

	Parameters

	config (pyramid.config.Configurator [https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator]) – app config

 kotti.views.edit.content

kotti.views.edit.content

Content edit views

	
kotti.views.edit.content.includeme(config)

	Pyramid includeme hook.

	Parameters

	config (pyramid.config.Configurator [https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator]) – app config

 kotti.views.edit.default_views

kotti.views.edit.default_views

	summary

	Default view selctor views

	
kotti.views.edit.default_views.includeme(config)

	Pyramid includeme hook.

	Parameters

	config (pyramid.config.Configurator [https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator]) – app config

 kotti.views.file

kotti.views.file

	
kotti.views.file.includeme(config)

	Pyramid includeme hook.

	Parameters

	config (pyramid.config.Configurator [https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator]) – app config

 kotti.views.form

kotti.views.form

Form related base views from which you can inherit.

Inheritance Diagram

 Inheritance diagram of kotti.views.form

	
class kotti.views.form.ObjectType

	A type leaving the value untouched.

	
class kotti.views.form.Form(schema, action='', method='POST', buttons=(), formid='deform', use_ajax=False, ajax_options='{}', autocomplete=None, **kw)

	A deform Form that allows ‘appstruct’ to be set on the instance.

	
class kotti.views.form.BaseFormView(context, request, **kwargs)

	A basic view for forms with save and cancel buttons.

	
form_class

	alias of Form

	
class kotti.views.form.EditFormView(context, request, **kwargs)

	A base form for content editing purposes.

Set self.schema_factory to the context’s schema. Values of
fields in this schema will be set as attributes on the context.
An example:

import colander
from deform.widget import RichTextWidget

from kotti.edit.content import ContentSchema
from kotti.edit.content import EditFormView

class DocumentSchema(ContentSchema):
 body = colander.SchemaNode(
 colander.String(),
 title=u'Body',
 widget=RichTextWidget(),
 missing=u'',
)

class DocumentEditForm(EditFormView):
 schema_factory = DocumentSchema

	
class kotti.views.form.AddFormView(context, request, **kwargs)

	A base form for content adding purposes.

Set self.schema_factory as with EditFormView. Also set
item_type to your model class. An example:

class DocumentAddForm(AddFormView):
 schema_factory = DocumentSchema
 add = Document
 item_type = u'Document'

	
class kotti.views.form.FileUploadTempStore(request)

	A temporary storage for file file uploads

File uploads are stored in the session so that you don’t need
to upload your file again if validation of another schema node
fails.

	
kotti.views.form.validate_file_size_limit(node, value)

	File size limit validator.

You can configure the maximum size by setting the kotti.max_file_size
option to the maximum number of bytes that you want to allow.

 kotti.views.login

kotti.views.login

Login / logout and forbidden views and forms.

	
class kotti.views.login.UserSelfRegistered(obj, request=None)

	This event is emitted just after user self registered. Intended use
is to allow addons to do some preparation for such user - create custom
contents, nodes etc.
Event handler object parameter is a Principal object

	
kotti.views.login.login_success_callback(request, user, came_from)

	Default implementation of kotti.login_success_callback. You can
implement a custom function with the same signature and point the
kotti.login_success_callback setting to it.

	Parameters

	
	request (kotti.request.Request) – Current request

	user (kotti.security.Princial) – Principal, who just logged in successfully.

	came_from (str) – URL the user came from

	Result

	Any Pyramid response object, by default a redirect to
came_from or the context where login was called.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound]

	
kotti.views.login.reset_password_callback(request, user)

	Default implementation of kotti.reset_password_callback. You can
implement a custom function with the same signature and point the
kotti.reset_password_callback setting to it.

	Parameters

	
	request (kotti.request.Request) – Current request

	user (kotti.security.Princial) – Principal, who’s password was requested to be reset.

	Result

	Any Pyramid response object, by default a redirect to to the same
URL from where the password reset was called.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound]

	
kotti.views.login.login(context, request)

	Login view. Renders either the login or password forgot form templates or
handles their form submission and redirects to came_from on success.

	Result

	Either a redirect response or a dictionary passed to the template
for rendering

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound] or dict

	
kotti.views.login.logout(context, request)

	Logout view. Always redirects the user to where he came from.

	Result

	Redirect to came_from

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound]

	
class kotti.views.login.SetPasswordSchema(*arg, **kw)

	Schema for the set password form

	
password = None

	colander.String

	
token = None

	colander.String

	
email = None

	colander.String

	
continue_to = None

	colander.String

	
kotti.views.login.set_password(context, request, success_msg=u'You have reset your password.')

	Set password view. Displays the set password form and handles its form
submission.

	Parameters

	
	context (kotti.resources.Content) – Current context

	request (kotti.request.Request) – Current request

	success_msg (str or TranslationString) – Message to display on successful submission handling

	Result

	Redirect response or dictionary passed to the template for
rendering.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound] or dict

	
kotti.views.login.forbidden_redirect(context, request)

	Forbidden redirect view. Redirects to the login form for anonymous
users or to the forbidden view for authenticated users.

	Result

	Redirect to one of the above.

	Return type

	pyramid.httpexceptions.HTTPFound [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound]

	
kotti.views.login.forbidden_view(request)

	Forbidden view. Raises 403 for requests not originating from a web browser
like device.

	Result

	403

	Return type

	pyramid.httpexceptions.HTTPForbidden [https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPForbidden]

	
kotti.views.login.forbidden_view_html(request)

	Forbidden view for browsers.

	Result

	empty dictionary passed to the template for rendering

	Return type

	dict

	
kotti.views.login.includeme(config)

	Pyramid includeme hook.

	Parameters

	config (pyramid.config.Configurator [https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator]) – app config

 kotti.views.site_setup

kotti.views.site_setup

 kotti.views.slots

kotti.views.slots

This module allows add-ons to assign views to slots defined in
the overall page. In other systems, these are called portlets or
viewlets.

A simple example that’ll include the output of the ‘hello_world’ view
in in the left column of every page:

from kotti.views.slots import assign_slot
assign_slot('hello_world', 'left')

It is also possible to pass parameters to the view:

assign_slot('last_tweets', 'right', params=dict(user='foo'))

In the view you can get the slot in that the view is rendered from
the request:

@view_config(name='last_tweets')
def view(request, context):
 slot = request.kotti_slot
 # ...

If no view can be found for the given request and slot, the slot
remains empty. If you want to force your slot not to be rendered,
raise pyramid.exceptions.PredicateMismatch [https://pyramid.readthedocs.io/en/latest/api/exceptions.html#pyramid.exceptions.PredicateMismatch] inside your view:

from pyramid.exceptions import PredicateMismatch

@view_config(name='last_tweets')
def view(request, context):
 if some_condition:
 raise PredicateMismatch()
 return {...}

Usually you’ll want to call kotti.views.slots.assign_slot()
inside an includeme function and not on a module level, to allow
users of your package to include your slot assignments through the
pyramid.includes configuration setting.

	
kotti.views.slots.assign_slot(view_name, slot, params=None)

	Assign view to slot.

	Parameters

	
	view_name (str) – Name of the view to assign.

	slot (str) – Name of the slot to assign to. Possible values are: left,
right, abovecontent, belowcontent, inhead, beforebodyend,
edit_inhead

	params (dict) – Optionally allows to pass POST parameters to the view.

 kotti.views.users

kotti.views.users

User management screens

	
kotti.views.users.name_pattern_validator(node, value)

	>>> name_pattern_validator(None, u'bob')
>>> name_pattern_validator(None, u'b ob')
Traceback (most recent call last):
Invalid: <unprintable Invalid object>
>>> name_pattern_validator(None, u'b:ob')
Traceback (most recent call last):
Invalid: <unprintable Invalid object>

	
kotti.views.users.includeme(config)

	Pyramid includeme hook.

	Parameters

	config (pyramid.config.Configurator [https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator]) – app config

 kotti.views.util

kotti.views.util

	
class kotti.views.util.TemplateAPI(context, request, bare=None, **kwargs)

	Bases: object

This implements the api object that’s passed to all templates.

Use dict-access as a shortcut to retrieve template macros from templates.

	
static is_location(context)

	Does context implement pyramid.interfaces.ILocation?

	Parameters

	context (kotti.interfaces.INode) – The context.

	Return type

	bool

	Returns

	True if Is the context object implements
pyramid.interfaces.ILocation.

	
site_title

	The site title.

	Result

	Value of the kotti.site_title setting (if specified) or
the root item’s title attribute.

