

Welcome to discord.py’s documentation!

Contents:

	Setting Up Logging

	What’s New
	v0.16.6

	v0.16.1

	v0.16.0

	v0.15.1

	v0.15.0

	v0.14.3

	v0.14.2

	v0.14.1

	v0.14.0

	v0.13.0

	v0.12.0

	v0.11.0

	v0.10.0

	Migrating to v0.10.0
	Event Registration

	Event Changes

	Coroutines

	Iterables

	Enumerations

	Properties

	Member Management

	Renamed Functions

	Forced Keyword Arguments

	Running the Client

	API Reference
	Version Related Info

	Client

	Voice

	Event Reference

	Utility Functions

	Application Info

	Enumerations

	Data Classes

	Exceptions

	Frequently Asked Questions
	Coroutines

	General

	Commands Extension

Indices and tables

	Index

	Module Index

	Search Page

New in version 0.6.0.

Setting Up Logging

discord.py logs errors and debug information via the logging [https://docs.python.org/2/library/logging.html] python
module. It is strongly recommended that the logging module is
configured, as no errors or warnings will be output if it is not set up.
Configuration of the logging module can be as simple as:

import logging

logging.basicConfig(level=logging.INFO)

Placed at the start of the application. This will output the logs from
discord as well as other libraries that uses the logging module
directly to the console.

The optional level argument specifies what level of events to log
out and can any of CRITICAL, ERROR, WARNING, INFO, and
DEBUG and if not specified defaults to WARNING.

More advanced setups are possible with the logging module. To for
example write the logs to a file called discord.log instead of
outputting them to to the console the following snippet can be used:

import discord
import logging

logger = logging.getLogger('discord')
logger.setLevel(logging.DEBUG)
handler = logging.FileHandler(filename='discord.log', encoding='utf-8', mode='w')
handler.setFormatter(logging.Formatter('%(asctime)s:%(levelname)s:%(name)s: %(message)s'))
logger.addHandler(handler)

This is recommended, especially at verbose levels such as INFO,
and DEBUG as there are a lot of events logged and it would clog the
stdout of your program.

For more information, check the documentation and tutorial of the
logging [https://docs.python.org/2/library/logging.html] module.

What’s New

This page keeps a detailed human friendly rendering of what’s new and changed
in specific versions.

v0.16.6

Bug Fixes

	Fix issue with Client.create_server() that made it stop working.

	Fix main thread being blocked upon calling StreamPlayer.stop.

	Handle HEARTBEAT_ACK and resume gracefully when it occurs.

	Fix race condition when pre-emptively rate limiting that caused releasing an already released lock.

	Fix invalid state errors when immediately cancelling a coroutine.

v0.16.1

This release is just a bug fix release with some better rate limit implementation.

Bug Fixes

	Servers are now properly chunked for user bots.

	The CDN URL is now used instead of the API URL for assets.

	Rate limit implementation now tries to use header information if possible.

	Event loop is now properly propagated (issue 420 [https://github.com/Rapptz/discord.py/issues/420])

	Allow falsey values in Client.send_message() and Client.send_file().

v0.16.0

New Features

	Add Channel.overwrites to get all the permission overwrites of a channel.

	Add Server.features to get information about partnered servers.

Bug Fixes

	Timeout when waiting for offline members while triggering on_ready().

	The fact that we did not timeout caused a gigantic memory leak in the library that caused
thousands of duplicate Member instances causing big memory spikes.

	Discard null sequences in the gateway.

	The fact these were not discarded meant that on_ready() kept being called instead of
on_resumed(). Since this has been corrected, in most cases on_ready() will be
called once or twice with on_resumed() being called much more often.

v0.15.1

	Fix crash on duplicate or out of order reactions.

v0.15.0

New Features

	Rich Embeds for messages are now supported.

	To do so, create your own Embed and pass the instance to the embed keyword argument to Client.send_message() or Client.edit_message().

	Add Client.clear_reactions() to remove all reactions from a message.

	Add support for MESSAGE_REACTION_REMOVE_ALL event, under on_reaction_clear().

	Add Permissions.update() and PermissionOverwrite.update() for bulk permission updates.

	This allows you to use e.g. p.update(read_messages=True, send_messages=False) in a single line.

	Add PermissionOverwrite.is_empty() to check if the overwrite is empty (i.e. has no overwrites set explicitly as true or false).

For the command extension, the following changed:

	Context is no longer slotted to facilitate setting dynamic attributes.

v0.14.3

Bug Fixes

	Fix crash when dealing with MESSAGE_REACTION_REMOVE

	Fix incorrect buckets for reactions.

v0.14.2

New Features

	
	Client.wait_for_reaction() now returns a namedtuple with reaction and user attributes.

	
	This is for better support in the case that None is returned since tuple unpacking can lead to issues.

Bug Fixes

	Fix bug that disallowed None to be passed for emoji parameter in Client.wait_for_reaction().

v0.14.1

Bug fixes

	
	Fix bug with Reaction not being visible at import.

	
	This was also breaking the documentation.

v0.14.0

This update adds new API features and a couple of bug fixes.

New Features

	Add support for Manage Webhooks permission under Permissions.manage_webhooks

	Add support for around argument in 3.5+ Client.logs_from().

	
	Add support for reactions.

	
	Client.add_reaction() to add a reactions

	Client.remove_reaction() to remove a reaction.

	Client.get_reaction_users() to get the users that reacted to a message.

	Permissions.add_reactions permission bit support.

	Two new events, on_reaction_add() and on_reaction_remove().

	Message.reactions to get reactions from a message.

	Client.wait_for_reaction() to wait for a reaction from a user.

Bug Fixes

	Fix bug with Paginator still allowing lines that are too long.

	Fix the Permissions.manage_emojis bit being incorrect.

v0.13.0

This is a backwards compatible update with new features.

New Features

	Add the ability to manage emojis.

	Client.create_custom_emoji() to create new emoji.

	Client.edit_custom_emoji() to edit an old emoji.

	Client.delete_custom_emoji() to delete a custom emoji.

	Add new Permissions.manage_emojis toggle.

	This applies for PermissionOverwrite as well.

	Add new statuses for Status.

	Status.dnd (aliased with Status.do_not_disturb) for Do Not Disturb.

	Status.invisible for setting your status to invisible (please see the docs for a caveat).

	Deprecate Client.change_status()

	Use Client.change_presence() instead for better more up to date functionality.

	This method is subject for removal in a future API version.

	Add Client.change_presence() for changing your status with the new Discord API change.

	This is the only method that allows changing your status to invisible or do not disturb.

Bug Fixes

	Paginator pages do not exceed their max_size anymore (issue 340 [https://github.com/Rapptz/discord.py/issues/340])

	Do Not Disturb users no longer show up offline due to the new Status changes.

v0.12.0

This is a bug fix update that also comes with new features.

New Features

	Add custom emoji support.

	Adds a new class to represent a custom Emoji named Emoji

	Adds a utility generator function, Client.get_all_emojis().

	Adds a list of emojis on a server, Server.emojis.

	Adds a new event, on_server_emojis_update().

	Add new server regions to ServerRegion

	ServerRegion.eu_central and ServerRegion.eu_west.

	Add support for new pinned system message under MessageType.pins_add.

	Add order comparisons for Role to allow it to be compared with regards to hierarchy.

	This means that you can now do role_a > role_b etc to check if role_b is lower in the hierarchy.

	Add Server.role_hierarchy to get the server’s role hierarchy.

	Add Member.server_permissions to get a member’s server permissions without their channel specific overwrites.

	Add Client.get_user_info() to retrieve a user’s info from their ID.

	Add a new Player property, Player.error to fetch the error that stopped the player.

	To help with this change, a player’s after function can now take a single parameter denoting the current player.

	Add support for server verification levels.

	Adds a new enum called VerificationLevel.

	This enum can be used in Client.edit_server() under the verification_level keyword argument.

	Adds a new attribute in the server, Server.verification_level.

	Add Server.voice_client shortcut property for Client.voice_client_in().

	This is technically old (was added in v0.10.0) but was undocumented until v0.12.0.

For the command extension, the following are new:

	Add custom emoji converter.

	All default converters that can take IDs can now convert via ID.

	Add coroutine support for Bot.command_prefix.

	Add a method to reset command cooldown.

Bug Fixes

	Fix bug that caused the library to not work with the latest websockets library.

	Fix bug that leaked keep alive threads (issue 309 [https://github.com/Rapptz/discord.py/issues/309])

	Fix bug that disallowed ServerRegion from being used in Client.edit_server().

	Fix bug in Channel.permissions_for() that caused permission resolution to happen out of order.

	Fix bug in Member.top_role that did not account for same-position roles.

v0.11.0

This is a minor bug fix update that comes with a gateway update (v5 -> v6).

Breaking Changes

	Permissions.change_nicknames has been renamed to Permissions.change_nickname to match the UI.

New Features

	Add the ability to prune members via Client.prune_members().

	Switch the websocket gateway version to v6 from v5. This allows the library to work with group DMs and 1-on-1 calls.

	Add AppInfo.owner attribute.

	Add CallMessage for group voice call messages.

	Add GroupCall for group voice call information.

	Add Message.system_content to get the system message.

	Add the remaining VIP servers and the Brazil servers into ServerRegion enum.

	Add stderr argument to VoiceClient.create_ffmpeg_player() to redirect stderr.

	The library now handles implicit permission resolution in Channel.permissions_for().

	Add Server.mfa_level to query a server’s 2FA requirement.

	Add Permissions.external_emojis permission.

	Add Member.voice attribute that refers to a VoiceState.

	For backwards compatibility, the member object will have properties mirroring the old behaviour.

For the command extension, the following are new:

	Command cooldown system with the cooldown decorator.

	UserInputError exception for the hierarchy for user input related errors.

Bug Fixes

	Client.email is now saved when using a token for user accounts.

	Fix issue when removing roles out of order.

	Fix bug where discriminators would not update.

	Handle cases where HEARTBEAT opcode is received. This caused bots to disconnect seemingly randomly.

For the command extension, the following bug fixes apply:

	Bot.check decorator is actually a decorator not requiring parentheses.

	Bot.remove_command and Group.remove_command no longer throw if the command doesn’t exist.

	Command names are no longer forced to be lower().

	Fix a bug where Member and User converters failed to work in private message contexts.

	HelpFormatter now ignores hidden commands when deciding the maximum width.

v0.10.0

For breaking changes, see Migrating to v0.10.0. The breaking changes listed there will not be enumerated below. Since this version is rather a big departure from v0.9.2, this change log will be non-exhaustive.

New Features

	The library is now fully asyncio compatible, allowing you to write non-blocking code a lot more easily.

	The library now fully handles 429s and unconditionally retries on 502s.

	A new command extension module was added but is currently undocumented. Figuring it out is left as an exercise to the reader.

	Two new exception types, Forbidden and NotFound to denote permission errors or 404 errors.

	Added Client.delete_invite() to revoke invites.

	Added support for sending voice. Check VoiceClient for more details.

	Added Client.wait_for_message() coroutine to aid with follow up commands.

	Added version_info named tuple to check version info of the library.

	Login credentials are now cached to have a faster login experience. You can disable this by passing in cache_auth=False
when constructing a Client.

	New utility function, discord.utils.get() to simplify retrieval of items based on attributes.

	All data classes now support !=, ==, hash(obj) and str(obj).

	Added Client.get_bans() to get banned members from a server.

	Added Client.invites_from() to get currently active invites in a server.

	Added Server.me attribute to get the Member version of Client.user.

	Most data classes now support a hash(obj) function to allow you to use them in set or dict classes or subclasses.

	Add Message.clean_content() to get a text version of the content with the user and channel mentioned changed into their names.

	Added a way to remove the messages of the user that just got banned in Client.ban().

	Added Client.wait_until_ready() to facilitate easy creation of tasks that require the client cache to be ready.

	Added Client.wait_until_login() to facilitate easy creation of tasks that require the client to be logged in.

	Add discord.Game to represent any game with custom text to send to Client.change_status().

	Add Message.nonce attribute.

	Add Member.permissions_in() as another way of doing Channel.permissions_for().

	Add Client.move_member() to move a member to another voice channel.

	You can now create a server via Client.create_server().

	Added Client.edit_server() to edit existing servers.

	Added Client.server_voice_state() to server mute or server deafen a member.

	If you are being rate limited, the library will now handle it for you.

	Add on_member_ban() and on_member_unban() events that trigger when a member is banned/unbanned.

Performance Improvements

	All data classes now use __slots__ which greatly reduce the memory usage of things kept in cache.

	Due to the usage of asyncio, the CPU usage of the library has gone down significantly.

	A lot of the internal cache lists were changed into dictionaries to change the O(n) lookup into O(1).

	Compressed READY is now on by default. This means if you’re on a lot of servers (or maybe even a few) you would
receive performance improvements by having to download and process less data.

	While minor, change regex from \d+ to [0-9]+ to avoid unnecessary unicode character lookups.

Bug Fixes

	Fix bug where guilds being updated did not edit the items in cache.

	Fix bug where member.roles were empty upon joining instead of having the @everyone role.

	Fix bug where Role.is_everyone() was not being set properly when the role was being edited.

	Client.logs_from() now handles cases where limit > 100 to sidestep the discord API limitation.

	Fix bug where a role being deleted would trigger a ValueError.

	Fix bug where Permissions.kick_members() and Permissions.ban_members() were flipped.

	Mentions are now triggered normally. This was changed due to the way discord handles it internally.

	Fix issue when a Message would attempt to upgrade a Message.server when the channel is
a Object.

	Unavailable servers were not being added into cache, this has been corrected.

Migrating to v0.10.0

v0.10.0 is one of the biggest breaking changes in the library due to massive
fundamental changes in how the library operates.

The biggest major change is that the library has dropped support to all versions prior to
Python 3.4.2. This was made to support asyncio, in which more detail can be seen
in the corresponding issue [https://github.com/Rapptz/discord.py/issues/50]. To reiterate this, the implication is that
python version 2.7 and 3.3 are no longer supported.

Below are all the other major changes from v0.9.0 to v0.10.0.

Event Registration

All events before were registered using Client.event(). While this is still
possible, the events must be decorated with @asyncio.coroutine.

Before:

@client.event
def on_message(message):
 pass

After:

@client.event
@asyncio.coroutine
def on_message(message):
 pass

Or in Python 3.5+:

@client.event
async def on_message(message):
 pass

Because there is a lot of typing, a utility decorator (Client.async_event()) is provided
for easier registration. For example:

@client.async_event
def on_message(message):
 pass

Be aware however, that this is still a coroutine and your other functions that are coroutines must
be decorated with @asyncio.coroutine or be async def.

Event Changes

Some events in v0.9.0 were considered pretty useless due to having no separate states. The main
events that were changed were the _update events since previously they had no context on what
was changed.

Before:

def on_channel_update(channel): pass
def on_member_update(member): pass
def on_status(member): pass
def on_server_role_update(role): pass
def on_voice_state_update(member): pass
def on_socket_raw_send(payload, is_binary): pass

After:

def on_channel_update(before, after): pass
def on_member_update(before, after): pass
def on_server_role_update(before, after): pass
def on_voice_state_update(before, after): pass
def on_socket_raw_send(payload): pass

Note that on_status was removed. If you want its functionality, use on_member_update().
See Event Reference for more information. Other removed events include on_socket_closed, on_socket_receive, and on_socket_opened.

Coroutines

The biggest change that the library went through is that almost every function in Client
was changed to be a coroutine [https://docs.python.org/3/library/asyncio-task.html]. Functions
that are marked as a coroutine in the documentation must be awaited from or yielded from in order
for the computation to be done. For example…

Before:

client.send_message(message.channel, 'Hello')

After:

yield from client.send_message(message.channel, 'Hello')

or in python 3.5+
await client.send_message(message.channel, 'Hello')

In order for you to yield from or await a coroutine then your function must be decorated
with @asyncio.coroutine or async def.