	Return type

	unicode

	
page_title

	Title for the current page as used in the <head> section of the
default master.pt template.

	Result

	‘[Human readable view title]``context.title`` -
site_title()’‘

	Return type

	unicode

	
url(context=None, *elements, **kwargs)

	URL construction helper. Just a convenience wrapper for
pyramid.request.resource_url() with the same signature. If
context is None the current context is passed to
resource_url.

	
root

	The site root.

	Result

	The root object of the site.

	Return type

	kotti.resources.Node

	
navigation_root

	The root node for the navigation.

	Result

	Nearest node in the lineage() that provides
kotti.interfaces.INavigationRoot or root() if
no node provides that interface.

	Return type

	kotti.resources.Node

	
lineage

	Lineage from current context to the root node.

	Result

	List of nodes.

	Return type

	list of kotti.resources.Node

	
breadcrumbs

	List of nodes from the navigation_root() to the context.

	Result

	List of nodes.

	Return type

	list of kotti.resources.Node

	
has_permission(permission, context=None)

	Convenience wrapper for pyramid.security.has_permission() [https://pyramid.readthedocs.io/en/latest/api/security.html#pyramid.security.has_permission]
with the same signature. If context is None the current
context is passed to has_permission.

	
static inside(resource1, resource2)

	Is resource1 ‘inside’ resource2? Return True if so, else
False.

resource1 is ‘inside’ resource2 if resource2 is a
lineage [https://pyramid.readthedocs.io/en/latest/glossary.html#term-lineage] ancestor of resource1. It is a lineage ancestor
if its parent (or one of its parent’s parents, etc.) is an
ancestor.

	
static sanitize(html, sanitizer='default')

	Convenience wrapper for kotti.sanitizers.sanitize().

	Parameters

	
	html (unicode) – HTML to be sanitized

	sanitizer (str) – name of the sanitizer to use.

	Result

	sanitized HTML

	Return type

	unicode

 kotti.views.view

kotti.views.view

	
kotti.views.view.view_content_default(context, request)

	This view is always registered as the default view for any Content.

Its job is to delegate to a view of which the name may be defined
per instance. If a instance level view is not defined for
‘context’ (in ‘context.defaultview’), we will fall back to a view
with the name ‘view’.

	
kotti.views.view.includeme(config)

	Pyramid includeme hook.

	Parameters

	config (pyramid.config.Configurator [https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator]) – app config

 kotti.workflow

kotti.workflow

 Getting Help

Getting Help

	Mailing List / Forum [http://groups.google.com/group/kotti]

	IRC

	Issues [https://github.com/Kotti/Kotti/issues]

	Twitter [https://twitter.com/KottiCMS]

 Contributing

Contributing

The Kotti project can use your help in developing the software, requesting features, reporting bugs, writing developer and end-user documentation – the usual assortment for an open source project.

Please devote some of your time to the project.

Contributing to the Code Base

To contribute to Kotti itself, and to test and run against the master branch (the current development code base), first create an account on GitHub if you don’t have one.
Fork Kotti to your github account, and follow the usual steps to get a local clone, with origin as your fork, and with upstream as the Kotti/Kotti repo.
Then, you will be able to make branches for contributing, etc.
Please read the docs on GitHub if you are new to development, but the steps, after you have your own fork, would be something like this:

git clone https://github.com/your_github/Kotti.git

cd Kotti

git remote add upstream git://github.com/Kotti/Kotti.git

Now you should be set up to make branches for this and that, doing a pull request from a branch, and the usual git procedures.
You may wish to read the GitHub fork-a-repo help [https://help.github.com/articles/fork-a-repo].

To run and develop within your clone, do these steps:

virtualenv . --no-site-packages

bin/python setup.py develop

This will create a new virtualenv “in place” and do the python develop steps to
use the Kotti code in the repo.

Run bin/pip install kotti_someaddon, and add a kotti_someaddon entry to app.ini, as you would do normally, to use add-ons.

You may wish to learn about the virtualenvwrapper system [https://virtualenvwrapper.readthedocs.io] if you have several
add-ons you develop or contribute to.
For example, you could have a development area devoted to Kotti work, ~/kotti, and in there you could have clones of repos for various add-ons.
And for each, or in some combination, you would use virtualenvwrapper to create virtualenvs for working with individual add-ons or Kotti-based projects.
virtualenvwrapper will set these virtualenvs up, by default, in a directory within your home directory.
With this setup, you can do workon kotti_this and workon kotti_that to switch between different virtualenvs.
This is handy for maintaining different sets of dependencies and customizations, and for staying organized.

Contributing to Developer Docs

Kotti uses the Sphinx tool [https://sphinx.readthedocs.io], using reStructuredText [http://sphinx-doc.org/rest.html] to write documents,
stored in docs/ in a directory structure with .rst files.
Use the normal git procedures for first making a branch, e.g., navigation_docs, then after making changes, commit, push to this branch on your fork, and do a pull request from there, just as you would for contributing to the code base.

In your Kotti clone you can install the requirements for building and viewing the documents locally:

python setup.py docs

cd docs/

make html

Then you can check the .html files in the _build/ directory locally, before you
do an actual pull request.

The rendered docs are built and hosted on readthedocs.org.

Contributing to User Docs

The Kotti User Manual [https://kotti-user-manual.readthedocs.io] also uses Sphinx and reStructuredText, but there is a bit more to the procedure, because several additional tools are used.
Selenium [https://selenium-python.readthedocs.io] is used for making screen captures, and thereby helps to actually test Kotti in the process.
blockdiag [http://blockdiag.com] is used to make flow charts and diagrams interjected into the docs.

Please follow the readme instructions in the Kotti User Manual repo [https://github.com/Kotti/kotti_user_manual] to get set up for contributing to the user manual.
Of course, you can do pull requests that change only the text, but please get set up for working with graphics also, because this is a way to do the important task of keeping Kotti user docs up-to-date, guaranteed to have graphics in sync with the latest Kotti version.

The rendered docs are built and hosted on readthedocs.org.

 Change History

Change History

1.3.1.dev0 - unreleased

	When rendering slot views, use request.blank() to create the request.
This is the proper behaviour, in tune with customizing
kotti.request_factory. Also added blank() method to
kotti.testing.DummyRequest.

	When authenticated, show workflow state in the edit bar. Before it was
shown only if the ‘edit’ permission was available.

	Optimize the File edit form: don’t load initial file data to session data
and don’t rewrite the file data after saving the form if that data has not
been changed through the edit form.

	Bugfix: when showing addable content in the menu, check if the factory has
a defined add_view. This avoids a hard crash with, for example, a content
type derived from Content that has no add_view defined.

	Added nav-bar slot to edit/master.pt, edit-bar and nav-bar
slots to view/master.pt

	Bugfix: Simplify 404 page, no longer crash when authenticated

	Change: simplify kotti.util.LinkBase.selected(): use request.view_name
instead of deriving the view name from request.url. Also, consider the View
editor bar entry as selected even when the url doesn’t end with a slash ‘/’

	Feature: add Czech translation.

	Switch from oursql``to ``mysqlclient in tests.

	Setup tests on TravisCI with pip install -e .[testing], making
requirements.txt obsolete.

	Adjust CLI command tests for new versions of Pyramid / plaster.

	remove pytest-warnings from test dependencies (already integrated in
modern pytest versions)

1.3.0 - 2016-10-10

Breaking Changes

	Upgrade to repoze.workflow==1.0b. If your application has a custom
``workflow.zcml``, it needs a little modification: ``state`` and
``transition`` titles are no longer ``key`` nodes, but attributes on the
respective ``state`` or ``transition`` nodes. See Kotti’s ``workflow.zcml``
for an example.

Features and Fixes

	Add a fallback in contents.pt when creation_date or
modification_date is None.

	Transform workflow state title to TranslationStrings without eval and
deprecate it.

	Replace some Python 2 only code with equivalents that also support Python 3.

	Use generic SQLAlchemy type Text as base type for JsonType. This allows
SQLAlchemy to map Text type to the most suitable type available on given
database system. Previously used TEXT type is not available in Oracle
database. In case of existing installation of Kotti with database system,
for which SQLAlchemy maps generic Text type to type different than TEXT it’s
necessary to either convert existing columns “nodes._acl” and
“nodes.annotations” to that type or configure SQLAlchemy to map generic Text
type to existing type of these two columns. For example of how to do this
please see http://stackoverflow.com/a/36506666/95735. For all database
systems for which SQLAlchemy provides dialects except Oracle (Firebird,
Microsoft SQL Server, MySQL, Postgres, SQLite, Sybase) there’s no need to
do anything.

	We use PEP 440 normalized form for the project’s version thus current
“1.3.0-alpha.5-dev” became “1.3.0a5.dev0”.

	Upgrade tests to zope.testbrowser>=5.0.0. This removes the mechanize
and wsgi_intercept dependencies and thus the last blocker for Python 3
compatibility.

	Move pytest config from setup.cfg to new pytest.ini. This
prevents a deprecation warning with pytest>=3.0.

	Rename kotti.testing.TestingRootFactory to
kotti.testing.RootFactory to prevent another deprecation warning with
pytest>=3.0.

1.3.0-alpha.4 - 2015-01-15

This is a alpha release. Blindly upgrading your production environments will
make the universe collapse!

	Add a kotti.depot_replace_wsgi_file_wrapper option to replace the WSGI
file wrapper with pyramid.response.FileIter for problematic environments.

1.3.0-alpha.3 - 2016-01-11

This is a alpha release. Blindly upgrading your production environments will
make the universe collapse!

	Bugfix: don’t try to get api.root via the lineage if not in a location aware
context (for example 404 view). Return the site root instead.

1.3.0-alpha.2 - 2016-01-05

This is a alpha release. Blindly upgrading your production environments will
make the universe collapse!

	Add a custom traverser, which gets all nodes in a single DB query. For deeply
nested trees this results in drastic performance improvements. See
https://kotti.readthedocs.io/en/master/api/kotti.traversal.html for details.

	Bugfix: copy and paste of file nodes wouldn’t create a new depot file, but
instead lead to multiple references to a single file which would cause
undesired results when one of them was deleted later.

	Bugfix: local ‘role:owner’ was not set when a new node was created by copy
and paste.

	Bugfix: kotti.events._update_children_paths could fail under unclear
conditions (at least under Python 2.6 with SQLite).

	Get rid of more browser doctests (converted to webtest).

1.3.0-alpha.1 - 2015-12-22

This is a alpha release. Blindly upgrading your production environments will
make the universe collapse!

	Completely revised Depot integration. See
https://kotti.readthedocs.io/en/latest/developing/advanced/blobs.html
for details.

	Make kotti.resources.SaveDataMixin more versatile in that it now supports
a data_filters attribute (or even a completely overridden data
attribute) on subclasses. For an example for what this is useful, see the
new kotti_image package’s readme and the Depot documentation
(https://depot.readthedocs.io/en/latest/database.html#custom-behaviour-in-attachments).

These changes require a database migration.

A migration script is included, which can be executed by running
kotti-migrate <your.ini> upgrade_all. However, this script will fail if
you subclassed from kotti.resources.Image in your application. It also
doesn’t cover custom classes inherited from kotti.resources.File (other
than Kotti’s Image). Migration of those can be performed easily, by
copying the code from the included migration step to your package’s migration
environment and adjust it to your needs.

	Move all image related code to the new kotti_image add on package.
All classes and functions are imported into their former place, so that code
that imports from there will still be working.

	Fix broken upload type selector.

	Create RFC6266 compliant content disposition headers for non-ASCII filenames.

	Add request.uploaded_file_response method.

1.2.4 - 2015-11-26

	Fix broken packaging of 1.2.3. Sorry for the inconvenience!

1.2.3 - 2015-11-26

	Add Kotti logo and icon to static assets.

	Use Kotti logo as favicon.

	Move favicon definition to separate template to make it easily overridable.

	Fix permission check in kotti.views.util.nodes_tree.

1.2.2 - 2015-10-28

	Add simple, default not found view.

	In workflow-dropdown replace hard-coded permission check with individual
permission checks for each existing transition.

	Upgrade requirements.

1.2.1 - 2015-10-07

	Outfactor the code that runs after successful authentication into a
configurable kotti.login_success_callback function.

	Outfactor the code that runs after a valid password reset request into a
configurable kotti.password_reset_callback function.

	Support principal search on non string attributes.

	Support principal searches matching all arguments
(i.e. using the and operator, or is still the default).

	Support optional –rev with kotti-migrate upgrade.

1.2.0 - 2015-09-27

	Greatly reduce the number of queries that are sent to the DB:
- Add caching for the root node.
- Use eager / joined loading for local_groups.
- Don’t query principals for roles

	Add “missing” foreign key indices (with corresponding migration step).

	Add a kotti.modification_date_excludes configuration option.
It takes a list of attributes in dotted name notation that should not trigger
an update of modification_date on change. Defaults to
kotti.resources.Node.position.

	Don’t try to set a caching header from the NewRequest handler when Pyramid’s
tweens didn’t follow the usual chain of calls. This fixes compatibility with
bowerstatic.

	Don’t assume renderer_name exists in a rendering event (ex.
BeforeRender). The official docstring of pyramid.interfaces.IRenderer is
a bit ambigous in regards to what the system parameter should include
when a renderer gets called. This fixes compatibility with
pyramid_layout.

	Add a kotti.modification_date_excludes configuration option.
It takes a list of attributes in dotted name notation that should not trigger
an update of modification_date on change. Defaults to
kotti.resources.Node.position.

1.1.5 - 2015-09-04

	Fix migration error on MySQL.

	Only wrap methods that do exist on the wrapped type (in
kotti.sqla.MutationList / kotti.sqla.MutationDict). This
fixes an error that occurs when MutationLists are exposed to the UI
via colander.SequenceSchema.

	Upgrade requirements to latest versions (filedepot, waitress).

1.1.4 - 2015-06-27

	Add compatibility with SQLAlchemy 1.0. Also require SQLAlchemy 1.0.6 now.

	Ignore HTTPForbidden exceptions during slot rendering

1.1.3 - 2015-06-17

	Fix a bug in kotti-migrate that prevented initial migration steps from being
run successfully.

	Require kotti_tinymce 0.5.3.

1.1.2 - 2015-06-12

	Enlarge column sizes for name, path and title (see #427).
Upgrading from any version older than 1.1.2 requires you to run a migration
script on your database. To run the migration, call:

$ bin/kotti-migrate <myconfig.ini> upgrade

	Add length validator for title (fix partially #404). See #428

	Remove 40 chars max length constraint for the html segment name
(Kotti.util.title_to_name). See #428

	Update italian translation

	Update documentation

	Add an add_permission attribute to kotti.resources.TypeInfo with a
default value of add. See #436

	Add a “cancel” button to the delete node view.

1.1.1 2015-05-11

	Update scaffold’s README file. See #417.

	Fix broken multifile upload. See #425.

1.1.0 2015-04-16

	Separate the default actions to a kotti.resources.default_actions
variable, to allows easier customization of default actions of all
content types. This is a LinkParent, you can append new
kotti.util.Link objects to its children.

	Add target option to kotti.util.Link. See #405.

	Add sanitizers. See docs/development/advanced/sanitizers and
kotti.sanitizers for details. This fixes #296.

	Added new document on how to customize the edit interface.
See docs/development/advanced/add-to-edit-interface.

	Make it easier to customize default actions by separating them to a new
kotti.resources.default_actions variable. Before, to customize them,
you’d have to change Content.type_info.edit_links[3].children, now you
can mutate default_actions directly. See
docs/development/advanced/add-to-edit-interface for details.

	Upgrade WebOb, html2text, pyramid and xlwt to their latest
stable versions.

1.1.0-alpha.1 - 2015-03-19

	Allow moving File and Image blob data from the database to
configurable storages. To achieve this we use filedepot [https://pypi.python.org/pypi/filedepot/], a third-party
library with several plugin storages already built in. See
docs/developing/advanced/blobs.rst for details on what this brings. Upgrading
from any version older then 1.1.0 requires you to run a migration script on
your database. To run the migration, call:

$ bin/kotti-migrate <myconfig.ini> upgrade

Please note that, before running the migration, you should take the time to
read the documentation and configure your desired storage scheme.

	Allow storing blob data in the database using DBStoredFile and
DBFileStorage, a database centered storage plugin for filedepot. This
storage is the default storage for blob data, unless configured otherwise.

	Added a script to migrate blob data between depot storages. See
docs/developing/advanced/blobs.rst for details on how to use it.

	Simplify serving blob data by using kotti.views.file.UploadedFileResponse,
which also streams data. Please note that the default DBStoredFile still
needs to load its entire data in memory, to benefit from this feature you
should configure another default depot storage.