Iterables

For performance reasons, many of the internal data structures were changed into a dictionary to support faster
lookup. As a consequence, this meant that some lists that were exposed via the API have changed into iterables
and not sequences. In short, this means that certain attributes now only support iteration and not any of the
sequence functions.

The affected attributes are as follows:

	Client.servers

	Client.private_channels

	Server.channels

	Server.members

Some examples of previously valid behaviour that is now invalid

if client.servers[0].name == "test":
 # do something

Since they are no longer lists, they no longer support indexing or any operation other than iterating.
In order to get the old behaviour you should explicitly cast it to a list.

servers = list(client.servers)
work with servers

Warning

Due to internal changes of the structure, the order you receive the data in
is not in a guaranteed order.

Enumerations

Due to dropping support for versions lower than Python 3.4.2, the library can now use
enumerations [https://docs.python.org/3/library/enum.html] in places where it makes sense.

The common places where this was changed was in the server region, member status, and channel type.

Before:

server.region == 'us-west'
member.status == 'online'
channel.type == 'text'

After:

server.region == discord.ServerRegion.us_west
member.status = discord.Status.online
channel.type == discord.ChannelType.text

The main reason for this change was to reduce the use of finicky strings in the API as this
could give users a false sense of power. More information can be found in the Enumerations page.

Properties

A lot of function calls that returned constant values were changed into Python properties for ease of use
in format strings.

The following functions were changed into properties:

	Before

	After

	User.avatar_url()

	User.avatar_url

	User.mention()

	User.mention

	Channel.mention()

	Channel.mention

	Channel.is_default_channel()

	Channel.is_default

	Role.is_everyone()

	Role.is_everyone

	Server.get_default_role()

	Server.default_role

	Server.icon_url()

	Server.icon_url

	Server.get_default_channel()

	Server.default_channel

	Message.get_raw_mentions()

	Message.raw_mentions

	Message.get_raw_channel_mentions()

	Message.raw_channel_mentions

Member Management

Functions that involved banning and kicking were changed.

	Before

	After

	Client.ban(server, user)

	Client.ban(member)

	Client.kick(server, user)

	Client.kick(member)

Renamed Functions

Functions have been renamed.

	Before

	After

	Client.set_channel_permissions

	Client.edit_channel_permissions()

All the Permissions related attributes have been renamed and the can_ prefix has been
dropped. So for example, can_manage_messages has become manage_messages.

Forced Keyword Arguments

Since 3.0+ of Python, we can now force questions to take in forced keyword arguments. A keyword argument is when you
explicitly specify the name of the variable and assign to it, for example: foo(name='test'). Due to this support,
some functions in the library were changed to force things to take said keyword arguments. This is to reduce errors of
knowing the argument order and the issues that could arise from them.

The following parameters are now exclusively keyword arguments:

	
	Client.send_message()

	
	tts

	
	Client.logs_from()

	
	before

	after

	
	Client.edit_channel_permissions()

	
	allow

	deny

In the documentation you can tell if a function parameter is a forced keyword argument if it is after *,
in the function signature.

Running the Client

In earlier versions of discord.py, client.run() was a blocking call to the main thread
that called it. In v0.10.0 it is still a blocking call but it handles the event loop for you.
However, in order to do that you must pass in your credentials to Client.run().

Basically, before:

client.login('token')
client.run()

After:

client.run('token')

Warning

Like in the older Client.run function, the newer one must be the one of
the last functions to call. This is because the function is blocking. Registering
events or doing anything after Client.run() will not execute until the function
returns.

This is a utility function that abstracts the event loop for you. There’s no need for
the run call to be blocking and out of your control. Indeed, if you want control of the
event loop then doing so is quite straightforward:

import discord
import asyncio

client = discord.Client()

@asyncio.coroutine
def main_task():
 yield from client.login('token')
 yield from client.connect()

loop = asyncio.get_event_loop()
try:
 loop.run_until_complete(main_task())
except:
 loop.run_until_complete(client.logout())
finally:
 loop.close()

API Reference

The following section outlines the API of discord.py.

Note

This module uses the Python logging module to log diagnostic and errors
in an output independent way. If the logging module is not configured,
these logs will not be output anywhere. See Setting Up Logging for
more information on how to set up and use the logging module with
discord.py.

Version Related Info

There are two main ways to query version information about the library.

	
discord.version_info

	A named tuple that is similar to sys.version_info [https://docs.python.org/3.5/library/sys.html#sys.version_info].

Just like sys.version_info [https://docs.python.org/3.5/library/sys.html#sys.version_info] the valid values for releaselevel are
‘alpha’, ‘beta’, ‘candidate’ and ‘final’.

	
discord.__version__

	A string representation of the version. e.g. '0.10.0-alpha0'.

Client

	
class discord.Client(*, loop=None, **options)

	Represents a client connection that connects to Discord.
This class is used to interact with the Discord WebSocket and API.

A number of options can be passed to the Client.

	Parameters

	
	max_messages (Optional[int]) – The maximum number of messages to store in messages.
This defaults to 5000. Passing in None or a value less than 100
will use the default instead of the passed in value.

	loop (Optional[event loop]) – The event loop [https://docs.python.org/3/library/asyncio-eventloops.html] to use for asynchronous operations. Defaults to None,
in which case the default event loop is used via asyncio.get_event_loop().

	cache_auth (Optional[bool]) – Indicates if login() should cache the authentication tokens. Defaults
to True. The method in which the cache is written is done by writing to
disk to a temporary directory.

	connector (aiohttp.BaseConnector) – The connector [http://aiohttp.readthedocs.org/en/stable/client_reference.html#connectors] to use for connection pooling. Useful for proxies, e.g.
with a ProxyConnector [http://aiohttp.readthedocs.org/en/stable/client_reference.html#proxyconnector].

	shard_id (Optional[int]) – Integer starting at 0 and less than shard_count.

	shard_count (Optional[int]) – The total number of shards.

	
user

	Optional[User] – Represents the connected client. None if not logged in.

	
voice_clients

	iterable of VoiceClient – Represents a list of voice connections. To connect to voice use
join_voice_channel(). To query the voice connection state use
is_voice_connected().

	
servers

	iterable of Server – The servers that the connected client is a member of.

	
private_channels

	iterable of PrivateChannel – The private channels that the connected client is participating on.

	
messages

	A deque [https://docs.python.org/3.4/library/collections.html#collections.deque] of Message that the client has received from all
servers and private messages. The number of messages stored in this
deque is controlled by the max_messages parameter.

	
email

	The email used to login. This is only set if login is successful,
otherwise it’s None.

	
ws

	The websocket gateway the client is currently connected to. Could be None.

	
loop

	The event loop [https://docs.python.org/3/library/asyncio-eventloops.html] that the client uses for HTTP requests and websocket operations.

	
on_error(event_method, *args, **kwargs)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

The default error handler provided by the client.

By default this prints to sys.stderr however it could be
overridden to have a different implementation.
Check discord.on_error() for more details.

	
login(*args, **kwargs)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Logs in the client with the specified credentials.

This function can be used in two different ways.

await client.login('token')

or

await client.login('email', 'password')

More than 2 parameters or less than 1 parameter raises a
TypeError.

	Parameters

	bot (bool) – Keyword argument that specifies if the account logging on is a bot
token or not. Only useful for logging in with a static token.
Ignored for the email and password combo. Defaults to True.

	Raises

	
	LoginFailure – The wrong credentials are passed.

	HTTPException – An unknown HTTP related error occurred,
usually when it isn’t 200 or the known incorrect credentials
passing status code.

	TypeError – The incorrect number of parameters is passed.

	
logout()

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Logs out of Discord and closes all connections.

	
connect()

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Creates a websocket connection and lets the websocket listen
to messages from discord.

	Raises

	
	GatewayNotFound – If the gateway to connect to discord is not found. Usually if this
is thrown then there is a discord API outage.

	ConnectionClosed – The websocket connection has been terminated.

	
close()

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Closes the connection to discord.

	
start(*args, **kwargs)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

A shorthand coroutine for login() + connect().

	
run(*args, **kwargs)

	A blocking call that abstracts away the event loop [https://docs.python.org/3/library/asyncio-eventloops.html]
initialisation from you.

If you want more control over the event loop then this
function should not be used. Use start() coroutine
or connect() + login().

Roughly Equivalent to:

try:
 loop.run_until_complete(start(*args, **kwargs))
except KeyboardInterrupt:
 loop.run_until_complete(logout())
 # cancel all tasks lingering
finally:
 loop.close()

Warning

This function must be the last function to call due to the fact that it
is blocking. That means that registration of events or anything being
called after this function call will not execute until it returns.

	
is_logged_in

	bool – Indicates if the client has logged in successfully.

	
is_closed

	bool – Indicates if the websocket connection is closed.

	
get_channel(id)

	Returns a Channel or PrivateChannel with the following ID. If not found, returns None.

	
get_server(id)

	Returns a Server with the given ID. If not found, returns None.

	
get_all_emojis()

	Returns a generator with every Emoji the client can see.

	
get_all_channels()

	A generator that retrieves every Channel the client can ‘access’.

This is equivalent to:

for server in client.servers:
 for channel in server.channels:
 yield channel

Note

Just because you receive a Channel does not mean that
you can communicate in said channel. Channel.permissions_for() should
be used for that.

	
get_all_members()

	Returns a generator with every Member the client can see.

This is equivalent to:

for server in client.servers:
 for member in server.members:
 yield member

	
wait_until_ready()

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

This coroutine waits until the client is all ready. This could be considered
another way of asking for discord.on_ready() except meant for your own
background tasks.

	
wait_until_login()

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

This coroutine waits until the client is logged on successfully. This
is different from waiting until the client’s state is all ready. For
that check discord.on_ready() and wait_until_ready().

	
wait_for_message(timeout=None, *, author=None, channel=None, content=None, check=None)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Waits for a message reply from Discord. This could be seen as another
discord.on_message() event outside of the actual event. This could
also be used for follow-ups and easier user interactions.

The keyword arguments passed into this function are combined using the logical and
operator. The check keyword argument can be used to pass in more complicated
checks and must be a regular function (not a coroutine).

The timeout parameter is passed into asyncio.wait_for [https://docs.python.org/3/library/asyncio-task.html#asyncio.wait_for]. By default, it
does not timeout. Instead of throwing asyncio.TimeoutError the coroutine
catches the exception and returns None instead of a Message.

If the check predicate throws an exception, then the exception is propagated.

This function returns the first message that meets the requirements.

Examples

Basic example:

@client.event
async def on_message(message):
 if message.content.startswith('$greet'):
 await client.send_message(message.channel, 'Say hello')
 msg = await client.wait_for_message(author=message.author, content='hello')
 await client.send_message(message.channel, 'Hello.')

Asking for a follow-up question:

@client.event
async def on_message(message):
 if message.content.startswith('$start'):
 await client.send_message(message.channel, 'Type $stop 4 times.')
 for i in range(4):
 msg = await client.wait_for_message(author=message.author, content='$stop')
 fmt = '{} left to go...'
 await client.send_message(message.channel, fmt.format(3 - i))

 await client.send_message(message.channel, 'Good job!')

Advanced filters using check:

@client.event
async def on_message(message):
 if message.content.startswith('$cool'):
 await client.send_message(message.channel, 'Who is cool? Type $name namehere')

 def check(msg):
 return msg.content.startswith('$name')

 message = await client.wait_for_message(author=message.author, check=check)
 name = message.content[len('$name'):].strip()
 await client.send_message(message.channel, '{} is cool indeed'.format(name))

	Parameters

	
	timeout (float) – The number of seconds to wait before returning None.

	author (Member or User) – The author the message must be from.

	channel (Channel or PrivateChannel or Object) – The channel the message must be from.

	content (str) – The exact content the message must have.

	check (function) – A predicate for other complicated checks. The predicate must take
a Message as its only parameter.

	Returns

	The message that you requested for.

	Return type

	Message

	
wait_for_reaction(emoji=None, *, user=None, timeout=None, message=None, check=None)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Waits for a message reaction from Discord. This is similar to wait_for_message()
and could be seen as another on_reaction_add() event outside of the actual event.
This could be used for follow up situations.

Similar to wait_for_message(), the keyword arguments are combined using logical
AND operator. The check keyword argument can be used to pass in more complicated
checks and must a regular function taking in two arguments, (reaction, user). It
must not be a coroutine.

The timeout parameter is passed into asyncio.wait_for. By default, it
does not timeout. Instead of throwing asyncio.TimeoutError the coroutine
catches the exception and returns None instead of a the (reaction, user)
tuple.

If the check predicate throws an exception, then the exception is propagated.

The emoji parameter can be either a Emoji, a str representing
an emoji, or a sequence of either type. If the emoji parameter is a sequence
then the first reaction emoji that is in the list is returned. If None is
passed then the first reaction emoji used is returned.

This function returns the first reaction that meets the requirements.

Examples

Basic Example:

@client.event
async def on_message(message):
 if message.content.startswith('$react'):
 msg = await client.send_message(message.channel, 'React with thumbs up or thumbs down.')
 res = await client.wait_for_reaction(['👍', '👎'], message=msg)
 await client.send_message(message.channel, '{0.user} reacted with {0.reaction.emoji}!'.format(res))

Checking for reaction emoji regardless of skin tone:

@client.event
async def on_message(message):
 if message.content.startswith('$react'):
 msg = await client.send_message(message.channel, 'React with thumbs up or thumbs down.')

 def check(reaction, user):
 e = str(reaction.emoji)
 return e.startswith(('👍', '👎'))

 res = await client.wait_for_reaction(message=msg, check=check)
 await client.send_message(message.channel, '{0.user} reacted with {0.reaction.emoji}!'.format(res))

	Parameters

	
	timeout (float) – The number of seconds to wait before returning None.

	user (Member or User) – The user the reaction must be from.

	emoji (str or Emoji or sequence) – The emoji that we are waiting to react with.

	message (Message) – The message that we want the reaction to be from.

	check (function) – A predicate for other complicated checks. The predicate must take
(reaction, user) as its two parameters, which reaction being a
Reaction and user being either a User or a
Member.

	Returns

	A namedtuple with attributes reaction and user similar to on_reaction_add().

	Return type

	namedtuple

	
event(coro)

	A decorator that registers an event to listen to.

You can find more info about the events on the documentation below.

The events must be a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine], if not, ClientException is raised.

Examples

Using the basic event() decorator:

@client.event
@asyncio.coroutine
def on_ready():
 print('Ready!')

Saving characters by using the async_event() decorator:

@client.async_event
def on_ready():
 print('Ready!')

	
async_event(coro)

	A shorthand decorator for asyncio.coroutine + event().

	
start_private_message(user)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Starts a private message with the user. This allows you to
send_message() to the user.

Note

This method should rarely be called as send_message()
does it automatically for you.

	Parameters

	user (User) – The user to start the private message with.

	Raises

	
	HTTPException – The request failed.

	InvalidArgument – The user argument was not of User.

	
add_reaction(message, emoji)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Add a reaction to the given message.

The message must be a Message that exists. emoji may be a unicode emoji,
or a custom server Emoji.

	Parameters

	
	message (Message) – The message to react to.

	emoji (Emoji or str) – The emoji to react with.

	Raises

	
	HTTPException – Adding the reaction failed.

	Forbidden – You do not have the proper permissions to react to the message.

	NotFound – The message or emoji you specified was not found.

	InvalidArgument – The message or emoji parameter is invalid.

	
remove_reaction(message, emoji, member)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Remove a reaction by the member from the given message.