	Added three new test fixtures: mock_filedepot, to be used in simple unit
tests with no dependency on a database session, filedepot, which
integrates with the dbsession fixture and no_filedepot, a fixture
that can be used in developing tests for new file depot plugins - by
preserving the depot configuration before and after running the test. NOTE:
in order to test edit views with uploaded data in the request, you need to
mixin the filedepot fixture.

	Initialize pyramid.paster.logging for custom commands defined via
kotti.util.command, to allow log message output for kotti sessions
started via custom commands.

	Remove unused kotti.js.

	Remove deprecated kotti.views.slots.local_navigation and
kotti.views.slots.includeme_local_navigation. Use
kotti.views.navigation.local_navigation and
kotti.views.navigation.includeme_local_navigation instead.

	Upgrade plone.scale and SQLAlchemy to their latest stable versions.

	Change height property on body’s widget (RichTextField) for
improved usability. See #403.

1.0.0 - 2015-01-20

	No changes.

1.0.0-alpha.4 - 2015-01-29

	Added experimental Docker support. See #374.

	Allow restricting add views to specific contexts. This allows third party
developers to register new content types that are addable in specific
type of contexts, by specifying context=SomeContentType in their
add view registration and having type_info.addable=['SomeContentType']
in the type info.

	For documents with duplicate titles that end in a number, append a counter
instead of incrementing their number. Fixes #245

	Update all requirements (except alembic) to their latest respective versions.

1.0.0-alpha.3 - 2015-01-13

	Explicitly implement pyramid.interfaces.IRequest for
kotti.request.Request. This allows add-on packages to use
config.add_request_method (with reify) and
config.add_request_property without breaking the interfaces provided by
the request. Fixes #369

1.0.0-alpha.2 - 2015-01-01

	Require kotti_tinymce==0.5.1. This fixes #365.

1.0.0-alpha - 2014-12-20

	Add a new scaffold based on Pyramid’s pcreate. To run the tests for the
scaffold, you must invoke py.test with the --runslow option. This
is enabled by default on Travis.

	kotti._resolve_dotted now return a resolved copy of the settings
(instead of in place resolving as before).

	Factor out DBMS specific patches and make them available to the test fixtures.

	Add new fixtures that can also be used in add on tests:

	custom_settings does nothing and is meant to be overridden in add on
test suites. It allows injection of arbitrary key / values into the
settings dict used in tests.

	unresolved_settings is guaranteed to only contain unresolved string
values (or lists therof).

	settings is now guaranteed to be fully resolved.

	webtest returns a webtest.TestApp instance with support for the
@user marker. This should be used instead of browser doctests for
functional tests.

	Use RTD theme for documentation.

	Use latest versions of all requirements. The only upgrade with notable
differences is lingua (from 1.4 to 3.6.1). This completely changes
lingua’s API. See docs/developing/basic/translations.rst for details on
the greatly simplified new usage.

	Remove code (incl. tests) that has been marked as deprecated since (at least)
Kotti 0.8.

	Revise UI to make better use of Bootstrap 3.

	Allow parameters for move-child-position views to either be in
request.POST or request.json_body.

	Don’t use Pyramid code that is marked as deprecated:

	replace pyramid.security.authenticated_userid with
request.authenticated_userid.

	Deprecate kotti.security.has_permission to be consistent with the
corresponding deprecation in Pyramid 1.5. You should now use
request.has_permission instead.

	Make all values in Node.path end in /. This makes it consistent over
all nodes (including root) and correspond to the values of
request.resource_url. As a side effect querying becomes easier.
However, this might need adjustments in your code if you were expecting the
old path values before. A migration step for DB upgrades is included.

0.10b1 - 2014-07-11

	Add a __json__ method to MutationList and MutationDict.

This is to allow Pyramid’s serializer to just work.

0.10a4 - 2014-06-19

	Upgrade Pyramid to version 1.5.1.

0.10a3 - 2014-06-11

	Upgrade SQLAlchemy and alembic dependencies from 0.8.2 and 0.5.0 to
0.9.4 and 0.6.5 respectively.

	Do not flush within Node.path event handlers. We would
otherwise trigger object handlers with funny object states.

	Fix bug with Node.path where we attach a Node instance to a
parent that has been loaded from the database, but its parents have
not been loaded yet.

	Fix deprecation warnings with regard to Pyramid’s
custom_view_predicates and set_request_property. Also
deprecate kotti.views.util.is_root.

0.10a2 - 2014-06-05

	Add Node.path column. This allows queries based on path, so
it’s much easier just to find all children, grandchildren etc. of a
given node:

DBSession.query(Node).filter(Node.path.startswith(mynode.path))

	Adds session attribute to the request attributes to copy to the slot view request.

Migrations

	Upgrading from 0.9.2 to 0.10 requires you to run a migration script
on your database. To run the migration, call:

$ bin/kotti-migrate <myconfig.ini> upgrade

Make sure you backup your database before running the migration!

0.10a1 - 2014-05-19

	Kotti is now based on Bootstrap 3 (and therefore Deform 2).

THIS IS A BACKWARD INCOMPATIBLE CHANGE W.R.T. MOST TEMPLATES,
INCLUDING FORM TEMPLATES! IF YOUR PROJECT EITHER HAS TEMPLATE
CUSTOMIZATIONS OR DEPENDS ON ADD-ONS THINGS WILL LOOK BROKEN!

If you only use Kotti’s default UI, chances are good that your
application will continue to work well unchanged. Kotti’s API is
mostly unchanged and fully backward compatible though.

	Rework implementation of ‘kotti.util.Link’ (‘ViewLink’) to be more
flexible.

There’s now proper support for nesting ‘edit_links’, so that the
special ‘action_links’ list is no longer necessary. Links now also
make better use of templates for rendering, and are probably easier
to customize overall.

	Added compatiblity for and now require Pyramid>=1.5. #273

	In tests, turned settings and setup_app into fixtures to ease
overriding.

	Add kotti_context_url JS global variable. For more details on why this
is needed see:

	https://github.com/Kotti/kotti_tinymce/issues/19

	https://github.com/Kotti/Kotti/issues/219

	https://github.com/Kotti/kotti_newsitem/issues/2

	https://github.com/Kotti/kotti_calendar/issues/4

	Adds delete permission needed for ‘delete’ and ‘delete_nodes’
views. The default workflow was updated in consequence. It allows to
elaborate more fine grained workflows : for instance, create a role
which can edit a content but not delete it.

To make existent Kotti’s instances using default workflow
compatibles and avoid users that have ‘editor’ role (and so far,
whom have the possibility to edit and delete the content) to not be
able to delete contents, it’s needed to reset workflow with
“kotti-reset-workflow <application ini file>” command.

	Fix #308: Unique name constraint issue during paste of a cut node.

0.9.2 - 2013-10-15

	Fix #268: Convert None to colander.null in get_appstruct so that
serialization doesn’t fail (needed due to recent changes in colander).

0.9.1 - 2013-09-25

	Allow user admins to modify user passwords.

	Require newer kotti_tinymce (source code editing was broken in 0.4).

0.9 - 2013-09-17

	Add multi file content upload. You can now select several files from your
local storage that you want to upload and chose what content nodes shall be
created in your Kotti site. Currently files with MIME types of image/*
can be uploaded and be created as either Image or File nodes, all
other MIME types will be created as File. In future releases (or add-on
products) this can be extended with additional converters allowing for example
to upload HTML files and create Document nodes with the content of the
title tag becoming the node’s title, the content of the body tag
becoming the node’s body and so on.

	Fix #253: Many translations weren’t included in the last release.

‘–use-fuzzy’ translations when running ‘compile_catalog’ adds back
translations that were recently marked as fuzzy. (All translations
that were marked as fuzzy in German were still accurate.)

	Fix #252: Wrap templates where extract_messages failed with <tal:block>

	Fix #249: TinyMCE translations work again.

0.9b2 - 2013-08-20

	Fix #251: Broken comparison of NestedMutationDict and NestedMutationList.

	Update kotti_tinymce to version 4.0.2.

	Fix bug in kotti.views.content.FileEditForm to preserve file
content while editing it.

0.9b1 - 2013-06-26

	Add kotti.util.ViewLink.visible method for better control over
whether a view link should be visible or not. This allows us to
move formerly hardcoded action links defined in
kotti.views.edit.actions into TypeInfo.action_links and thus
make them configurable either globally or per content type.

	kotti.security.view_permitted will now check for
pyramid.security.view_execution_permitted with a request method
set to ‘GET’ by default. It used to check for a view that matches
the current request’s method.

This fixes an issue where kotti.util.ViewLink.permitted would by
mistake check for a ‘POST’ view when the current request was ‘POST’.

	Add INavigationRoot interface and TemplateAPI.navigation_root
property. The latter returns the first content node in the lineage that
implements INavigationRoot or the root node if INavigationRoot is not
implemented by any node in the lineage. Make the nav.pt template use
api.navigation_root instead of api.root. This allows third party
add-ons to define content types that can reside somewhere in the content tree
while still being the root for the navigation.

	Move navigation related view code to new module kotti.views.navigation.
Deprecate imports from the old locations.

	Remove some code that has been deprecated in 0.6 or 0.7.

	A view assigned to a slot can access the slot name where its rendered.

	Add missing transaction.commit() in kotti-reset-workflow.

	Fix bug in kotti.views.util.render_view where local roles weren’t
respected correctly.

	Add helper method kotti.message.send_email for sending general
emails. These emails must follow a particular structure. Look at
kotti:templates/email-set-password.pt as an example.

0.9a2 - 2013-05-04

	Fix #222: Use SQLAlchemy’s before_flush event for object events.

We were using the wrong events previously. The problem with
before_insert, before_update, and before_delete was that event
handlers could not reliably call Session.add, Session.delete,
and change mapped relationships. But only SQLAlchemy 0.8 started
emitting a warning when that was done.

Also deprecated ObjectAfterDelete because I don’t think it’s useful.

	Remove the html5shim from the master templates and use the fanstatic
package js.html5shiv instead.

	A temporary fix for #187. Basically suppresses DetachedInstanceError.

	Add kotti.events.subscribe decorator. See the also updated docs on that
topic / module for details.

0.9a1 - 2013-03-12

	Fix ordering on how include_me functions are loaded. This puts
Kotti’s own and Kotti add-on search paths in front of
deform_bootstrap’s.

	Add image thumbs with preview popovers to @@contents view.

	Add drag’n’drop ordering support to @@contents view.

	Add “toggle all” checkbox to @@contents view.

	Add contents path bar to @@contents view.

0.8 - 2013-03-12

	No changes.

0.8b2 - 2013-02-08

	Fix Kotti’s tests to no longer trigger deprecation warnings.
Kotti’s funcargs need to be better documented still, see #141.

	Add a fanstatic.Group ‘tagit’ and need() it in the defered widget. This is
needed to make the tags widget render correctly with a theme package enabled
until the defered widget is replaced by a widget class that declares its
requirements in the usual deform style.

	Transform setup_users, setup_user and prefs views into
class-based views. Add a little text at subsection Security on
developer manual mentioning those views.

0.8b1 - 2012-12-30

	No changes

0.8a2 - 2012-12-15

	Remove test related dependencies on requirements.txt.
So now we need to run python setup.py dev to get testing
dependencies.

	Update packages versions on requirements.txt for latest working
versions.

	Added a tags display in views for documents, files, folders, and images,
where they show up as a horizontal list between description and body.

	Modified general search to include simple tags searching. The default
search in Kotti works on a simple search term matching basis. Tags
searching is added here in a simple fashion also, such that you can only
search for one tag at a time, but partial matches work: searching for ‘foo’
finds content tagged ‘foo bar’. You can also search on single tags by
clicking an individual tag in the tags display of an item. More
sophisticated tags searching, just as for general search, is left to
dedicated add-ons.

0.8a1 - 2012-11-13

	Make language-dependent URL normalization the default. (How to do
this used to be a cookbook entry.)

	Cleanup node edit actions and use decorated view classes.

	Add contents view with actions for multiple items.

	Add children_with_permission method to ContainerMixin.

	Add UI for default_view selection.

	Deprecate ‘kotti.views.edit.generic_add’ and ‘generic_edit’. Just
use class-based forms instead.

0.7.2 - 2012-10-02

	Improve installation instructions. Now uses tagged requirements.txt
file.

	Added event request POST vars to the request for the slot viewlet.

	Added IFile and IImage interfaces to allow for file and image
subclasses to reuse the same view (registrations).

0.7.1 - 2012-08-30

	Add deletion of users to the users management.

	Fix tag support for files and images.

	Upgrade to Twitter Bootstrap 2.1

	remove lots of CSS that is no longer needed

	fix responsive layout that was broken on some phone size
screen resolutions

	Add “Site Setup” submenu / remove @@setup view.

0.7 - 2012-08-16

	Fix critical issue with migrations where version number would not be
persisted in the Alembic versions table.

0.7rc1 - 2012-08-14

	No changes.

0.7a6 - 2012-08-07

	Fix a bug with connections in the migration script. This would
previously cause Postgres to deadlock when calling
kotti-migrate.

0.7a5 - 2012-08-07

	Add workflow support based on repoze.workflow. A simple
workflow is included in workflow.zcml and is active by default.
Use kotti.use_workflow = 0 to deactivate. The workflow support
adds a drop-down that allows users with state_change permission
to modify the workflow state.

	Change the default layout

Kotti’s new default look is now even closer to the Bootstrap
documentation, with the main nav bar at the very top and the
edit bar right below.

Upgrade note: if you have a customized main_template and want to
use the recent changes in that template, you need to swap
positions of nav.pt and editor-bar.pt api.render_template
calls and remove the search.pt call from the main_template
(it’s now called from within nav.pt).
Everything else is completely optional.

	Add migrations via Alembic. A new script kotti-migrate helps
with managing database upgrades of Kotti and Kotti add-ons. Run
kotti-migrate <your.ini> upgrade to upgrade the Kotti database
to the latest version.

Add-on authors should see the kotti.migrate module’s docstring
for more details.

	Make Document.body searchable (and therefore the search feature
actually useful for the first time).

	Add a “minify” command to compress CSS and JS resources.

To use it run:

python setup.py dev
python setup.py minify

The minify command assumes, that all resources are in
kotti/static/. YUI compressor is used for compression
and will be automatically installed when running
python setup.py dev. However, you still need a JVM on
your development machine to be able to use the minify
command.

	Fix settings: only values for kotti* keys should be converted to
unicode strings.

	Fix #89: Validate email address for uniqueness when user changes it.

	Fix #91: Styling of search box.

	Fix #104: Make fanstatic resources completely overridable.

	Enabled deferred loading on File.data column.

Migrations

	Upgrading from 0.6 to 0.7 requires you to run a migration script on
your database. To run the migration, call:

$ bin/kotti-migrate <myconfig.ini> upgrade

Make sure you backup your database before running the migration!

	Upgrading to 0.7 will initialize workfow state and permissions for
all your content objects, unless you’ve overwritten
kotti-use_workflow to not use a workflow (use 0) or a custom
one.

It is important that sites that have custom permissions,
e.g. custom modifications to SITE_ACL, turn off workflow support
prior to running the upgrade script.

0.7a4 - 2012-06-25

	Add minified versions JS/CSS files.

	Fix #88: logging in with email.

	Update translations.

0.7a3 - 2012-06-15

	Include kotti.tinymce which adds plug-ins for image and file
upload and content linking to the TinyMCE rich text editor.

	Slot renderers have been replaced by normal views (or viewlets).
kotti.views.slots.register has been deprecated in favour of
kotti.views.slots.assign_slot, which works similarly, but takes
a view name of a registered view instead of a function for
registration.

	Switch to fanstatic for static resource management.

Upgrade note: This requires changes to existing *.ini application
configuration files. Concretely, you’ll need to add a
filter:fanstatic section and a pipeline:main section and
rename an existing app:main section to app:Kotti or the
like. Take a look at Kotti’s own development.ini for an
example.

	Retire the undocumented kotti.resources.Setting class and table.
kotti.get_settings will now return registry.settings
straight, without looking for persistent overrides in the database.

	Drop support for Pyramid<1.3, since we use
pyramid.response.FileResponse, and kotti_tinymce uses
pyramid.view.view_defaults.

	Fix encoding error with non-ascii passwords.

0.7a2 - 2012-06-07

	Do not allow inactive users to reset their password.

0.7a1 - 2012-06-01

Features

	Add a new ‘Image’ content type and image scaling, originally from
the kotti_image_gallery add-on. See kotti.image_scales.*
settings.

	Add search and related setting kotti.search_content.

	Add subscriber to set cache headers based on caching rules. See
also related setting kotti.caching_policy_chooser.

	Remove TinyMCE from the core.

	Move email templates into page templates in
kotti:templates/email-set-password.pt and
kotti:templates/email-reset-password.pt. This is to make them
easier to translate and customize. This deprecates
kotti.message.send_set_password.

	Add a ‘edit_inhead’ slot for stuff that goes into the edit
interface’s head. ‘inhead’ is no longer be used in
‘edit/master.pt’.