If member != server.me, you need Manage Messages to remove the reaction.

The message must be a Message that exists. emoji may be a unicode emoji,
or a custom server Emoji.

	Parameters

	
	message (Message) – The message.

	emoji (Emoji or str) – The emoji to remove.

	member (Member) – The member for which to delete the reaction.

	Raises

	
	HTTPException – Removing the reaction failed.

	Forbidden – You do not have the proper permissions to remove the reaction.

	NotFound – The message or emoji you specified was not found.

	InvalidArgument – The message or emoji parameter is invalid.

	
get_reaction_users(reaction, limit=100, after=None)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Get the users that added a reaction to a message.

	Parameters

	
	reaction (Reaction) – The reaction to retrieve users for.

	limit (int) – The maximum number of results to return.

	after (Member or Object) – For pagination, reactions are sorted by member.

	Raises

	
	HTTPException – Getting the users for the reaction failed.

	NotFound – The message or emoji you specified was not found.

	InvalidArgument – The reaction parameter is invalid.

	
clear_reactions(message)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Removes all the reactions from a given message.

You need Manage Messages permission to use this.

	Parameters

	message (Message) – The message to remove all reactions from.

	Raises

	
	HTTPException – Removing the reactions failed.

	Forbidden – You do not have the proper permissions to remove all the reactions.

	
send_message(destination, content=None, *, tts=False, embed=None)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Sends a message to the destination given with the content given.

The destination could be a Channel, PrivateChannel or Server.
For convenience it could also be a User. If it’s a User or PrivateChannel
then it sends the message via private message, otherwise it sends the message to the channel.
If the destination is a Server then it’s equivalent to calling
Server.default_channel and sending it there.

If it is a Object instance then it is assumed to be the
destination ID. The destination ID is a channel so passing in a user
ID will not be a valid destination.

Changed in version 0.9.0: str being allowed was removed and replaced with Object.

The content must be a type that can convert to a string through str(content).
If the content is set to None (the default), then the embed parameter must
be provided.

If the embed parameter is provided, it must be of type Embed and
it must be a rich embed type.

	Parameters

	
	destination – The location to send the message.

	content – The content of the message to send. If this is missing,
then the embed parameter must be present.

	tts (bool) – Indicates if the message should be sent using text-to-speech.

	embed (Embed) – The rich embed for the content.

	Raises

	
	HTTPException – Sending the message failed.

	Forbidden – You do not have the proper permissions to send the message.

	NotFound – The destination was not found and hence is invalid.

	InvalidArgument – The destination parameter is invalid.

Examples

Sending a regular message:

await client.send_message(message.channel, 'Hello')

Sending a TTS message:

await client.send_message(message.channel, 'Goodbye.', tts=True)

Sending an embed message:

em = discord.Embed(title='My Embed Title', description='My Embed Content.', colour=0xDEADBF)
em.set_author(name='Someone', icon_url=client.user.default_avatar_url)
await client.send_message(message.channel, embed=em)

	Returns

	The message that was sent.

	Return type

	Message

	
send_typing(destination)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Send a typing status to the destination.

Typing status will go away after 10 seconds, or after a message is sent.

The destination parameter follows the same rules as send_message().

	Parameters

	destination – The location to send the typing update.

	
send_file(destination, fp, *, filename=None, content=None, tts=False)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Sends a message to the destination given with the file given.

The destination parameter follows the same rules as send_message().

The fp parameter should be either a string denoting the location for a
file or a file-like object. The file-like object passed is not closed
at the end of execution. You are responsible for closing it yourself.

Note

If the file-like object passed is opened via open then the modes
‘rb’ should be used.

The filename parameter is the filename of the file.
If this is not given then it defaults to fp.name or if fp is a string
then the filename will default to the string given. You can overwrite
this value by passing this in.

	Parameters

	
	destination – The location to send the message.

	fp – The file-like object or file path to send.

	filename (str) – The filename of the file. Defaults to fp.name if it’s available.

	content – The content of the message to send along with the file. This is
forced into a string by a str(content) call.

	tts (bool) – If the content of the message should be sent with TTS enabled.

	Raises

	HTTPException – Sending the file failed.

	Returns

	The message sent.

	Return type

	Message

	
delete_message(message)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Deletes a Message.

Your own messages could be deleted without any proper permissions. However to
delete other people’s messages, you need the proper permissions to do so.

	Parameters

	message (Message) – The message to delete.

	Raises

	
	Forbidden – You do not have proper permissions to delete the message.

	HTTPException – Deleting the message failed.

	
delete_messages(messages)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Deletes a list of messages. This is similar to delete_message()
except it bulk deletes multiple messages.

The channel to check where the message is deleted from is handled via
the first element of the iterable’s .channel.id attributes. If the
channel is not consistent throughout the entire sequence, then an
HTTPException will be raised.

Usable only by bot accounts.

	Parameters

	messages (iterable of Message) – An iterable of messages denoting which ones to bulk delete.

	Raises

	
	ClientException – The number of messages to delete is less than 2 or more than 100.

	Forbidden – You do not have proper permissions to delete the messages or
you’re not using a bot account.

	HTTPException – Deleting the messages failed.

	
purge_from(channel, *, limit=100, check=None, before=None, after=None, around=None)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Purges a list of messages that meet the criteria given by the predicate
check. If a check is not provided then all messages are deleted
without discrimination.

You must have Manage Messages permission to delete messages even if they
are your own. The Read Message History permission is also needed to
retrieve message history.

Usable only by bot accounts.

	Parameters

	
	channel (Channel) – The channel to purge from.

	limit (int) – The number of messages to search through. This is not the number
of messages that will be deleted, though it can be.

	check (predicate) – The function used to check if a message should be deleted.
It must take a Message as its sole parameter.

	before (Message or datetime) – The message or date before which all deleted messages must be.
If a date is provided it must be a timezone-naive datetime representing UTC time.

	after (Message or datetime) – The message or date after which all deleted messages must be.
If a date is provided it must be a timezone-naive datetime representing UTC time.

	around (Message or datetime) – The message or date around which all deleted messages must be.
If a date is provided it must be a timezone-naive datetime representing UTC time.

	Raises

	
	Forbidden – You do not have proper permissions to do the actions required or
you’re not using a bot account.

	HTTPException – Purging the messages failed.

Examples

Deleting bot’s messages

def is_me(m):
 return m.author == client.user

deleted = await client.purge_from(channel, limit=100, check=is_me)
await client.send_message(channel, 'Deleted {} message(s)'.format(len(deleted)))

	Returns

	The list of messages that were deleted.

	Return type

	list

	
edit_message(message, new_content=None, *, embed=None)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Edits a Message with the new message content.

The new_content must be able to be transformed into a string via str(new_content).

If the new_content is not provided, then embed must be provided, which must
be of type Embed.

The Message object is not directly modified afterwards until the
corresponding WebSocket event is received.

	Parameters

	
	message (Message) – The message to edit.

	new_content – The new content to replace the message with.

	embed (Embed) – The new embed to replace the original embed with.

	Raises

	HTTPException – Editing the message failed.

	Returns

	The new edited message.

	Return type

	Message

	
get_message(channel, id)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Retrieves a single Message from a Channel.

This can only be used by bot accounts.

	Parameters

	
	channel (Channel or PrivateChannel) – The text channel to retrieve the message from.

	id (str) – The message ID to look for.

	Returns

	The message asked for.

	Return type

	Message

	Raises

	
	NotFound – The specified channel or message was not found.

	Forbidden – You do not have the permissions required to get a message.

	HTTPException – Retrieving the message failed.

	
pin_message(message)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Pins a message. You must have Manage Messages permissions
to do this in a non-private channel context.

	Parameters

	message (Message) – The message to pin.

	Raises

	
	Forbidden – You do not have permissions to pin the message.

	NotFound – The message or channel was not found.

	HTTPException – Pinning the message failed, probably due to the channel
having more than 50 pinned messages.

	
unpin_message(message)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Unpins a message. You must have Manage Messages permissions
to do this in a non-private channel context.

	Parameters

	message (Message) – The message to unpin.

	Raises

	
	Forbidden – You do not have permissions to unpin the message.

	NotFound – The message or channel was not found.

	HTTPException – Unpinning the message failed.

	
pins_from(channel)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Returns a list of Message that are currently pinned for
the specified Channel or PrivateChannel.

	Parameters

	channel (Channel or PrivateChannel) – The channel to look through pins for.

	Raises

	
	NotFound – The channel was not found.

	HTTPException – Retrieving the pinned messages failed.

	
logs_from(channel, limit=100, *, before=None, after=None, around=None, reverse=False)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

This coroutine returns a generator that obtains logs from a specified channel.

	Parameters

	
	channel (Channel or PrivateChannel) – The channel to obtain the logs from.

	limit (int) – The number of messages to retrieve.

	before (Message or datetime) – The message or date before which all returned messages must be.
If a date is provided it must be a timezone-naive datetime representing UTC time.

	after (Message or datetime) – The message or date after which all returned messages must be.
If a date is provided it must be a timezone-naive datetime representing UTC time.

	around (Message or datetime) – The message or date around which all returned messages must be.
If a date is provided it must be a timezone-naive datetime representing UTC time.

	Raises

	
	Forbidden – You do not have permissions to get channel logs.

	NotFound – The channel you are requesting for doesn’t exist.

	HTTPException – The request to get logs failed.

	Yields

	Message – The message with the message data parsed.

Examples

Basic logging:

logs = yield from client.logs_from(channel)
for message in logs:
 if message.content.startswith('!hello'):
 if message.author == client.user:
 yield from client.edit_message(message, 'goodbye')

Python 3.5 Usage

counter = 0
async for message in client.logs_from(channel, limit=500):
 if message.author == client.user:
 counter += 1

	
request_offline_members(server)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Requests previously offline members from the server to be filled up
into the Server.members cache. This function is usually not
called.

When the client logs on and connects to the websocket, Discord does
not provide the library with offline members if the number of members
in the server is larger than 250. You can check if a server is large
if Server.large is True.

	Parameters

	server (Server or iterable) – The server to request offline members for. If this parameter is a
iterable then it is interpreted as an iterator of servers to
request offline members for.

	
kick(member)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Kicks a Member from the server they belong to.

Warning

This function kicks the Member based on the server it
belongs to, which is accessed via Member.server. So you
must have the proper permissions in that server.

	Parameters

	member (Member) – The member to kick from their server.

	Raises

	
	Forbidden – You do not have the proper permissions to kick.

	HTTPException – Kicking failed.

	
ban(member, delete_message_days=1)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Bans a Member from the server they belong to.

Warning

This function bans the Member based on the server it
belongs to, which is accessed via Member.server. So you
must have the proper permissions in that server.

	Parameters

	
	member (Member) – The member to ban from their server.

	delete_message_days (int) – The number of days worth of messages to delete from the user
in the server. The minimum is 0 and the maximum is 7.

	Raises

	
	Forbidden – You do not have the proper permissions to ban.

	HTTPException – Banning failed.

	
unban(server, user)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Unbans a User from the server they are banned from.

	Parameters

	
	server (Server) – The server to unban the user from.

	user (User) – The user to unban.

	Raises

	
	Forbidden – You do not have the proper permissions to unban.

	HTTPException – Unbanning failed.

	
server_voice_state(member, *, mute=None, deafen=None)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Server mutes or deafens a specific Member.

Warning

This function mutes or un-deafens the Member based on the
server it belongs to, which is accessed via Member.server.
So you must have the proper permissions in that server.

	Parameters

	
	member (Member) – The member to unban from their server.

	mute (Optional[bool]) – Indicates if the member should be server muted or un-muted.

	deafen (Optional[bool]) – Indicates if the member should be server deafened or un-deafened.

	Raises

	
	Forbidden – You do not have the proper permissions to deafen or mute.

	HTTPException – The operation failed.

	
edit_profile(password=None, **fields)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Edits the current profile of the client.

If a bot account is used then the password field is optional,
otherwise it is required.

The Client.user object is not modified directly afterwards until the
corresponding WebSocket event is received.

Note

To upload an avatar, a bytes-like object must be passed in that
represents the image being uploaded. If this is done through a file
then the file must be opened via open('some_filename', 'rb') and
the bytes-like object is given through the use of fp.read().

The only image formats supported for uploading is JPEG and PNG.

	Parameters

	
	password (str) – The current password for the client’s account. Not used
for bot accounts.

	new_password (str) – The new password you wish to change to.

	email (str) – The new email you wish to change to.

	username (str) – The new username you wish to change to.

	avatar (bytes) – A bytes-like object representing the image to upload.
Could be None to denote no avatar.

	Raises

	
	HTTPException – Editing your profile failed.

	InvalidArgument – Wrong image format passed for avatar.

	ClientException – Password is required for non-bot accounts.

	
change_status(game=None, idle=False)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Changes the client’s status.

The game parameter is a Game object (not a string) that represents
a game being played currently.

The idle parameter is a boolean parameter that indicates whether the
client should go idle or not.

Deprecated since version v0.13.0: Use change_presence() instead.

	Parameters

	
	game (Optional[Game]) – The game being played. None if no game is being played.

	idle (bool) – Indicates if the client should go idle.

	Raises

	InvalidArgument – If the game parameter is not Game or None.

	
change_presence(*, game=None, status=None, afk=False)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Changes the client’s presence.

The game parameter is a Game object (not a string) that represents
a game being played currently.

	Parameters

	
	game (Optional[Game]) – The game being played. None if no game is being played.

	status (Optional[Status]) – Indicates what status to change to. If None, then
Status.online is used.

	afk (bool) – Indicates if you are going AFK. This allows the discord
client to know how to handle push notifications better
for you in case you are actually idle and not lying.

	Raises

	InvalidArgument – If the game parameter is not Game or None.

	
change_nickname(member, nickname)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Changes a member’s nickname.

You must have the proper permissions to change someone’s
(or your own) nickname.

	Parameters

	
	member (Member) – The member to change the nickname for.

	nickname (Optional[str]) – The nickname to change it to. None to remove
the nickname.

	Raises

	
	Forbidden – You do not have permissions to change the nickname.

	HTTPException – Changing the nickname failed.

	
edit_channel(channel, **options)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Edits a Channel.

You must have the proper permissions to edit the channel.

To move the channel’s position use move_channel() instead.

The Channel object is not directly modified afterwards until the
corresponding WebSocket event is received.

	Parameters

	
	channel (Channel) – The channel to update.

	name (str) – The new channel name.

	topic (str) – The new channel’s topic.

	bitrate (int) – The new channel’s bitrate. Voice only.

	user_limit (int) – The new channel’s user limit. Voice only.

	Raises

	
	Forbidden – You do not have permissions to edit the channel.

	HTTPException – Editing the channel failed.

	
move_channel(channel, position)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Moves the specified Channel to the given position in the GUI.
Note that voice channels and text channels have different position values.

The Channel object is not directly modified afterwards until the
corresponding WebSocket event is received.

Warning

Object instances do not work with this function.

	Parameters

	
	channel (Channel) – The channel to change positions of.

	position (int) – The position to insert the channel to.

	Raises

	
	InvalidArgument – If position is less than 0 or greater than the number of channels.

	Forbidden – You do not have permissions to change channel order.

	HTTPException – If moving the channel failed, or you are of too low rank to move the channel.

	
create_channel(server, name, *overwrites, type=None)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Creates a Channel in the specified Server.

Note that you need the proper permissions to create the channel.

The overwrites argument list can be used to create a ‘secret’
channel upon creation. A namedtuple of ChannelPermissions
is exposed to create a channel-specific permission overwrite in a more
self-documenting matter. You can also use a regular tuple of (target, overwrite)
where the overwrite expected has to be of type PermissionOverwrite.

Examples

Creating a voice channel:

await client.create_channel(server, 'Voice', type=discord.ChannelType.voice)

Creating a ‘secret’ text channel:

everyone_perms = discord.PermissionOverwrite(read_messages=False)
my_perms = discord.PermissionOverwrite(read_messages=True)

everyone = discord.ChannelPermissions(target=server.default_role, overwrite=everyone_perms)
mine = discord.ChannelPermissions(target=server.me, overwrite=my_perms)
await client.create_channel(server, 'secret', everyone, mine)

Or in a more ‘compact’ way:

everyone = discord.PermissionOverwrite(read_messages=False)
mine = discord.PermissionOverwrite(read_messages=True)
await client.create_channel(server, 'secret', (server.default_role, everyone), (server.me, mine))

	Parameters

	
	server (Server) – The server to create the channel in.

	name (str) – The channel’s name.

	type (ChannelType) – The type of channel to create. Defaults to ChannelType.text.

	overwrites – An argument list of channel specific overwrites to apply on the channel on
creation. Useful for creating ‘secret’ channels.

	Raises

	
	Forbidden – You do not have the proper permissions to create the channel.

	NotFound – The server specified was not found.

	HTTPException – Creating the channel failed.

	InvalidArgument – The permission overwrite array is not in proper form.

	Returns

	The channel that was just created. This channel is
different than the one that will be added in cache.

	Return type

	Channel

	
delete_channel(channel)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Deletes a Channel.

In order to delete the channel, the client must have the proper permissions
in the server the channel belongs to.

	Parameters

	channel (Channel) – The channel to delete.

	Raises

	
	Forbidden – You do not have proper permissions to delete the channel.

	NotFound – The specified channel was not found.

	HTTPException – Deleting the channel failed.

	
leave_server(server)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Leaves a Server.

Note

You cannot leave the server that you own, you must delete it instead
via delete_server().

	Parameters

	server (Server) – The server to leave.

	Raises

	HTTPException – If leaving the server failed.

	
delete_server(server)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Deletes a Server. You must be the server owner to delete the
server.

	Parameters

	server (Server) – The server to delete.

	Raises

	
	HTTPException – If deleting the server failed.

	Forbidden – You do not have permissions to delete the server.

	
create_server(name, region=None, icon=None)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Creates a Server.

Bot accounts generally are not allowed to create servers.
See Discord’s official documentation for more info.

	Parameters

	
	name (str) – The name of the server.

	region (ServerRegion) – The region for the voice communication server.
Defaults to ServerRegion.us_west.

	icon (bytes) – The bytes-like object representing the icon. See edit_profile()
for more details on what is expected.

	Raises

	
	HTTPException – Server creation failed.

	InvalidArgument – Invalid icon image format given. Must be PNG or JPG.

	Returns

	The server created. This is not the same server that is
added to cache.

	Return type

	Server

	
edit_server(server, **fields)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Edits a Server.

You must have the proper permissions to edit the server.

The Server object is not directly modified afterwards until the
corresponding WebSocket event is received.

	Parameters

	
	server (Server) – The server to edit.

	name (str) – The new name of the server.

	icon (bytes) – A bytes-like object representing the icon. See edit_profile()
for more details. Could be None to denote no icon.

	splash (bytes) – A bytes-like object representing the invite splash. See
edit_profile() for more details. Could be None to denote
no invite splash. Only available for partnered servers with
INVITE_SPLASH feature.

	region (ServerRegion) – The new region for the server’s voice communication.

	afk_channel (Optional[Channel]) – The new channel that is the AFK channel. Could be None for no AFK channel.

	afk_timeout (int) – The number of seconds until someone is moved to the AFK channel.

	owner (Member) – The new owner of the server to transfer ownership to. Note that you must
be owner of the server to do this.

	verification_level (VerificationLevel) – The new verification level for the server.

	Raises

	
	Forbidden – You do not have permissions to edit the server.

	NotFound – The server you are trying to edit does not exist.

	HTTPException – Editing the server failed.

	InvalidArgument – The image format passed in to icon is invalid. It must be
PNG or JPG. This is also raised if you are not the owner of the
server and request an ownership transfer.

	
get_bans(server)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Retrieves all the User s that are banned from the specified
server.

You must have proper permissions to get this information.

	Parameters

	server (Server) – The server to get ban information from.

	Raises

	
	Forbidden – You do not have proper permissions to get the information.

	HTTPException – An error occurred while fetching the information.

	Returns

	A list of User that have been banned.

	Return type

	list

	
prune_members(server, *, days)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Prunes a Server from its inactive members.

The inactive members are denoted if they have not logged on in
days number of days and they have no roles.

You must have the “Kick Members” permission to use this.

To check how many members you would prune without actually pruning,
see the estimate_pruned_members() function.

	Parameters

	
	server (Server) – The server to prune from.

	days (int) – The number of days before counting as inactive.

	Raises

	
	Forbidden – You do not have permissions to prune members.

	HTTPException – An error occurred while pruning members.

	InvalidArgument – An integer was not passed for days.

	Returns

	The number of members pruned.

	Return type

	int

	
estimate_pruned_members(server, *, days)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Similar to prune_members() except instead of actually
pruning members, it returns how many members it would prune
from the server had it been called.

	Parameters

	
	server (Server) – The server to estimate a prune from.

	days (int) – The number of days before counting as inactive.

	Raises

	
	Forbidden – You do not have permissions to prune members.

	HTTPException – An error occurred while fetching the prune members estimate.

	InvalidArgument – An integer was not passed for days.

	Returns

	The number of members estimated to be pruned.

	Return type

	int

	
create_custom_emoji(server, *, name, image)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Creates a custom Emoji for a Server.

This endpoint is only allowed for user bots or white listed
bots. If this is done by a user bot then this is a local
emoji that can only be used inside that server.

There is currently a limit of 50 local emotes per server.

	Parameters

	
	server (Server) – The server to add the emoji to.

	name (str) – The emoji name. Must be at least 2 characters.

	image (bytes) – The bytes-like object representing the image data to use.
Only JPG and PNG images are supported.

	Returns

	The created emoji.

	Return type

	Emoji

	Raises

	
	Forbidden – You are not allowed to create emojis.

	HTTPException – An error occurred creating an emoji.

	
delete_custom_emoji(emoji)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Deletes a custom Emoji from a Server.

This follows the same rules as create_custom_emoji().

	Parameters

	emoji (Emoji) – The emoji to delete.

	Raises

	
	Forbidden – You are not allowed to delete emojis.

	HTTPException – An error occurred deleting the emoji.

	
edit_custom_emoji(emoji, *, name)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Edits a Emoji.

	Parameters

	
	emoji (Emoji) – The emoji to edit.

	name (str) – The new emoji name.

	Raises

	
	Forbidden – You are not allowed to edit emojis.

	HTTPException – An error occurred editing the emoji.

	
create_invite(destination, **options)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Creates an invite for the destination which could be either a
Server or Channel.

	Parameters

	
	destination – The Server or Channel to create the invite to.

	max_age (int) – How long the invite should last. If it’s 0 then the invite
doesn’t expire. Defaults to 0.

	max_uses (int) – How many uses the invite could be used for. If it’s 0 then there
are unlimited uses. Defaults to 0.

	temporary (bool) – Denotes that the invite grants temporary membership
(i.e. they get kicked after they disconnect). Defaults to False.

	unique (bool) – Indicates if a unique invite URL should be created. Defaults to True.
If this is set to False then it will return a previously created
invite.

	Raises

	HTTPException – Invite creation failed.

	Returns

	The invite that was created.

	Return type

	Invite

	
get_invite(url)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Gets a Invite from a discord.gg URL or ID.

Note

If the invite is for a server you have not joined, the server and channel
attributes of the returned invite will be Object with the names
patched in.

	Parameters

	url (str) – The discord invite ID or URL (must be a discord.gg URL).

	Raises

	
	NotFound – The invite has expired or is invalid.

	HTTPException – Getting the invite failed.

	Returns

	The invite from the URL/ID.

	Return type

	Invite

	
invites_from(server)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Returns a list of all active instant invites from a Server.

You must have proper permissions to get this information.

	Parameters

	server (Server) – The server to get invites from.

	Raises

	
	Forbidden – You do not have proper permissions to get the information.

	HTTPException – An error occurred while fetching the information.

	Returns

	The list of invites that are currently active.

	Return type

	list of Invite

	
accept_invite(invite)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Accepts an Invite, URL or ID to an invite.

The URL must be a discord.gg URL. e.g. “http://discord.gg/codehere”.
An ID for the invite is just the “codehere” portion of the invite URL.

	Parameters

	invite – The Invite or URL to an invite to accept.

	Raises

	
	HTTPException – Accepting the invite failed.

	NotFound – The invite is invalid or expired.

	Forbidden – You are a bot user and cannot use this endpoint.

	
delete_invite(invite)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Revokes an Invite, URL, or ID to an invite.

The invite parameter follows the same rules as
accept_invite().

	Parameters

	invite – The invite to revoke.

	Raises

	
	Forbidden – You do not have permissions to revoke invites.

	NotFound – The invite is invalid or expired.

	HTTPException – Revoking the invite failed.

	
move_role(server, role, position)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Moves the specified Role to the given position in the Server.

The Role object is not directly modified afterwards until the
corresponding WebSocket event is received.

	Parameters

	
	server (Server) – The server the role belongs to.

	role (Role) – The role to edit.

	position (int) – The position to insert the role to.

	Raises

	
	InvalidArgument – If position is 0, or role is server.default_role

	Forbidden – You do not have permissions to change role order.

	HTTPException – If moving the role failed, or you are of too low rank to move the role.

	
edit_role(server, role, **fields)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Edits the specified Role for the entire Server.

The Role object is not directly modified afterwards until the
corresponding WebSocket event is received.

All fields except server and role are optional. To change
the position of a role, use move_role() instead.

Changed in version 0.8.0: Editing now uses keyword arguments instead of editing the Role object directly.

	Parameters

	
	server (Server) – The server the role belongs to.

	role (Role) – The role to edit.

	name (str) – The new role name to change to.

	permissions (Permissions) – The new permissions to change to.

	colour (Colour) – The new colour to change to. (aliased to color as well)

	hoist (bool) – Indicates if the role should be shown separately in the online list.

	mentionable (bool) – Indicates if the role should be mentionable by others.

	Raises

	
	Forbidden – You do not have permissions to change the role.

	HTTPException – Editing the role failed.

	
delete_role(server, role)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Deletes the specified Role for the entire Server.

	Parameters

	
	server (Server) – The server the role belongs to.

	role (Role) – The role to delete.

	Raises

	
	Forbidden – You do not have permissions to delete the role.

	HTTPException – Deleting the role failed.

	
add_roles(member, *roles)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Gives the specified Member a number of Role s.

You must have the proper permissions to use this function.

The Member object is not directly modified afterwards until the
corresponding WebSocket event is received.

	Parameters

	
	member (Member) – The member to give roles to.

	*roles – An argument list of Role s to give the member.

	Raises

	
	Forbidden – You do not have permissions to add roles.

	HTTPException – Adding roles failed.

	
remove_roles(member, *roles)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Removes the Role s from the Member.

You must have the proper permissions to use this function.

The Member object is not directly modified afterwards until the
corresponding WebSocket event is received.

	Parameters

	
	member (Member) – The member to revoke roles from.

	*roles – An argument list of Role s to revoke the member.

	Raises

	
	Forbidden – You do not have permissions to revoke roles.

	HTTPException – Removing roles failed.

	
replace_roles(member, *roles)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Replaces the Member’s roles.

You must have the proper permissions to use this function.

This function replaces all roles that the member has.
For example if the member has roles [a, b, c] and the
call is client.replace_roles(member, d, e, c) then
the member has the roles [d, e, c].

The Member object is not directly modified afterwards until the
corresponding WebSocket event is received.

	Parameters

	
	member (Member) – The member to replace roles from.

	*roles – An argument list of Role s to replace the roles with.

	Raises

	
	Forbidden – You do not have permissions to revoke roles.

	HTTPException – Removing roles failed.

	
create_role(server, **fields)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Creates a Role.

This function is similar to edit_role in both
the fields taken and exceptions thrown.

	Returns

	The newly created role. This not the same role that
is stored in cache.

	Return type

	Role

	
edit_channel_permissions(channel, target, overwrite=None)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Sets the channel specific permission overwrites for a target in the
specified Channel.

The target parameter should either be a Member or a
Role that belongs to the channel’s server.

You must have the proper permissions to do this.

Examples

Setting allow and deny:

overwrite = discord.PermissionOverwrite()
overwrite.read_messages = True
overwrite.ban_members = False
await client.edit_channel_permissions(message.channel, message.author, overwrite)

	Parameters

	
	channel (Channel) – The channel to give the specific permissions for.

	target – The Member or Role to overwrite permissions for.

	overwrite (PermissionOverwrite) – The permissions to allow and deny to the target.

	Raises

	
	Forbidden – You do not have permissions to edit channel specific permissions.

	NotFound – The channel specified was not found.

	HTTPException – Editing channel specific permissions failed.

	InvalidArgument – The overwrite parameter was not of type PermissionOverwrite
or the target type was not Role or Member.

	
delete_channel_permissions(channel, target)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Removes a channel specific permission overwrites for a target
in the specified Channel.

The target parameter follows the same rules as edit_channel_permissions().

You must have the proper permissions to do this.

	Parameters

	
	channel (Channel) – The channel to give the specific permissions for.

	target – The Member or Role to overwrite permissions for.

	Raises

	
	Forbidden – You do not have permissions to delete channel specific permissions.

	NotFound – The channel specified was not found.

	HTTPException – Deleting channel specific permissions failed.

	
move_member(member, channel)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Moves a Member to a different voice channel.

You must have proper permissions to do this.

Note

You cannot pass in a Object instead of a Channel
object in this function.

	Parameters

	
	member (Member) – The member to move to another voice channel.

	channel (Channel) – The voice channel to move the member to.

	Raises

	
	InvalidArgument – The channel provided is not a voice channel.

	HTTPException – Moving the member failed.

	Forbidden – You do not have permissions to move the member.

	
join_voice_channel(channel)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Joins a voice channel and creates a VoiceClient to
establish your connection to the voice server.

After this function is successfully called, voice is
set to the returned VoiceClient.

	Parameters

	channel (Channel) – The voice channel to join to.

	Raises

	
	InvalidArgument – The channel was not a voice channel.

	asyncio.TimeoutError – Could not connect to the voice channel in time.

	ClientException – You are already connected to a voice channel.

	OpusNotLoaded – The opus library has not been loaded.

	Returns

	A voice client that is fully connected to the voice server.

	Return type

	VoiceClient

	
is_voice_connected(server)

	Indicates if we are currently connected to a voice channel in the
specified server.

	Parameters

	server (Server) – The server to query if we’re connected to it.

	
voice_client_in(server)

	Returns the voice client associated with a server.

If no voice client is found then None is returned.

	Parameters

	server (Server) – The server to query if we have a voice client for.

	Returns

	The voice client associated with the server.

	Return type

	VoiceClient

	
group_call_in(channel)

	Returns the GroupCall associated with a private channel.

If no group call is found then None is returned.

	Parameters

	channel (PrivateChannel) – The group private channel to query the group call for.

	Returns

	The group call.

	Return type

	Optional[GroupCall]

	
application_info()

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Retrieve’s the bot’s application information.

	Returns

	A namedtuple representing the application info.

	Return type

	AppInfo

	Raises

	HTTPException – Retrieving the information failed somehow.

	
get_user_info(user_id)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Retrieves a User based on their ID. This can only
be used by bot accounts. You do not have to share any servers
with the user to get this information, however many operations
do require that you do.

	Parameters

	user_id (str) – The user’s ID to fetch from.