	For more details, see also
http://danielnouri.org/notes/2012/05/28/kotti-werkpalast-sprint-wrap-up/

Bugs

	Fix bug with group edit views.
See https://github.com/Pylons/Kotti/pull/61

	Fix bug where user.last_login_date was not set during automic
login after the set password screen.

0.6.3 - 2012-05-08

	Add tag support. All content objects now have tags. They can be
added in the UI using the “jQuery UI Tag-it!” widget.
See https://github.com/Pylons/Kotti/pull/55 .

	Fix a bug with file download performance.

0.6.2 - 2012-04-21

	Links in Navigation view lead to node view. Added edit links
to view the node’s edit form.

	Hitting ‘Cancel’ now returns to the context node for add/edit views

0.6.1 - 2012-03-30

	Added button to show/hide nodes from navigation in the order screen.

	The ‘rename’ action now strips slashes out of names. Fixes #53.

	Add Dutch translation.

	Allow translation of TinyMCE’s UI (starting with deform 0.9.5)

	Separated out testing dependencies. Run bin/python setup.py dev
to install Kotti with extra dependencies for testing.

	Deprecate ‘kotti.includes’ setting. Use the standard
‘pyramid.includes’ instead.

	Setting ‘Node.__acl__’ to the empty list will now persist the empty
list instead of setting ‘None’.

	Let ‘pyramid_deform’ take care of configuring deform with
translation dirs and search paths.

0.6.0 - 2012-03-22

	Add Japanese translation.

	Enforce lowercase user names and email with registration and login.

	Moved SQLAlchemy related stuff from kotti.util into kotti.sqla.

	You can also append to ‘Node.__acl__’ now in addition to setting the
attribute.

0.6.0b3 - 2012-03-17

	Have the automatic __tablename__ and polymorphic_identity
for CamelCase class names use underscores, so a class
‘MyFancyDocument’ gets a table name of ‘my_fancy_documents’ and a
type of ‘my_fancy_document’.

0.6.0b2 - 2012-03-16

	Make the ‘item_type’ attribute of AddForm optional. Fixes #41.

	kotti.util.title_to_name will now return a name with a maximum
length of 40. Fixes #31.

0.6.0b1 - 2012-03-15

	Use declarative style instead of class mapper for SQLAlchemy resources.

Unfortunately, this change is backwards incompatible with existing
content types (not with existing databases however). Updating your
types to use Declarative is simple. See kotti_calendar for an
example:
https://github.com/dnouri/kotti_calendar/commit/509d46bd596ff338e0a88f481339882de72e49e0#diff-1

0.5.2 - 2012-03-10

	A new ‘Actions’ menu makes copy, paste, delete and rename of items
more accessible.

	Add German translation.

	Populators no longer need to call transaction.commit()
themselves.

0.5.1 - 2012-02-27

	Internationalize user interface. Add Portuguese as the first
translation.

	A new ‘Add’ menu in the editor toolbar allows for a more intuitive
adding of items in the CMS.

	Refine Node.copy. No longer copy over local roles per default.

0.5.0 - 2012-02-15

	Move Kotti’s default user interface to use Twitter Bootstrap 2.

	Add a new ‘File’ content type.

	Add CSRF protection to some forms.

	Remove Kotti’s FormController in favor of using pyramid_deform.

	Use plone.i18n to normalize titles to URL parts.

	Add a separate navigation screen that replaces the former
intelligent breadcrumbs menu.

	Use pyramid_beaker as the default session factory.

	Make kotti.messages.send_set_password a bit more flexible.

0.4.5 - 2012-01-19

	Add ‘kotti.security.has_permission’ which may be used instead of
‘pyramid.security.has_permission’.

The difference is that Kotti’s version will set the “authorization
context” to be the context that you pass to ‘has_permission’. The
effect is that ‘list_groups’ will return a more correct list of
local roles, i.e. the groups in the given context instead of
‘request.context’.

	Add a template (‘forbidden.pt’) for when user is logged in but still
getting HTTPForbidden.

0.4.4 - 2012-01-05

	The “Forbidden View” will no longer redirect clients that don’t
accept ‘text/html’ to the login form.

	Fix bug with ‘kotti.site_title’ setting.

0.4.3 - 2011-12-22

	Add ‘kotti.root_factory’ setting which allows the override Kotti’s
default Pyramid root factory. Also, make master templates more
robust so that a minimal root with ‘__parent__’ and ‘__name__’ can
be rendered.

	The ‘kotti.tests’ was factored out. Tests should now import from
‘kotti.testing’.

0.4.2 - 2011-12-20

	More convenient overrides for add-on packages by better use of
‘config.commit()’.

0.4.1 - 2011-12-20

	Modularize Kotti’s Paste App Factory ‘kotti.main’.

	Allow explicit setting of tables that Kotti creates
(‘kotti.use_tables’).

0.4.0 - 2011-12-14

	Remove configuration variables ‘kotti.templates.*’ in favour of
‘kotti.asset_overrides’, which uses Pyramid asset specs and their
overrides.

	Remove ‘TemplateAPI.__getitem__’ and instead add ‘TemplateAPI.macro’
which has a similar but less ‘special’ API.

	Factor snippets in ‘kotti/templates/snippets.pt’ out into their own
templates. Use ‘api.render_template’ to render them instead of
macros.

0.3.1 - 2011-12-09

	Add ‘keys’ method to mutation dicts (see 0.3.0).

0.3.0 - 2011-11-30

	Replace Node.__annotations__ in favor of an extended Node.annotations.

Node.annotations will attempt to not only recognize changes to
subobjects of type dict, it will also handle list objects
transparently. That is, changing arbitrary JSON structures should
just work with regard to calling node.annotations.changed() when
the structure was changed.

0.2.10 - 2011-11-22

	‘api.format_datetime’ now also accepts a timestamp in addition to datetime.

0.2.9 - 2011-11-21

	Remove MANIFEST.in in favour of using ‘setuptools-git’.

0.2.8 - 2011-11-21

	Remove ‘PasteScript’ dependency since that would result in spurious
errors when installing Kotti. See
http://jenkins.danielnouri.org/job/Kotti/42/TOXENV=py27/console

0.2.7 - 2011-11-20

	Add ‘PasteScript’ dependency.

	Fix #11 where ‘python setup.py test’ would look into a hard-coded
‘bin’ directory.

	Structural analysis documentation. (Unfinished; in ‘analysis’ directory
during development. Will be moved to main docs when finished.)

0.2.6 - 2011-11-17

	Add Node.__annotations__ convenience attribute.

Node.__annotations__ will wrap the annotations dict in such a way
that both item and attribute access are possible. It’ll also record
changes to dicts inside dicts and mark the parent __annotations__
attribute as dirty.

	Add a welcome page.

	Delete the demo added in version 0.2.4.

0.2.5 - 2011-11-14

	Add ‘TemplateAPI.render_template’; allow templates to be rendered
conveniently from templates.

0.2.4 - 2011-11-13

	Adjust for Pyramid 1.2: INI file, pyramid_tm, Wsgiref server, pcreate and
pserve. (MO)

	Add Kotti Demo source and documentation.

0.2.3 - 2011-10-28

	Node.__getitem__ will now also accept a tuple as key.

folder['1', '2'] is the same as folder['1']['2'], just more
efficient.

	Added a new cache decorator based on repoze.lru.

0.2.2 - 2011-10-10

	Change the function signature of kotti.authn_policy_factory,
kotti.authz_policy_factory and kotti.session_factory to
include all settings from the configuration file.

0.2.1 - 2011-09-29

	Minor changes to events setup code to ease usage in tests.

0.2 - 2011-09-16

	No changes.

0.2a2 - 2011-09-05

	Fix templates to be compatible with Chameleon 2. Also, require
Chameleon>=2.

	Require pyramid>=1.2. Also, enable pyramid_debugtoolbar for
development.ini profile.

0.2a1 - 2011-08-29

	Improve database schema for Nodes. Split Node class into
Node and Content.

This change is backward incompatible in that existing content types
in your code will need to subclass Content instead of Node.
The example in the docs has been updated. Also, the underlying
database schema has changed.

	Improve user database hashing and local roles storage.

	Compatibility fix for Pyramid 1.2.