	Returns

	The user you requested.

	Return type

	User

	Raises

	
	NotFound – A user with this ID does not exist.

	HTTPException – Fetching the user failed.

Voice

	
class discord.VoiceClient(user, main_ws, session_id, channel, data, loop)

	Represents a Discord voice connection.

This client is created solely through Client.join_voice_channel()
and its only purpose is to transmit voice.

Warning

In order to play audio, you must have loaded the opus library
through opus.load_opus().

If you don’t do this then the library will not be able to
transmit audio.

	
session_id

	str – The voice connection session ID.

	
token

	str – The voice connection token.

	
user

	User – The user connected to voice.

	
endpoint

	str – The endpoint we are connecting to.

	
channel

	Channel – The voice channel connected to.

	
server

	Server – The server the voice channel is connected to.
Shorthand for channel.server.

	
loop

	The event loop that the voice client is running on.

	
poll_voice_ws()

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].
Reads from the voice websocket while connected.

	
disconnect()

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Disconnects all connections to the voice client.

In order to reconnect, you must create another voice client
using Client.join_voice_channel().

	
move_to(channel)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Moves you to a different voice channel.

Warning

Object instances do not work with this function.

	Parameters

	channel (Channel) – The channel to move to. Must be a voice channel.

	Raises

	InvalidArgument – Not a voice channel.

	
is_connected()

	bool : Indicates if the voice client is connected to voice.

	
create_ffmpeg_player(filename, *, use_avconv=False, pipe=False, stderr=None, options=None, before_options=None, headers=None, after=None)

	Creates a stream player for ffmpeg that launches in a separate thread to play
audio.

The ffmpeg player launches a subprocess of ffmpeg to a specific
filename and then plays that file.

You must have the ffmpeg or avconv executable in your path environment variable
in order for this to work.

The operations that can be done on the player are the same as those in
create_stream_player().

Examples

Basic usage:

voice = await client.join_voice_channel(channel)
player = voice.create_ffmpeg_player('cool.mp3')
player.start()

	Parameters

	
	filename – The filename that ffmpeg will take and convert to PCM bytes.
If pipe is True then this is a file-like object that is
passed to the stdin of ffmpeg.

	use_avconv (bool) – Use avconv instead of ffmpeg.

	pipe (bool) – If true, denotes that filename parameter will be passed
to the stdin of ffmpeg.

	stderr – A file-like object or subprocess.PIPE to pass to the Popen
constructor.

	options (str) – Extra command line flags to pass to ffmpeg after the -i flag.

	before_options (str) – Command line flags to pass to ffmpeg before the -i flag.

	headers (dict) – HTTP headers dictionary to pass to -headers command line option

	after (callable) – The finalizer that is called after the stream is done being
played. All exceptions the finalizer throws are silently discarded.

	Raises

	ClientException – Popen failed to due to an error in ffmpeg or avconv.

	Returns

	A stream player with specific operations.
See create_stream_player().

	Return type

	StreamPlayer

	
create_ytdl_player(url, *, ytdl_options=None, **kwargs)

	This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

Creates a stream player for youtube or other services that launches
in a separate thread to play the audio.

The player uses the youtube_dl python library to get the information
required to get audio from the URL. Since this uses an external library,
you must install it yourself. You can do so by calling
pip install youtube_dl.

You must have the ffmpeg or avconv executable in your path environment
variable in order for this to work.

The operations that can be done on the player are the same as those in
create_stream_player(). The player has been augmented and enhanced
to have some info extracted from the URL. If youtube-dl fails to extract
the information then the attribute is None. The yt, url, and
download_url attributes are always available.

	Operation

	Description

	player.yt

	The YoutubeDL <ytdl> instance.

	player.url

	The URL that is currently playing.

	player.download_url

	The URL that is currently being downloaded to ffmpeg.

	player.title

	The title of the audio stream.

	player.description

	The description of the audio stream.

	player.uploader

	The uploader of the audio stream.

	player.upload_date

	A datetime.date object of when the stream was uploaded.

	player.duration

	The duration of the audio in seconds.

	player.likes

	How many likes the audio stream has.

	player.dislikes

	How many dislikes the audio stream has.

	player.is_live

	Checks if the audio stream is currently livestreaming.

	player.views

	How many views the audio stream has.

Examples

Basic usage:

voice = await client.join_voice_channel(channel)
player = await voice.create_ytdl_player('https://www.youtube.com/watch?v=d62TYemN6MQ')
player.start()

	Parameters

	
	url (str) – The URL that youtube_dl will take and download audio to pass
to ffmpeg or avconv to convert to PCM bytes.

	ytdl_options (dict) – A dictionary of options to pass into the YoutubeDL instance.
See the documentation for more details.

	**kwargs – The rest of the keyword arguments are forwarded to
create_ffmpeg_player().

	Raises

	ClientException – Popen failure from either ffmpeg/avconv.

	Returns

	An augmented StreamPlayer that uses ffmpeg.
See create_stream_player() for base operations.

	Return type

	StreamPlayer

	
encoder_options(*, sample_rate, channels=2)

	Sets the encoder options for the OpusEncoder.

Calling this after you create a stream player
via create_ffmpeg_player() or create_stream_player()
has no effect.

	Parameters

	
	sample_rate (int) – Sets the sample rate of the OpusEncoder. The unit is in Hz.

	channels (int) – Sets the number of channels for the OpusEncoder.
2 for stereo, 1 for mono.

	Raises

	InvalidArgument – The values provided are invalid.

	
create_stream_player(stream, *, after=None)

	Creates a stream player that launches in a separate thread to
play audio.

The stream player assumes that stream.read is a valid function
that returns a bytes-like object.

The finalizer, after is called after the stream has been exhausted
or an error occurred (see below).

The following operations are valid on the StreamPlayer object:

	Operation

	Description

	player.start()

	Starts the audio stream.

	player.stop()

	Stops the audio stream.

	player.is_done()

	Returns a bool indicating if the stream is done.

	player.is_playing()

	Returns a bool indicating if the stream is playing.

	player.pause()

	Pauses the audio stream.

	player.resume()

	Resumes the audio stream.

	player.volume

	Allows you to set the volume of the stream. 1.0 is
equivalent to 100% and 0.0 is equal to 0%. The
maximum the volume can be set to is 2.0 for 200%.

	player.error

	The exception that stopped the player. If no error
happened, then this returns None.

The stream must have the same sampling rate as the encoder and the same
number of channels. The defaults are 48000 Hz and 2 channels. You
could change the encoder options by using encoder_options()
but this must be called before this function.

If an error happens while the player is running, the exception is caught and
the player is then stopped. The caught exception could then be retrieved
via player.error. When the player is stopped in this matter, the
finalizer under after is called.

	Parameters

	
	stream – The stream object to read from.

	after – The finalizer that is called after the stream is exhausted.
All exceptions it throws are silently discarded. This function
can have either no parameters or a single parameter taking in the
current player.

	Returns

	A stream player with the operations noted above.

	Return type

	StreamPlayer

	
play_audio(data, *, encode=True)

	Sends an audio packet composed of the data.

You must be connected to play audio.

	Parameters

	
	data (bytes) – The bytes-like object denoting PCM or Opus voice data.

	encode (bool) – Indicates if data should be encoded into Opus.

	Raises

	
	ClientException – You are not connected.

	OpusError – Encoding the data failed.

Opus Library

	
discord.opus.load_opus(name)

	Loads the libopus shared library for use with voice.

If this function is not called then the library uses the function
ctypes.util.find_library [https://docs.python.org/3.5/library/ctypes.html#finding-shared-libraries] and then loads that one
if available.

Not loading a library leads to voice not working.

This function propagates the exceptions thrown.

Warning

The bitness of the library must match the bitness of your python
interpreter. If the library is 64-bit then your python interpreter
must be 64-bit as well. Usually if there’s a mismatch in bitness then
the load will throw an exception.

Note

On Windows, the .dll extension is not necessary. However, on Linux
the full extension is required to load the library, e.g. libopus.so.1.
On Linux however, find library [https://docs.python.org/3.5/library/ctypes.html#finding-shared-libraries] will usually find the library automatically
without you having to call this.

	Parameters

	name (str) – The filename of the shared library.

	
discord.opus.is_loaded()

	Function to check if opus lib is successfully loaded either
via the ctypes.util.find_library call of load_opus().

This must return True for voice to work.

	Returns

	Indicates if the opus library has been loaded.

	Return type

	bool

Event Reference

This page outlines the different types of events listened by Client.

There are two ways to register an event, the first way is through the use of
Client.event(). The second way is through subclassing Client and
overriding the specific events. For example:

import discord

class MyClient(discord.Client):

 @asyncio.coroutine
 def on_message(self, message):
 yield from self.send_message(message.channel, 'Hello World!')

If an event handler raises an exception, on_error() will be called
to handle it, which defaults to print a traceback and ignore the exception.

Warning

All the events must be a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine]. If they aren’t, then you might get unexpected
errors. In order to turn a function into a coroutine they must either be decorated
with @asyncio.coroutine or in Python 3.5+ be defined using the async def
declaration.

The following two functions are examples of coroutine functions:

async def on_ready():
 pass

@asyncio.coroutine
def on_ready():
 pass

Since this can be a potentially common mistake, there is a helper
decorator, Client.async_event() to convert a basic function
into a coroutine and an event at the same time. Note that it is
not necessary if you use async def.

New in version 0.7.0: Subclassing to listen to events.

	
discord.on_ready()

	Called when the client is done preparing the data received from Discord. Usually after login is successful
and the Client.servers and co. are filled up.

Warning

This function is not guaranteed to be the first event called.
Likewise, this function is not guaranteed to only be called
once. This library implements reconnection logic and thus will
end up calling this event whenever a RESUME request fails.

	
discord.on_resumed()

	Called when the client has resumed a session.

	
discord.on_error(event, *args, **kwargs)

	Usually when an event raises an uncaught exception, a traceback is
printed to stderr and the exception is ignored. If you want to
change this behaviour and handle the exception for whatever reason
yourself, this event can be overridden. Which, when done, will
supress the default action of printing the traceback.

The information of the exception rasied and the exception itself can
be retreived with a standard call to sys.exc_info().

If you want exception to propogate out of the Client class
you can define an on_error handler consisting of a single empty
raise statement. Exceptions raised by on_error will not be
handled in any way by Client.

	Parameters

	
	event – The name of the event that raised the exception.

	args – The positional arguments for the event that raised the
exception.

	kwargs – The keyword arguments for the event that raised the
execption.

	
discord.on_message(message)

	Called when a message is created and sent to a server.

	Parameters

	message – A Message of the current message.

	
discord.on_socket_raw_receive(msg)

	Called whenever a message is received from the websocket, before
it’s processed.This event is always dispatched when a message is
received and the passed data is not processed in any way.

This is only really useful for grabbing the websocket stream and
debugging purposes.

Note

This is only for the messages received from the client
websocket. The voice websocket will not trigger this event.

	Parameters

	msg – The message passed in from the websocket library.
Could be bytes for a binary message or str
for a regular message.

	
discord.on_socket_raw_send(payload)

	Called whenever a send operation is done on the websocket before the
message is sent. The passed parameter is the message that is to
sent to the websocket.

This is only really useful for grabbing the websocket stream and
debugging purposes.

Note

This is only for the messages received from the client
websocket. The voice websocket will not trigger this event.

	Parameters

	payload – The message that is about to be passed on to the
websocket library. It can be bytes to denote a binary
message or str to denote a regular text message.

	
discord.on_message_delete(message)

	Called when a message is deleted. If the message is not found in the
Client.messages cache, then these events will not be called. This
happens if the message is too old or the client is participating in high
traffic servers. To fix this, increase the max_messages option of
Client.

	Parameters

	message – A Message of the deleted message.

	
discord.on_message_edit(before, after)

	Called when a message receives an update event. If the message is not found
in the Client.messages cache, then these events will not be called.
This happens if the message is too old or the client is participating in high
traffic servers. To fix this, increase the max_messages option of Client.

The following non-exhaustive cases trigger this event:

	A message has been pinned or unpinned.

	The message content has been changed.

	
	The message has received an embed.

	
	For performance reasons, the embed server does not do this in a “consistent” manner.

	A call message has received an update to its participants or ending time.

	Parameters

	
	before – A Message of the previous version of the message.

	after – A Message of the current version of the message.

	
discord.on_reaction_add(reaction, user)

	Called when a message has a reaction added to it. Similar to on_message_edit,
if the message is not found in the Client.messages cache, then this
event will not be called.

Note

To get the message being reacted, access it via Reaction.message.

	Parameters

	
	reaction – A Reaction showing the current state of the reaction.

	user – A User or Member of the user who added the reaction.

	
discord.on_reaction_remove(reaction, user)

	Called when a message has a reaction removed from it. Similar to on_message_edit,
if the message is not found in the Client.messages cache, then this event
will not be called.

Note

To get the message being reacted, access it via Reaction.message.

	Parameters

	
	reaction – A Reaction showing the current state of the reaction.

	user – A User or Member of the user who removed the reaction.

	
discord.on_reaction_clear(message, reactions)

	Called when a message has all its reactions removed from it. Similar to on_message_edit,
if the message is not found in the Client.messages cache, then this event
will not be called.

	Parameters

	
	message – The Message that had its reactions cleared.

	reactions – A list of Reactions that were removed.

	
discord.on_channel_delete(channel)

	
discord.on_channel_create(channel)

	Called whenever a channel is removed or added from a server.

Note that you can get the server from Channel.server.
on_channel_create() could also pass in a PrivateChannel depending
on the value of Channel.is_private.

	Parameters

	channel – The Channel that got added or deleted.

	
discord.on_channel_update(before, after)

	Called whenever a channel is updated. e.g. changed name, topic, permissions.

	Parameters

	
	before – The Channel that got updated with the old info.

	after – The Channel that got updated with the updated info.

	
discord.on_member_join(member)

	
discord.on_member_remove(member)

	Called when a Member leaves or joins a Server.

	Parameters

	member – The Member that joined or left.

	
discord.on_member_update(before, after)

	Called when a Member updates their profile.

This is called when one or more of the following things change:

	status

	game playing

	avatar

	nickname

	roles

	Parameters

	
	before – The Member that updated their profile with the old info.

	after – The Member that updated their profile with the updated info.

	
discord.on_server_join(server)

	Called when a Server is either created by the Client or when the
Client joins a server.

	Parameters

	server – The class:Server that was joined.

	
discord.on_server_remove(server)

	Called when a Server is removed from the Client.

This happens through, but not limited to, these circumstances:

	The client got banned.

	The client got kicked.

	The client left the server.

	The client or the server owner deleted the server.

In order for this event to be invoked then the Client must have
been part of the server to begin with. (i.e. it is part of Client.servers)

	Parameters

	server – The Server that got removed.

	
discord.on_server_update(before, after)

	Called when a Server updates, for example:

	Changed name

	Changed AFK channel

	Changed AFK timeout

	etc

	Parameters

	
	before – The Server prior to being updated.

	after – The Server after being updated.

	
discord.on_server_role_create(role)

	
discord.on_server_role_delete(role)

	Called when a Server creates or deletes a new Role.

To get the server it belongs to, use Role.server.

	Parameters

	role – The Role that was created or deleted.

	
discord.on_server_role_update(before, after)

	Called when a Role is changed server-wide.

	Parameters

	
	before – The Role that updated with the old info.

	after – The Role that updated with the updated info.

	
discord.on_server_emojis_update(before, after)

	Called when a Server adds or removes Emoji.

	Parameters

	
	before – A list of Emoji before the update.

	after – A list of Emoji after the update.

	
discord.on_server_available(server)

	
discord.on_server_unavailable(server)

	Called when a server becomes available or unavailable. The server must have
existed in the Client.servers cache.

	Parameters

	server – The Server that has changed availability.

	
discord.on_voice_state_update(before, after)

	Called when a Member changes their voice state.

The following, but not limited to, examples illustrate when this event is called:

	A member joins a voice room.

	A member leaves a voice room.

	A member is muted or deafened by their own accord.

	A member is muted or deafened by a server administrator.

	Parameters

	
	before – The Member whose voice state changed prior to the changes.

	after – The Member whose voice state changed after the changes.

	
discord.on_member_ban(member)

	Called when a Member gets banned from a Server.

You can access the server that the member got banned from via Member.server.

	Parameters

	member – The member that got banned.

	
discord.on_member_unban(server, user)

	Called when a User gets unbanned from a Server.

	Parameters

	
	server – The server the user got unbanned from.

	user – The user that got unbanned.

	
discord.on_typing(channel, user, when)

	Called when someone begins typing a message.

The channel parameter could either be a PrivateChannel or a
Channel. If channel is a PrivateChannel then the
user parameter is a User, otherwise it is a Member.

	Parameters

	
	channel – The location where the typing originated from.

	user – The user that started typing.

	when – A datetime.datetime object representing when typing started.

	
discord.on_group_join(channel, user)

	
discord.on_group_remove(channel, user)

	Called when someone joins or leaves a group, i.e. a PrivateChannel
with a PrivateChannel.type of ChannelType.group.

	Parameters

	
	channel – The group that the user joined or left.

	user – The user that joined or left.

Utility Functions

	
discord.utils.find(predicate, seq)

	A helper to return the first element found in the sequence
that meets the predicate. For example:

member = find(lambda m: m.name == 'Mighty', channel.server.members)

would find the first Member whose name is ‘Mighty’ and return it.
If an entry is not found, then None is returned.

This is different from filter [https://docs.python.org/3.6/library/functions.html#filter] due to the fact it stops the moment it finds
a valid entry.

	Parameters

	
	predicate – A function that returns a boolean-like result.

	seq (iterable) – The iterable to search through.

	
discord.utils.get(iterable, **attrs)

	A helper that returns the first element in the iterable that meets
all the traits passed in attrs. This is an alternative for
discord.utils.find().

When multiple attributes are specified, they are checked using
logical AND, not logical OR. Meaning they have to meet every
attribute passed in and not one of them.

To have a nested attribute search (i.e. search by x.y) then
pass in x__y as the keyword argument.

If nothing is found that matches the attributes passed, then
None is returned.

Examples

Basic usage:

member = discord.utils.get(message.server.members, name='Foo')

Multiple attribute matching:

channel = discord.utils.get(server.channels, name='Foo', type=ChannelType.voice)

Nested attribute matching:

channel = discord.utils.get(client.get_all_channels(), server__name='Cool', name='general')

	Parameters

	
	iterable – An iterable to search through.

	**attrs – Keyword arguments that denote attributes to search with.

	
discord.utils.snowflake_time(id)

	Returns the creation date in UTC of a discord id.

	
discord.utils.oauth_url(client_id, permissions=None, server=None, redirect_uri=None)

	A helper function that returns the OAuth2 URL for inviting the bot
into servers.

	Parameters

	
	client_id (str) – The client ID for your bot.

	permissions (Permissions) – The permissions you’re requesting. If not given then you won’t be requesting any
permissions.

	server (Server) – The server to pre-select in the authorization screen, if available.

	redirect_uri (str) – An optional valid redirect URI.

Application Info

	
class discord.AppInfo

	A namedtuple representing the bot’s application info.

	
id

	The application’s client_id.

	
name

	The application’s name.

	
description

	The application’s description

	
icon

	The application’s icon hash if it exists, None otherwise.

	
icon_url

	A property that retrieves the application’s icon URL if it exists.

If it doesn’t exist an empty string is returned.

	
owner

	The owner of the application. This is a User instance
with the owner’s information at the time of the call.

Enumerations

The API provides some enumerations for certain types of strings to avoid the API
from being stringly typed in case the strings change in the future.

All enumerations are subclasses of enum [https://docs.python.org/3/library/enum.html].

	
class discord.ChannelType

	Specifies the type of Channel.

	
text

	A text channel.

	
voice

	A voice channel.

	
private

	A private text channel. Also called a direct message.

	
group

	A private group text channel.

	
category

	A server category channel.

	
class discord.MessageType

	Specifies the type of Message. This is used to denote if a message
is to be interpreted as a system message or a regular message.

	
default

	The default message type. This is the same as regular messages.

	
recipient_add

	The system message when a recipient is added to a group private
message, i.e. a private channel of type ChannelType.group.

	
recipient_remove

	The system message when a recipient is removed from a group private
message, i.e. a private channel of type ChannelType.group.

	
call

	The system message denoting call state, e.g. missed call, started call,
etc.

	
channel_name_change

	The system message denoting that a channel’s name has been changed.

	
channel_icon_change

	The system message denoting that a channel’s icon has been changed.

	
pins_add

	The system message denoting that a pinned message has been added to a channel.

	
class discord.ServerRegion

	Specifies the region a Server’s voice server belongs to.

	
us_west

	The US West region.

	
us_east

	The US East region.

	
us_central

	The US Central region.

	
eu_west

	The EU West region.

	
eu_central

	The EU Central region.

	
singapore

	The Singapore region.

	
london

	The London region.

	
sydney

	The Sydney region.

	
amsterdam

	The Amsterdam region.

	
frankfurt

	The Frankfurt region.

	
brazil

	The Brazil region.

	
vip_us_east

	The US East region for VIP servers.

	
vip_us_west

	The US West region for VIP servers.

	
vip_amsterdam

	The Amsterdam region for VIP servers.

	
class discord.VerificationLevel

	Specifies a Server’s verification level, which is the criteria in
which a member must meet before being able to send messages to the server.

	
none

	No criteria set.

	
low

	Member must have a verified email on their Discord account.

	
medium

	Member must have a verified email and be registered on Discord for more
than five minutes.

	
high

	Member must have a verified email, be registered on Discord for more
than five minutes, and be a member of the server itself for more than
ten minutes.

	
table_flip

	An alias for high.

	
class discord.Status

	Specifies a Member ‘s status.

	
online

	The member is online.

	
offline

	The member is offline.

	
idle

	The member is idle.

	
dnd

	The member is “Do Not Disturb”.

	
do_not_disturb

	An alias for dnd.

	
invisible

	The member is “invisible”. In reality, this is only used in sending
a presence a la Client.change_presence(). When you receive a
user’s presence this will be offline instead.

Data Classes

Some classes are just there to be data containers, this lists them.

Note

With the exception of Object, Colour, and Permissions the
data classes listed below are not intended to be created by users and are also
read-only.

For example, this means that you should not make your own User instances
nor should you modify the User instance yourself.

If you want to get one of these data classes instances they’d have to be through
the cache, and a common way of doing so is through the utils.find() function
or attributes of data classes that you receive from the events specified in the
Event Reference.

Warning

Nearly all data classes here have __slots__ defined which means that it is
impossible to have dynamic attributes to the data classes. The only exception
to this rule is Object which was designed with dynamic attributes in
mind.

More information about __slots__ can be found
in the official python documentation [https://docs.python.org/3/reference/datamodel.html#slots].

Object

	
class discord.Object(id)

	Represents a generic Discord object.

The purpose of this class is to allow you to create ‘miniature’
versions of data classes if you want to pass in just an ID. Most functions
that take in a specific data class with an ID can also take in this class
as a substitute instead. Note that even though this is the case, not all
objects (if any) actually inherit from this class.

There are also some cases where some websocket events are received
in strange order [https://github.com/Rapptz/discord.py/issues/21] and when such events happened you would
receive this class rather than the actual data class. These cases are
extremely rare.

	
id

	str – The ID of the object.

	
created_at

	Returns the snowflake’s creation time in UTC.

User

	
class discord.User

	Represents a Discord user.

Supported Operations:

	Operation

	Description

	x == y

	Checks if two users are equal.

	x != y

	Checks if two users are not equal.

	hash(x)

	Return the user’s hash.

	str(x)

	Returns the user’s name with discriminator.

	
name

	str – The user’s username.

	
id

	str – The user’s unique ID.

	
discriminator

	str or int – The user’s discriminator. This is given when the username has conflicts.

	
avatar

	str – The avatar hash the user has. Could be None.

	
bot

	bool – Specifies if the user is a bot account.

	
avatar_url

	Returns a friendly URL version of the avatar variable the user has. An empty string if
the user has no avatar.

	
default_avatar

	Returns the default avatar for a given user. This is calculated by the user’s descriminator

	
default_avatar_url

	Returns a URL for a user’s default avatar.

	
mention

	Returns a string that allows you to mention the given user.

	
permissions_in(channel)

	An alias for Channel.permissions_for().

Basically equivalent to:

channel.permissions_for(self)

	Parameters

	channel – The channel to check your permissions for.

	
created_at

	Returns the user’s creation time in UTC.

This is when the user’s discord account was created.

	
display_name

	Returns the user’s display name.

For regular users this is just their username, but
if they have a server specific nickname then that
is returned instead.

	
mentioned_in(message)

	Checks if the user is mentioned in the specified message.

	Parameters

	message (Message) – The message to check if you’re mentioned in.

Message

	
class discord.Message

	Represents a message from Discord.

There should be no need to create one of these manually.

	
edited_timestamp

	Optional[datetime.datetime] – A naive UTC datetime object containing the edited time of the message.

	
timestamp

	datetime.datetime – A naive UTC datetime object containing the time the message was created.

	
tts

	bool – Specifies if the message was done with text-to-speech.

	
type

	MessageType – The type of message. In most cases this should not be checked, but it is helpful
in cases where it might be a system message for system_content.

	
author

	A Member that sent the message. If channel is a
private channel, then it is a User instead.

	
content

	str – The actual contents of the message.

	
nonce

	The value used by the discord server and the client to verify that the message is successfully sent.
This is typically non-important.

	
embeds

	list – A list of embedded objects. The elements are objects that meet oEmbed’s specification [http://oembed.com/].

	
channel

	The Channel that the message was sent from.
Could be a PrivateChannel if it’s a private message.
In very rare cases [https://github.com/Rapptz/discord.py/issues/21] this could be a Object instead.

For the sake of convenience, this Object instance has an attribute is_private set to True.

	
server

	Optional[Server] – The server that the message belongs to. If not applicable (i.e. a PM) then it’s None instead.

	
call

	Optional[CallMessage] – The call that the message refers to. This is only applicable to messages of type
MessageType.call.

	
mention_everyone

	bool – Specifies if the message mentions everyone.

Note

This does not check if the @everyone text is in the message itself.
Rather this boolean indicates if the @everyone text is in the message
and it did end up mentioning everyone.

	
mentions

	list – A list of Member that were mentioned. If the message is in a private message
then the list will be of User instead. For messages that are not of type
MessageType.default, this array can be used to aid in system messages.
For more information, see system_content.

Warning

The order of the mentions list is not in any particular order so you should
not rely on it. This is a discord limitation, not one with the library.

	
channel_mentions

	list – A list of Channel that were mentioned. If the message is in a private message
then the list is always empty.

	
role_mentions

	list – A list of Role that were mentioned. If the message is in a private message
then the list is always empty.

	
id

	str – The message ID.

	
attachments

	list – A list of attachments given to a message.

	
pinned

	bool – Specifies if the message is currently pinned.

	
reactions

	List[Reaction] – Reactions to a message. Reactions can be either custom emoji or standard unicode emoji.

	
raw_mentions

	A property that returns an array of user IDs matched with
the syntax of <@user_id> in the message content.

This allows you receive the user IDs of mentioned users
even in a private message context.

	
raw_channel_mentions

	A property that returns an array of channel IDs matched with
the syntax of <#channel_id> in the message content.

	
raw_role_mentions

	A property that returns an array of role IDs matched with
the syntax of <@&role_id> in the message content.

	
clean_content

	A property that returns the content in a “cleaned up”
manner. This basically means that mentions are transformed
into the way the client shows it. e.g. <#id> will transform
into #name.

This will also transform @everyone and @here mentions into
non-mentions.

	
system_content

	A property that returns the content that is rendered
regardless of the Message.type.

In the case of MessageType.default, this just returns the
regular Message.content. Otherwise this returns an English
message denoting the contents of the system message.

Reaction

	
class discord.Reaction

	Represents a reaction to a message.

Depending on the way this object was created, some of the attributes can
have a value of None.

Similar to members, the same reaction to a different message are equal.

Supported Operations:

	Operation

	Description

	x == y

	Checks if two reactions are the same.

	x != y

	Checks if two reactions are not the same.

	hash(x)

	Return the emoji’s hash.

	
emoji

	Emoji or str – The reaction emoji. May be a custom emoji, or a unicode emoji.

	
custom_emoji

	bool – If this is a custom emoji.

	
count

	int – Number of times this reaction was made

	
me

	bool – If the user sent this reaction.

	
message

	Message – Message this reaction is for.

Embed

	
class discord.Embed(**kwargs)

	Represents a Discord embed.

The following attributes can be set during creation
of the object:

Certain properties return an EmbedProxy. Which is a type
that acts similar to a regular dict except access the attributes
via dotted access, e.g. embed.author.icon_url. If the attribute
is invalid or empty, then a special sentinel value is returned,
Embed.Empty.

For ease of use, all parameters that expect a str are implicitly
casted to str for you.

	
title

	str – The title of the embed.

	
type

	str – The type of embed. Usually “rich”.

	
description

	str – The description of the embed.

	
url

	str – The URL of the embed.

	
timestamp

	datetime.datetime – The timestamp of the embed content.

	
colour

	Colour or int – The colour code of the embed. Aliased to color as well.

	
Empty

	A special sentinel value used by EmbedProxy and this class
to denote that the value or attribute is empty.

	
footer

	Returns a EmbedProxy denoting the footer contents.

See set_footer() for possible values you can access.

If the attribute has no value then Empty is returned.

	
set_footer(*, text=Embed.Empty, icon_url=Embed.Empty)

	Sets the footer for the embed content.

This function returns the class instance to allow for fluent-style
chaining.

	Parameters

	
	text (str) – The footer text.

	icon_url (str) – The URL of the footer icon. Only HTTP(S) is supported.

	
image

	Returns a EmbedProxy denoting the image contents.

Possible attributes you can access are:

	url

	proxy_url

	width

	height

If the attribute has no value then Empty is returned.

	
set_image(*, url)

	Sets the image for the embed content.

This function returns the class instance to allow for fluent-style
chaining.

	Parameters

	url (str) – The source URL for the image. Only HTTP(S) is supported.

	
thumbnail

	Returns a EmbedProxy denoting the thumbnail contents.

Possible attributes you can access are:

	url

	proxy_url

	width

	height

If the attribute has no value then Empty is returned.

	
set_thumbnail(*, url)

	Sets the thumbnail for the embed content.

This function returns the class instance to allow for fluent-style
chaining.

	Parameters

	url (str) – The source URL for the thumbnail. Only HTTP(S) is supported.

	
video

	Returns a EmbedProxy denoting the video contents.

Possible attributes include:

	url for the video URL.

	height for the video height.

	width for the video width.

If the attribute has no value then Empty is returned.

	
provider

	Returns a EmbedProxy denoting the provider contents.

The only attributes that might be accessed are name and url.

If the attribute has no value then Empty is returned.

	
author

	Returns a EmbedProxy denoting the author contents.

See set_author() for possible values you can access.

If the attribute has no value then Empty is returned.

	
set_author(*, name, url=Embed.Empty, icon_url=Embed.Empty)

	Sets the author for the embed content.

This function returns the class instance to allow for fluent-style
chaining.