 Python Module Index

 Python Module Index

 k

 		 	

 		
 k	

 	[image: -]
 	
 kotti	

 	
 	
 kotti.events	

 	
 	
 kotti.fanstatic	

 	
 	
 kotti.filedepot	

 	
 	
 kotti.interfaces	

 	
 	
 kotti.message	

 	
 	
 kotti.migrate	

 	
 	
 kotti.populate	

 	
 	
 kotti.request	

 	
 	
 kotti.resources	

 	
 	
 kotti.sanitizers	

 	
 	
 kotti.security	

 	
 	
 kotti.sqla	

 	
 	
 kotti.testing	

 	
 	
 kotti.tests	

 	
 	
 kotti.traversal	

 	
 	
 kotti.util	

 	
 	
 kotti.views	

 	
 	
 kotti.views.cache	

 	
 	
 kotti.views.edit	

 	
 	
 kotti.views.edit.actions	

 	
 	
 kotti.views.edit.content	

 	
 	
 kotti.views.edit.default_views	

 	
 	
 kotti.views.file	

 	
 	
 kotti.views.form	

 	
 	
 kotti.views.login	

 	
 	
 kotti.views.site_setup	

 	
 	
 kotti.views.slots	

 	
 	
 kotti.views.users	

 	
 	
 kotti.views.util	

 	
 	
 kotti.views.view	

 	
 	
 kotti.workflow	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	AbstractPrincipals (class in kotti.security)

 	actions() (in module kotti.views.edit.actions)

 	add() (kotti.fanstatic.NeededGroup method)

 	add_selectable_default_view() (kotti.resources.TypeInfo method)

 	
 	addable() (kotti.resources.TypeInfo method)

 	AddFormView (class in kotti.views.form)

 	annotations (kotti.resources.Node attribute)

 	assign_slot() (in module kotti.views.slots)

B

 	
 	back() (kotti.views.edit.actions.NodeActions method)

 	BaseFormView (class in kotti.views.form)

 	BaseView (class in kotti.views)

 	
 	body (kotti.resources.Document attribute)

 	breadcrumbs (kotti.views.util.TemplateAPI attribute)

 	browser() (in module kotti.tests)

C

 	
 	camel_case_to_name() (in module kotti.util)

 	change_state() (kotti.views.edit.actions.NodeActions method)

 	children_with_permission() (kotti.resources.ContainerMixin method)

 	cleanup_user_groups() (in module kotti.events)

 	close() (kotti.filedepot.DBStoredFile static method)

 	closed() (kotti.filedepot.DBStoredFile static method)

 	config() (in module kotti.tests)

 	connection() (in module kotti.tests)

 	ContainerMixin (class in kotti.resources)

 	Content (class in kotti.resources)

 	content() (in module kotti.tests)

 	content_id (kotti.resources.TagsToContents attribute)

 	content_length (kotti.filedepot.DBStoredFile attribute)

 	
 	content_type (kotti.filedepot.DBStoredFile attribute)

 	content_type_factories() (in module kotti.views.edit.actions)

 	contents() (in module kotti.views.edit.actions)

 	contents_buttons() (in module kotti.views.edit.actions)

 	continue_to (kotti.views.login.SetPasswordSchema attribute)

 	copy() (kotti.resources.Node method)

 	(kotti.resources.SaveDataMixin method)

 	(kotti.resources.TypeInfo method)

 	copy_node() (kotti.views.edit.actions.NodeActions method)

 	create() (kotti.filedepot.DBFileStorage method)

 	creation_date (kotti.resources.Content attribute)

 	custom_settings() (in module kotti.tests)

 	cut_nodes() (kotti.views.edit.actions.NodeActions method)

D

 	
 	data (kotti.filedepot.DBStoredFile attribute)

 	db_session() (in module kotti.tests)

 	DBFileStorage (class in kotti.filedepot)

 	DBStoredFile (class in kotti.filedepot)

 	default_view (kotti.resources.Content attribute)

 	DefaultRootCache (class in kotti.resources)

 	delete() (kotti.filedepot.DBFileStorage method)

 	delete_node() (kotti.views.edit.actions.NodeActions method)

 	
 	delete_nodes() (kotti.views.edit.actions.NodeActions method)

 	delete_orphaned_tags() (in module kotti.events)

 	depot_tween() (in module kotti.tests)

 	description (kotti.resources.Content attribute)

 	Dispatcher (class in kotti.events)

 	DispatcherDict (class in kotti.events)

 	Document (class in kotti.resources)

 	down() (kotti.views.edit.actions.NodeActions method)

 	dummy_request() (in module kotti.tests)

E

 	
 	EditFormView (class in kotti.views.form)

 	email (kotti.views.login.SetPasswordSchema attribute)

 	events() (in module kotti.tests)

 	
 	exists() (kotti.filedepot.DBFileStorage method)

 	extract_depot_settings() (in module kotti.filedepot)

 	extract_from_settings() (in module kotti.util)

F

 	
 	factory (kotti.security.Principals attribute)

 	File (class in kotti.resources)

 	file_id (kotti.filedepot.DBStoredFile attribute)

 	filedepot() (in module kotti.tests)

 	filename (kotti.filedepot.DBStoredFile attribute)

 	(kotti.resources.SaveDataMixin attribute)

 	
 	FileUploadTempStore (class in kotti.views.form)

 	forbidden_redirect() (in module kotti.views.login)

 	forbidden_view() (in module kotti.views.login)

 	forbidden_view_html() (in module kotti.views.login)

 	Form (class in kotti.views.form)

 	form_class (kotti.views.form.BaseFormView attribute)

 	from_field_storage() (kotti.resources.SaveDataMixin class method)

G

 	
 	get() (kotti.filedepot.DBFileStorage static method)

 	get_root() (in module kotti.resources)

 	(kotti.resources.DefaultRootCache method)

 	
 	group_name (kotti.resources.LocalGroup attribute)

H

 	
 	has_permission() (in module kotti.security)

 	(kotti.request.Request method)

 	(kotti.views.util.TemplateAPI method)

 	
 	hash_password() (kotti.security.AbstractPrincipals method)

 	hide() (kotti.views.edit.actions.NodeActions method)

I

 	
 	IContent (interface in kotti.interfaces)

 	id (kotti.filedepot.DBStoredFile attribute)

 	(kotti.resources.Content attribute)

 	(kotti.resources.Document attribute)

 	(kotti.resources.File attribute)

 	(kotti.resources.LocalGroup attribute)

 	(kotti.resources.Node attribute)

 	(kotti.resources.Tag attribute)

 	IDefaultWorkflow (interface in kotti.interfaces)

 	IDocument (interface in kotti.interfaces)

 	IFile (interface in kotti.interfaces)

 	image_asset() (in module kotti.tests)

 	image_asset2() (in module kotti.tests)

 	impl (kotti.sqla.JsonType attribute)

 	in_navigation (kotti.resources.Content attribute)

 	INavigationRoot (interface in kotti.interfaces)

 	include_testing_view() (in module kotti.testing)

 	includeme() (in module kotti)

 	(in module kotti.events)

 	(in module kotti.filedepot)

 	(in module kotti.sanitizers)

 	(in module kotti.traversal)

 	(in module kotti.views)

 	(in module kotti.views.cache)

 	(in module kotti.views.edit)

 	(in module kotti.views.edit.actions)

 	(in module kotti.views.edit.content)

 	(in module kotti.views.edit.default_views)

 	(in module kotti.views.file)

 	(in module kotti.views.login)

 	(in module kotti.views.users)

 	(in module kotti.views.view)

 	
 	includeme_layout() (in module kotti.testing)

 	includeme_login() (in module kotti.testing)

 	INode (interface in kotti.interfaces)

 	inside() (kotti.views.util.TemplateAPI static method)

 	is_location() (kotti.views.util.TemplateAPI static method)

 	is_uploadable_mimetype() (kotti.resources.TypeInfo method)

 	items (kotti.resources.Tag attribute)

J

 	
 	JsonType (class in kotti.sqla)

K

 	
 	keys() (kotti.resources.ContainerMixin method)

 	(kotti.security.AbstractPrincipals method)

 	kotti (module)

 	kotti.events (module)

 	kotti.fanstatic (module)

 	kotti.filedepot (module)

 	kotti.interfaces (module)

 	kotti.message (module)

 	kotti.migrate (module)

 	kotti.populate (module)

 	kotti.request (module)

 	kotti.resources (module)

 	kotti.sanitizers (module)

 	kotti.security (module)

 	kotti.sqla (module)

 	kotti.testing (module)

 	kotti.tests (module)

 	
 	kotti.traversal (module)

 	kotti.util (module)

 	kotti.views (module)

 	kotti.views.cache (module)

 	kotti.views.edit (module)

 	kotti.views.edit.actions (module)

 	kotti.views.edit.content (module)

 	kotti.views.edit.default_views (module)

 	kotti.views.file (module)

 	kotti.views.form (module)

 	kotti.views.login (module)

 	kotti.views.site_setup (module)

 	kotti.views.slots (module)

 	kotti.views.users (module)

 	kotti.views.util (module)

 	kotti.views.view (module)

 	kotti.workflow (module)