	Parameters

	
	name (str) – The name of the author.

	url (str) – The URL for the author.

	icon_url (str) – The URL of the author icon. Only HTTP(S) is supported.

	
fields

	Returns a list of EmbedProxy denoting the field contents.

See add_field() for possible values you can access.

If the attribute has no value then Empty is returned.

	
add_field(*, name, value, inline=True)

	Adds a field to the embed object.

This function returns the class instance to allow for fluent-style
chaining.

	Parameters

	
	name (str) – The name of the field.

	value (str) – The value of the field.

	inline (bool) – Whether the field should be displayed inline.

	
clear_fields()

	Removes all fields from this embed.

	
remove_field(index)

	Removes a field at a specified index.

If the index is invalid or out of bounds then the error is
silently swallowed.

Note

When deleting a field by index, the index of the other fields
shift to fill the gap just like a regular list.

	Parameters

	index (int) – The index of the field to remove.

	
set_field_at(index, *, name, value, inline=True)

	Modifies a field to the embed object.

The index must point to a valid pre-existing field.

This function returns the class instance to allow for fluent-style
chaining.

	Parameters

	
	index (int) – The index of the field to modify.

	name (str) – The name of the field.

	value (str) – The value of the field.

	inline (bool) – Whether the field should be displayed inline.

	Raises

	IndexError – An invalid index was provided.

	
to_dict()

	Converts this embed object into a dict.

CallMessage

	
class discord.CallMessage

	Represents a group call message from Discord.

This is only received in cases where the message type is equivalent to
MessageType.call.

	
ended_timestamp

	Optional[datetime.datetime] – A naive UTC datetime object that represents the time that the call has ended.

	
participants

	List[User] – The list of users that are participating in this call.

	
message

	Message – The message associated with this call message.

	
call_ended

	bool – Indicates if the call has ended.

	
channel

	PrivateChannel– The private channel associated with this message.

	
duration

	Queries the duration of the call.

If the call has not ended then the current duration will
be returned.

	Returns

	The timedelta object representing the duration.

	Return type

	datetime.timedelta

GroupCall

	
class discord.GroupCall

	Represents the actual group call from Discord.

This is accompanied with a CallMessage denoting the information.

	
call

	CallMessage – The call message associated with this group call.

	
unavailable

	bool – Denotes if this group call is unavailable.

	
ringing

	List[User] – A list of users that are currently being rung to join the call.

	
region

	ServerRegion – The server region the group call is being hosted on.

	
connected

	A property that returns the list of User that are currently in this call.

	
channel

	PrivateChannel– Returns the channel the group call is in.

	
voice_state_for(user)

	Retrieves the VoiceState for a specified User.

If the User has no voice state then this function returns
None.

	Parameters

	user (User) – The user to retrieve the voice state for.

	Returns

	The voice state associated with this user.

	Return type

	Optiona[VoiceState]

Server

	
class discord.Server

	Represents a Discord server.

Supported Operations:

	Operation

	Description

	x == y

	Checks if two servers are equal.

	x != y

	Checks if two servers are not equal.

	hash(x)

	Returns the server’s hash.

	str(x)

	Returns the server’s name.

	
name

	str – The server name.

	
me

	Member – Similar to Client.user except an instance of Member.
This is essentially used to get the member version of yourself.

	
roles

	A list of Role that the server has available.

	
emojis

	A list of Emoji that the server owns.

	
region

	ServerRegion – The region the server belongs on. There is a chance that the region
will be a str if the value is not recognised by the enumerator.

	
afk_timeout

	int – The timeout to get sent to the AFK channel.

	
afk_channel

	Channel – The channel that denotes the AFK channel. None if it doesn’t exist.

	
members

	An iterable of Member that are currently on the server.

	
channels

	An iterable of Channel that are currently on the server.

	
icon

	str – The server’s icon.

	
id

	str – The server’s ID.

	
owner

	Member – The member who owns the server.

	
unavailable

	bool – Indicates if the server is unavailable. If this is True then the
reliability of other attributes outside of Server.id() is slim and they might
all be None. It is best to not do anything with the server if it is unavailable.

Check the on_server_unavailable() and on_server_available() events.

	
large

	bool – Indicates if the server is a ‘large’ server. A large server is defined as having
more than large_threshold count members, which for this library is set to
the maximum of 250.

	
voice_client

	Optional[VoiceClient] – The VoiceClient associated with this server. A shortcut for the
Client.voice_client_in() call.

	
mfa_level

	int – Indicates the server’s two factor authorisation level. If this value is 0 then
the server does not require 2FA for their administrative members. If the value is
1 then they do.

	
verification_level

	VerificationLevel – The server’s verification level.

	
features

	List[str] – A list of features that the server has. They are currently as follows:

	VIP_REGIONS: Server has VIP voice regions

	VANITY_URL: Server has a vanity invite URL (e.g. discord.gg/discord-api)

	INVITE_SPLASH: Server’s invite page has a special splash.

	
splash

	str – The server’s invite splash.

	
get_channel(channel_id)

	Returns a Channel with the given ID. If not found, returns None.

	
get_member(user_id)

	Returns a Member with the given ID. If not found, returns None.

	
default_role

	Gets the @everyone role that all members have by default.

	
default_channel

	Gets the default Channel for the server.

	
icon_url

	Returns the URL version of the server’s icon. Returns an empty string if it has no icon.

	
splash_url

	Returns the URL version of the server’s invite splash. Returns an empty string if it has no splash.

	
member_count

	Returns the true member count regardless of it being loaded fully or not.

	
created_at

	Returns the server’s creation time in UTC.

	
role_hierarchy

	Returns the server’s roles in the order of the hierarchy.

The first element of this list will be the highest role in the
hierarchy.

	
get_member_named(name)

	Returns the first member found that matches the name provided.

The name can have an optional discriminator argument, e.g. “Jake#0001”
or “Jake” will both do the lookup. However the former will give a more
precise result. Note that the discriminator must have all 4 digits
for this to work.

If a nickname is passed, then it is looked up via the nickname. Note
however, that a nickname + discriminator combo will not lookup the nickname
but rather the username + discriminator combo due to nickname + discriminator
not being unique.

If no member is found, None is returned.

	Parameters

	name (str) – The name of the member to lookup with an optional discriminator.

	Returns

	The member in this server with the associated name. If not found
then None is returned.

	Return type

	Member

Member

	
class discord.Member

	Represents a Discord member to a Server.

This is a subclass of User that extends more functionality
that server members have such as roles and permissions.

	
voice

	VoiceState – The member’s voice state. Properties are defined to mirror access of the attributes.
e.g. Member.is_afk is equivalent to Member.voice.is_afk`.

	
roles

	A list of Role that the member belongs to. Note that the first element of this
list is always the default ‘@everyone’ role.

	
joined_at

	datetime.datetime – A datetime object that specifies the date and time in UTC that the member joined the server for
the first time.

	
status

	Status – The member’s status. There is a chance that the status will be a str
if it is a value that is not recognised by the enumerator.

	
game

	Game – The game that the user is currently playing. Could be None if no game is being played.

	
server

	Server – The server that the member belongs to.

	
nick

	Optional[str] – The server specific nickname of the user.

	
colour

	A property that returns a Colour denoting the rendered colour
for the member. If the default colour is the one rendered then an instance
of Colour.default() is returned.

There is an alias for this under color.

	
color

	A property that returns a Colour denoting the rendered colour
for the member. If the default colour is the one rendered then an instance
of Colour.default() is returned.

There is an alias for this under color.

	
top_role

	Returns the member’s highest role.

This is useful for figuring where a member stands in the role
hierarchy chain.

	
server_permissions

	Returns the member’s server permissions.

This only takes into consideration the server permissions
and not most of the implied permissions or any of the
channel permission overwrites. For 100% accurate permission
calculation, please use either permissions_in() or
Channel.permissions_for().

This does take into consideration server ownership and the
administrator implication.

VoiceState

	
class discord.VoiceState

	Represents a Discord user’s voice state.

	
deaf

	bool – Indicates if the user is currently deafened by the server.

	
mute

	bool – Indicates if the user is currently muted by the server.

	
self_mute

	bool – Indicates if the user is currently muted by their own accord.

	
self_deaf

	bool – Indicates if the user is currently deafened by their own accord.

	
is_afk

	bool – Indicates if the user is currently in the AFK channel in the server.

	
voice_channel

	Optional[Union[Channel, PrivateChannel]] – The voice channel that the user is currently connected to. None if the user
is not currently in a voice channel.

Colour

	
class discord.Colour(value)

	Represents a Discord role colour. This class is similar
to an (red, green, blue) tuple.

There is an alias for this called Color.

Supported operations:

	Operation

	Description

	x == y

	Checks if two colours are equal.

	x != y

	Checks if two colours are not equal.

	hash(x)

	Return the colour’s hash.

	str(x)

	Returns the hex format for the colour.

	
value

	int – The raw integer colour value.

	
r

	Returns the red component of the colour.

	
g

	Returns the green component of the colour.

	
b

	Returns the blue component of the colour.

	
to_tuple()

	Returns an (r, g, b) tuple representing the colour.

	
classmethod default()

	A factory method that returns a Colour with a value of 0.

	
classmethod teal()

	A factory method that returns a Colour with a value of 0x1abc9c.

	
classmethod dark_teal()

	A factory method that returns a Colour with a value of 0x11806a.

	
classmethod green()

	A factory method that returns a Colour with a value of 0x2ecc71.

	
classmethod dark_green()

	A factory method that returns a Colour with a value of 0x1f8b4c.

	
classmethod blue()

	A factory method that returns a Colour with a value of 0x3498db.

	
classmethod dark_blue()

	A factory method that returns a Colour with a value of 0x206694.

	
classmethod purple()

	A factory method that returns a Colour with a value of 0x9b59b6.

	
classmethod dark_purple()

	A factory method that returns a Colour with a value of 0x71368a.

	
classmethod magenta()

	A factory method that returns a Colour with a value of 0xe91e63.

	
classmethod dark_magenta()

	A factory method that returns a Colour with a value of 0xad1457.

	
classmethod gold()

	A factory method that returns a Colour with a value of 0xf1c40f.

	
classmethod dark_gold()

	A factory method that returns a Colour with a value of 0xc27c0e.

	
classmethod orange()

	A factory method that returns a Colour with a value of 0xe67e22.

	
classmethod dark_orange()

	A factory method that returns a Colour with a value of 0xa84300.

	
classmethod red()

	A factory method that returns a Colour with a value of 0xe74c3c.

	
classmethod dark_red()

	A factory method that returns a Colour with a value of 0x992d22.

	
classmethod lighter_grey()

	A factory method that returns a Colour with a value of 0x95a5a6.

	
classmethod dark_grey()

	A factory method that returns a Colour with a value of 0x607d8b.

	
classmethod light_grey()

	A factory method that returns a Colour with a value of 0x979c9f.

	
classmethod darker_grey()

	A factory method that returns a Colour with a value of 0x546e7a.

Game

	
class discord.Game(**kwargs)

	Represents a Discord game.

Supported Operations:

	Operation

	Description

	x == y

	Checks if two games are equal.

	x != y

	Checks if two games are not equal.

	hash(x)

	Return the games’s hash.

	str(x)

	Returns the games’s name.

	
name

	str – The game’s name.

	
url

	str – The game’s URL. Usually used for twitch streaming.

	
type

	int – The type of game being played. 1 indicates “Streaming”.

Emoji

	
class discord.Emoji

	Represents a custom emoji.

Depending on the way this object was created, some of the attributes can
have a value of None.

Supported Operations:

	Operation

	Description

	x == y

	Checks if two emoji are the same.

	x != y

	Checks if two emoji are not the same.

	hash(x)

	Return the emoji’s hash.

	iter(x)

	Returns an iterator of (field, value)
pairs. This allows this class to be
used as an iterable in list/dict/etc.
constructions.

	str(x)

	Returns the emoji rendered for discord.

	
name

	str – The name of the emoji.

	
id

	str – The emoji’s ID.

	
require_colons

	bool – If colons are required to use this emoji in the client (:PJSalt: vs PJSalt).

	
managed

	bool – If this emoji is managed by a Twitch integration.

	
server

	Server – The server the emoji belongs to.

	
roles

	List[Role] – A list of Role that is allowed to use this emoji. If roles is empty,
the emoji is unrestricted.

	
created_at

	Returns the emoji’s creation time in UTC.

	
url

	Returns a URL version of the emoji.

Role

	
class discord.Role

	Represents a Discord role in a Server.

Supported Operations:

	Operation

	Description

	x == y

	Checks if two roles are equal.

	x != y

	Checks if two roles are not equal.

	x > y

	Checks if a role is higher than another in the hierarchy.

	x < y

	Checks if a role is lower than another in the hierarchy.

	x >= y

	Checks if a role is higher or equal to another in the hierarchy.

	x <= y

	Checks if a role is lower or equal to another in the hierarchy.

	hash(x)

	Return the role’s hash.

	str(x)

	Returns the role’s name.

	
id

	str – The ID for the role.

	
name

	str – The name of the role.

	
permissions

	Permissions – Represents the role’s permissions.

	
server

	Server – The server the role belongs to.

	
colour

	Colour – Represents the role colour. An alias exists under color.

	
hoist

	bool – Indicates if the role will be displayed separately from other members.

	
position

	int – The position of the role. This number is usually positive. The bottom
role has a position of 0.

	
managed

	bool – Indicates if the role is managed by the server through some form of
integrations such as Twitch.

	
mentionable

	bool – Indicates if the role can be mentioned by users.

	
is_everyone

	Checks if the role is the @everyone role.

	
created_at

	Returns the role’s creation time in UTC.

	
mention

	Returns a string that allows you to mention a role.

Permissions

	
class discord.Permissions(permissions=0, **kwargs)

	Wraps up the Discord permission value.

Supported operations:

	Operation

	Description

	x == y

	Checks if two permissions are equal.

	x != y

	Checks if two permissions are not equal.

	x <= y

	Checks if a permission is a subset
of another permission.

	x >= y

	Checks if a permission is a superset
of another permission.

	x < y

	Checks if a permission is a strict
subset of another permission.

	x > y

	Checks if a permission is a strict
superset of another permission.

	hash(x)

	Return the permission’s hash.

	iter(x)

	Returns an iterator of (perm, value)
pairs. This allows this class to be used
as an iterable in e.g. set/list/dict
constructions.

The properties provided are two way. You can set and retrieve individual bits using the properties as if they
were regular bools. This allows you to edit permissions.

	
value

	The raw value. This value is a bit array field of a 32-bit integer
representing the currently available permissions. You should query
permissions via the properties rather than using this raw value.

	
is_subset(other)

	Returns True if self has the same or fewer permissions as other.

	
is_superset(other)

	Returns True if self has the same or more permissions as other.

	
is_strict_subset(other)

	Returns True if the permissions on other are a strict subset of those on self.

	
is_strict_superset(other)

	Returns True if the permissions on other are a strict superset of those on self.

	
classmethod none()

	A factory method that creates a Permissions with all
permissions set to False.

	
classmethod all()

	A factory method that creates a Permissions with all
permissions set to True.

	
classmethod all_channel()

	A Permissions with all channel-specific permissions set to
True and the server-specific ones set to False. The server-specific
permissions are currently:

	manager_server

	kick_members

	ban_members

	administrator

	change_nicknames

	manage_nicknames

	
classmethod general()

	A factory method that creates a Permissions with all
“General” permissions from the official Discord UI set to True.

	
classmethod text()

	A factory method that creates a Permissions with all
“Text” permissions from the official Discord UI set to True.

	
classmethod voice()

	A factory method that creates a Permissions with all
“Voice” permissions from the official Discord UI set to True.

	
update(**kwargs)

	Bulk updates this permission object.