L

 	
 	language (kotti.resources.Content attribute)

 	last_modified (kotti.filedepot.DBStoredFile attribute)

 	lineage (kotti.views.util.TemplateAPI attribute)

 	LinkParent (class in kotti.util)

 	LinkRenderer (class in kotti.util)

 	
 	list_groups() (in module kotti.security)

 	list_groups_callback() (in module kotti.security)

 	LocalGroup (class in kotti.resources)

 	login() (in module kotti.views.login)

 	login_success_callback() (in module kotti.views.login)

 	logout() (in module kotti.views.login)

M

 	
 	mime_type (kotti.resources.Document attribute)

 	mimetype (kotti.resources.SaveDataMixin attribute)

 	minimal_html() (in module kotti.sanitizers)

 	mock_filedepot() (in module kotti.tests)

 	
 	modification_date (kotti.resources.Content attribute)

 	move() (kotti.views.edit.actions.NodeActions method)

 	move_child_position() (in module kotti.views.edit.actions)

 	MutationDict (class in kotti.sqla)

N

 	
 	name (kotti.filedepot.DBStoredFile attribute)

 	(kotti.resources.Node attribute)

 	name_pattern_validator() (in module kotti.views.users)

 	navigation_root (kotti.views.util.TemplateAPI attribute)

 	NeededGroup (class in kotti.fanstatic)

 	
 	no_filedepots() (in module kotti.tests)

 	no_html() (in module kotti.sanitizers)

 	Node (class in kotti.resources)

 	node_id (kotti.resources.LocalGroup attribute)

 	NodeActions (class in kotti.views.edit.actions)

 	NodeTreeTraverser (class in kotti.traversal)

O

 	
 	ObjectAfterDelete (class in kotti.events)

 	ObjectDelete (class in kotti.events)

 	ObjectEvent (class in kotti.events)

 	ObjectEventDispatcher (class in kotti.events)

 	
 	ObjectInsert (class in kotti.events)

 	ObjectType (class in kotti.views.form)

 	ObjectUpdate (class in kotti.events)

 	owner (kotti.resources.Content attribute)

P

 	
 	page_title (kotti.views.util.TemplateAPI attribute)

 	parent_id (kotti.resources.Node attribute)

 	password (kotti.views.login.SetPasswordSchema attribute)

 	paste_nodes() (kotti.views.edit.actions.NodeActions method)

 	path (kotti.resources.Node attribute)

 	populate() (in module kotti.populate)

 	
 	populate_users() (in module kotti.populate)

 	position (kotti.resources.Node attribute)

 	(kotti.resources.TagsToContents attribute)

 	Principal (class in kotti.security)

 	principal_name (kotti.resources.LocalGroup attribute)

 	Principals (class in kotti.security)

 	principals_with_local_roles() (in module kotti.security)

R

 	
 	read() (kotti.filedepot.DBStoredFile method)

 	rename_node() (kotti.views.edit.actions.NodeActions method)

 	rename_nodes() (kotti.views.edit.actions.NodeActions method)

 	replace() (kotti.filedepot.DBFileStorage method)

 	Request (class in kotti.request)

 	
 	reset_content_owner() (in module kotti.events)

 	reset_password_callback() (in module kotti.views.login)

 	root (kotti.views.util.TemplateAPI attribute)

 	root() (in module kotti.tests)

 	root_id (kotti.resources.DefaultRootCache attribute)

S

 	
 	sanitize() (in module kotti.sanitizers)

 	(kotti.views.util.TemplateAPI static method)

 	SaveDataMixin (class in kotti.resources)

 	search() (kotti.security.AbstractPrincipals method)

 	(kotti.security.Principals method)

 	seek() (kotti.filedepot.DBStoredFile method)

 	seekable() (kotti.filedepot.DBStoredFile static method)

 	send_email() (in module kotti.message)

 	set_creation_date() (in module kotti.events)

 	set_groups() (in module kotti.security)

 	set_max_age() (in module kotti.views.cache)

 	
 	set_metadata() (in module kotti.filedepot)

 	set_modification_date() (in module kotti.events)

 	set_owner() (in module kotti.events)

 	set_password() (in module kotti.views.login)

 	set_visibility() (kotti.views.edit.actions.NodeActions method)

 	SetPasswordSchema (class in kotti.views.login)

 	show() (kotti.views.edit.actions.NodeActions method)

 	site_title (kotti.views.util.TemplateAPI attribute)

 	size (kotti.resources.SaveDataMixin attribute)

 	state (kotti.resources.Content attribute)

 	StoredFileResponse (class in kotti.filedepot)

 	subscribe (class in kotti.events)

T

 	
 	Tag (class in kotti.resources)

 	tag (kotti.resources.TagsToContents attribute)

 	tag_id (kotti.resources.TagsToContents attribute)

 	tags (kotti.resources.Content attribute)

 	TagsToContents (class in kotti.resources)

 	tell() (kotti.filedepot.DBStoredFile method)

 	TemplateAPI (class in kotti.views.util)

 	title (kotti.resources.Node attribute)

 	(kotti.resources.Tag attribute)

 	(kotti.resources.TagsToContents attribute)

 	
 	title_to_name() (in module kotti.util)

 	token (kotti.views.login.SetPasswordSchema attribute)

 	traverse() (kotti.traversal.NodeTreeTraverser static method)

 	TweenFactory (class in kotti.filedepot)

 	type (kotti.resources.Node attribute)

 	type_info (kotti.resources.Content attribute)

 	(kotti.resources.Document attribute)

 	TypeInfo (class in kotti.resources)

U

 	
 	up() (kotti.views.edit.actions.NodeActions method)

 	url() (kotti.views.util.TemplateAPI method)

 	
 	user (kotti.request.Request attribute)

 	UserDeleted (class in kotti.events)

 	UserSelfRegistered (class in kotti.views.login)

V

 	
 	validate_file_size_limit() (in module kotti.views.form)

 	validate_password() (kotti.security.AbstractPrincipals method)

 	
 	validate_token() (in module kotti.message)

 	view_content_default() (in module kotti.views.view)

W

 	
 	wire_sqlalchemy() (in module kotti.events)

 	workflow() (in module kotti.tests)

 	(in module kotti.views.edit.actions)

 	
 	workflow_change() (kotti.views.edit.actions.NodeActions method)

 	writable() (kotti.filedepot.DBStoredFile static method)

X

 	
 	xss_protection() (in module kotti.sanitizers)

_images/Kotti.png
build failing.

nav.xhtml

 Table of Contents

 		
 Kotti Documentation

 		
 Overview

 		
 Installation

 		
 Tutorial

 		
 Tutorial Part 1: Creating an add-on and managing static resources

 		
 Tutorial Part 2: A Content Type

 		
 Tutorial Part 3: User interaction

 		
 Basic Topics

 		
 Developer manual

 		
 Security

 		
 Configuration

 		
 Automated tests

 		
 Translations

 		
 Deployment

 		
 Advanced Topics

 		
 Using Kotti as a library

 		
 Close your site to anonymous users

 		
 Default views in Kotti

 		
 Adding links and actions to the edit interface

 		
 Events

 		
 Use a different template for the front page (or any other page)

 		
 Images

 		
 Working with Blob Data in Kotti

 		
 Static resource management

 		
 Understanding Kotti’s startup phase

 		
 Sanitizers

 		
 API documentation

 		
 kotti.events

 		
 kotti.fanstatic

 		
 kotti.interfaces

 		
 kotti.message

 		
 kotti.migrate

 		
 kotti.populate

 		
 kotti.request

 		
 kotti.resources

 		
 kotti.filedepot

 		
 kotti.sanitizers

 		
 kotti.security

 		
 kotti.sqla

 		
 kotti.testing

 		
 kotti.tests

 		
 kotti.traversal

 		
 kotti.util

 		
 kotti.views

 		
 kotti.views.cache

 		
 kotti.views.edit

 		
 kotti.views.file

 		
 kotti.views.form

 		
 kotti.views.login

 		
 kotti.views.site_setup

 		
 kotti.views.slots

 		
 kotti.views.users

 		
 kotti.views.util

 		
 kotti.views.view