Allows you to set multiple attributes by using keyword
arguments. The names must be equivalent to the properties
listed. Extraneous key/value pairs will be silently ignored.

	Parameters

	**kwargs – A list of key/value pairs to bulk update permissions with.

	
create_instant_invite

	Returns True if the user can create instant invites.

	
kick_members

	Returns True if the user can kick users from the server.

	
ban_members

	Returns True if a user can ban users from the server.

	
administrator

	Returns True if a user is an administrator. This role overrides all other permissions.

This also bypasses all channel-specific overrides.

	
manage_channels

	Returns True if a user can edit, delete, or create channels in the server.

This also corresponds to the “manage channel” channel-specific override.

	
manage_server

	Returns True if a user can edit server properties.

	
add_reactions

	Returns True if a user can add reactions to messages.

	
view_audit_logs

	Returns True if a user can view the server’s audit log.

	
read_messages

	Returns True if a user can read messages from all or specific text channels.

	
send_messages

	Returns True if a user can send messages from all or specific text channels.

	
send_tts_messages

	Returns True if a user can send TTS messages from all or specific text channels.

	
manage_messages

	Returns True if a user can delete messages from a text channel. Note that there are currently no ways to edit other people’s messages.

	
embed_links

	Returns True if a user’s messages will automatically be embedded by Discord.

	
attach_files

	Returns True if a user can send files in their messages.

	
read_message_history

	Returns True if a user can read a text channel’s previous messages.

	
mention_everyone

	Returns True if a user’s @everyone will mention everyone in the text channel.

	
external_emojis

	Returns True if a user can use emojis from other servers.

	
connect

	Returns True if a user can connect to a voice channel.

	
speak

	Returns True if a user can speak in a voice channel.

	
mute_members

	Returns True if a user can mute other users.

	
deafen_members

	Returns True if a user can deafen other users.

	
move_members

	Returns True if a user can move users between other voice channels.

	
use_voice_activation

	Returns True if a user can use voice activation in voice channels.

	
change_nickname

	Returns True if a user can change their nickname in the server.

	
manage_nicknames

	Returns True if a user can change other user’s nickname in the server.

	
manage_roles

	Returns True if a user can create or edit roles less than their role’s position.

This also corresponds to the “manage permissions” channel-specific override.

	
manage_webhooks

	Returns True if a user can create, edit, or delete webhooks.

	
manage_emojis

	Returns True if a user can create, edit, or delete emojis.

PermissionOverwrite

	
class discord.PermissionOverwrite(**kwargs)

	A type that is used to represent a channel specific permission.

Unlike a regular Permissions, the default value of a
permission is equivalent to None and not False. Setting
a value to False is explicitly denying that permission,
while setting a value to True is explicitly allowing
that permission.

The values supported by this are the same as Permissions
with the added possibility of it being set to None.

Supported operations:

	Operation

	Description

	iter(x)

	Returns an iterator of (perm, value)
pairs. This allows this class to be used
as an iterable in e.g. set/list/dict
constructions.

	Parameters

	**kwargs – Set the value of permissions by their name.

	
pair()

	Returns the (allow, deny) pair from this overwrite.

The value of these pairs is Permissions.

	
classmethod from_pair(allow, deny)

	Creates an overwrite from an allow/deny pair of Permissions.

	
is_empty()

	Checks if the permission overwrite is currently empty.

An empty permission overwrite is one that has no overwrites set
to True or False.

	
update(**kwargs)

	Bulk updates this permission overwrite object.

Allows you to set multiple attributes by using keyword
arguments. The names must be equivalent to the properties
listed. Extraneous key/value pairs will be silently ignored.

	Parameters

	**kwargs – A list of key/value pairs to bulk update with.

Channel

	
class discord.Channel

	Represents a Discord server channel.

Supported Operations:

	Operation

	Description

	x == y

	Checks if two channels are equal.

	x != y

	Checks if two channels are not equal.

	hash(x)

	Returns the channel’s hash.

	str(x)

	Returns the channel’s name.

	
name

	str – The channel name.

	
server

	Server – The server the channel belongs to.

	
id

	str – The channel ID.

	
topic

	Optional[str] – The channel’s topic. None if it doesn’t exist.

	
is_private

	bool – True if the channel is a private channel (i.e. PM). False in this case.

	
position

	int – The position in the channel list. This is a number that starts at 0. e.g. the
top channel is position 0. The position varies depending on being a voice channel
or a text channel, so a 0 position voice channel is on top of the voice channel
list.

	
type

	ChannelType – The channel type. There is a chance that the type will be str if
the channel type is not within the ones recognised by the enumerator.

	
bitrate

	int – The channel’s preferred audio bitrate in bits per second.

	
voice_members

	A list of Members that are currently inside this voice channel.
If type is not ChannelType.voice then this is always an empty array.

	
user_limit

	int – The channel’s limit for number of members that can be in a voice channel.

	
changed_roles

	Returns a list of Roles that have been overridden from
their default values in the Server.roles attribute.

	
is_default

	bool – Indicates if this is the default channel for the Server it belongs to.

	
mention

	str – The string that allows you to mention the channel.

	
created_at

	Returns the channel’s creation time in UTC.

	
overwrites_for(obj)

	Returns the channel-specific overwrites for a member or a role.

	Parameters

	obj – The Role or Member or Object denoting
whose overwrite to get.

	Returns

	The permission overwrites for this object.

	Return type

	PermissionOverwrite

	
overwrites

	Returns all of the channel’s overwrites.

This is returned as a list of two-element tuples containing the target,
which can be either a Role or a Member and the overwrite
as the second element as a PermissionOverwrite.

	Returns

	The channel’s permission overwrites.

	Return type

	List[Tuple[Union[Role, Member], PermissionOverwrite]]

	
permissions_for(member)

	Handles permission resolution for the current Member.

This function takes into consideration the following cases:

	Server owner

	Server roles

	Channel overrides

	Member overrides

	Whether the channel is the default channel.

	Parameters

	member (Member) – The member to resolve permissions for.

	Returns

	The resolved permissions for the member.

	Return type

	Permissions

PrivateChannel

	
class discord.PrivateChannel

	Represents a Discord private channel.

Supported Operations:

	Operation

	Description

	x == y

	Checks if two channels are equal.

	x != y

	Checks if two channels are not equal.

	hash(x)

	Returns the channel’s hash.

	str(x)

	Returns a string representation of the channel

	
recipients

	list of User – The users you are participating with in the private channel.

	
me

	User – The user presenting yourself.

	
id

	str – The private channel ID.

	
is_private

	bool – True if the channel is a private channel (i.e. PM). True in this case.

	
type

	ChannelType – The type of private channel.

	
owner

	Optional[User] – The user that owns the private channel. If the channel type is not
ChannelType.group then this is always None.

	
icon

	Optional[str] – The private channel’s icon hash. If the channel type is not
ChannelType.group then this is always None.

	
name

	Optional[str] – The private channel’s name. If the channel type is not
ChannelType.group then this is always None.

	
user

	A property that returns the first recipient of the private channel.

This is mainly for compatibility and ease of use with old style private
channels that had a single recipient.

	
icon_url

	Returns the channel’s icon URL if available or an empty string otherwise.

	
created_at

	Returns the private channel’s creation time in UTC.

	
permissions_for(user)

	Handles permission resolution for a User.

This function is there for compatibility with Channel.

Actual private messages do not really have the concept of permissions.

This returns all the Text related permissions set to true except:

	send_tts_messages: You cannot send TTS messages in a PM.

	manage_messages: You cannot delete others messages in a PM.

This also handles permissions for ChannelType.group channels
such as kicking or mentioning everyone.

	Parameters

	user (User) – The user to check permissions for.

	Returns

	The resolved permissions for the user.

	Return type

	Permissions

Invite

	
class discord.Invite

	Represents a Discord Server or Channel invite.

Depending on the way this object was created, some of the attributes can
have a value of None.

Supported Operations:

	Operation

	Description

	x == y

	Checks if two invites are equal.

	x != y

	Checks if two invites are not equal.

	hash(x)

	Return the invite’s hash.

	str(x)

	Returns the invite’s URL.

	
max_age

	int – How long the before the invite expires in seconds. A value of 0 indicates that it doesn’t expire.

	
code

	str – The URL fragment used for the invite. xkcd is also a possible fragment.

	
server

	Server – The server the invite is for.

	
revoked

	bool – Indicates if the invite has been revoked.

	
created_at

	datetime.datetime – A datetime object denoting the time the invite was created.

	
temporary

	bool – Indicates that the invite grants temporary membership.
If True, members who joined via this invite will be kicked upon disconnect.

	
uses

	int – How many times the invite has been used.

	
max_uses

	int – How many times the invite can be used.

	
xkcd

	str – The URL fragment used for the invite if it is human readable.

	
inviter

	User – The user who created the invite.

	
channel

	Channel – The channel the invite is for.

	
id

	Returns the proper code portion of the invite.

	
url

	A property that retrieves the invite URL.

Exceptions

The following exceptions are thrown by the library.

	
exception discord.DiscordException

	Base exception class for discord.py

Ideally speaking, this could be caught to handle any exceptions thrown from this library.

	
exception discord.ClientException

	Exception that’s thrown when an operation in the Client fails.

These are usually for exceptions that happened due to user input.

	
exception discord.LoginFailure

	Exception that’s thrown when the Client.login() function
fails to log you in from improper credentials or some other misc.
failure.

	
exception discord.HTTPException(response, message)

	Exception that’s thrown when an HTTP request operation fails.

	
response

	The response of the failed HTTP request. This is an
instance of aiohttp.ClientResponse [http://aiohttp.readthedocs.org/en/stable/client_reference.html#aiohttp.ClientResponse].

	
text

	The text of the error. Could be an empty string.

	
exception discord.Forbidden(response, message)

	Exception that’s thrown for when status code 403 occurs.

Subclass of HTTPException

	
exception discord.NotFound(response, message)

	Exception that’s thrown for when status code 404 occurs.

Subclass of HTTPException

	
exception discord.InvalidArgument

	Exception that’s thrown when an argument to a function
is invalid some way (e.g. wrong value or wrong type).

This could be considered the analogous of ValueError and
TypeError except derived from ClientException and thus
DiscordException.

	
exception discord.GatewayNotFound

	An exception that is usually thrown when the gateway hub
for the Client websocket is not found.

	
exception discord.ConnectionClosed(original)

	Exception that’s thrown when the gateway connection is
closed for reasons that could not be handled internally.

	
code

	int – The close code of the websocket.

	
reason

	str – The reason provided for the closure.

	
exception discord.opus.OpusError(code)

	An exception that is thrown for libopus related errors.

	
code

	int – The error code returned.

	
exception discord.opus.OpusNotLoaded

	An exception that is thrown for when libopus is not loaded.

Frequently Asked Questions

This is a list of Frequently Asked Questions regarding using discord.py and its extension modules. Feel free to suggest a
new question or submit one via pull requests.

Questions

	Coroutines

	I get a SyntaxError around the word async! What should I do?

	What is a coroutine?

	Where can I use await?

	What does “blocking” mean?

	General

	How do I set the “Playing” status?

	How do I send a message to a specific channel?

	I’m passing IDs as integers and things are not working!

	How do I upload an image?

	How can I add a reaction to a message?

	How do I pass a coroutine to the player’s “after” function?

	Why is my “after” function being called right away?

	How do I run something in the background?

	How do I get a specific User/Role/Channel/Server?

	Commands Extension

	Is there any documentation for this?

	Why does on_message make my commands stop working?

	Can I use bot.say in other places aside from commands?

	Why do my arguments require quotes?

	How do I get the original message?

	How do I make a subcommand?

Coroutines

Questions regarding coroutines and asyncio belong here.

I get a SyntaxError around the word async! What should I do?

This SyntaxError happens because you’re using a Python version lower than 3.5. Python 3.4 uses @asyncio.coroutine and
yield from instead of async def and await.

Thus you must do the following instead:

async def foo():
 await bar()

into

@asyncio.coroutine
def foo():
 yield from bar()

Don’t forget to import asyncio on the top of your files.

It is heavily recommended that you update to Python 3.5 or higher as it simplifies asyncio massively.

What is a coroutine?

A coroutine is a function that must be invoked with await or yield from. When Python encounters an await it stops
the function’s execution at that point and works on other things until it comes back to that point and finishes off its work.
This allows for your program to be doing multiple things at the same time without using threads or complicated
multiprocessing.

If you forget to await a coroutine then the coroutine will not run. Never forget to await a coroutine.

Where can I use await?

You can only use await inside async def functions and nowhere else.

What does “blocking” mean?

In asynchronous programming a blocking call is essentially all the parts of the function that are not await. Do not
despair however, because not all forms of blocking are bad! Using blocking calls is inevitable, but you must work to make
sure that you don’t excessively block functions. Remember, if you block for too long then your bot will freeze since it has
not stopped the function’s execution at that point to do other things.

A common source of blocking for too long is something like time.sleep(n). Don’t do that. Use asyncio.sleep(n)
instead. Similar to this example:

bad
time.sleep(10)

good
await asyncio.sleep(10)

Another common source of blocking for too long is using HTTP requests with the famous module requests. While requests
is an amazing module for non-asynchronous programming, it is not a good choice for asyncio because certain requests can
block the event loop too long. Instead, use the aiohttp library which is installed on the side with this library.

Consider the following example:

bad
r = requests.get('http://random.cat/meow')
if r.status_code == 200:
 js = r.json()
 await client.send_message(channel, js['file'])

good
async with aiohttp.get('http://random.cat/meow') as r:
 if r.status == 200:
 js = await r.json()
 await client.send_message(channel, js['file'])

General

General questions regarding library usage belong here.

How do I set the “Playing” status?

There is a method for this under Client called Client.change_presence(). The relevant aspect of this is its
game keyword argument which takes in a Game object. Putting both of these pieces of info together, you get the
following:

await client.change_presence(game=discord.Game(name='my game'))

How do I send a message to a specific channel?

If you have its ID then you can do this in two ways, first is by using Object:

await client.send_message(discord.Object(id='12324234183172'), 'hello')

The second way is by calling Client.get_channel() directly:

await client.send_message(client.get_channel('12324234183172'), 'hello')

I’m passing IDs as integers and things are not working!

In the library IDs must be of type str not of type int. Wrap it in quotes.

How do I upload an image?

There are two ways of doing it. Both of which involve using Client.send_file().

The first is by opening the file and passing it directly:

with open('my_image.png', 'rb') as f:
 await client.send_file(channel, f)

The second is by passing the file name directly:

await client.send_file(channel, 'my_image.png')

How can I add a reaction to a message?

You use the Client.add_reaction() method.

If you want to use unicode emoji, you must pass a valid unicode code point in a string. In your code, you can write this in a few different ways:

	'👍'

	'\U0001F44D'

	'\N{THUMBS UP SIGN}'

In case you want to use emoji that come from a message, you already get their code points in the content without needing to do anything special.
You cannot send ':thumbsup:' style shorthands.

For custom emoji, you should pass an instance of discord.Emoji. You can also pass a 'name:id' string, but if you can use said emoji,
you should be able to use Client.get_all_emojis()/Server.emojis to find the one you’re looking for.

How do I pass a coroutine to the player’s “after” function?

A StreamPlayer is just a threading.Thread object that plays music. As a result it does not execute inside a coroutine.
This does not mean that it is not possible to call a coroutine in the after parameter. To do so you must pass a callable
that wraps up a couple of aspects.

The first gotcha that you must be aware of is that calling a coroutine is not a thread-safe operation. Since we are
technically in another thread, we must take caution in calling thread-safe operations so things do not bug out. Luckily for
us, asyncio comes with a asyncio.run_coroutine_threadsafe
function [https://docs.python.org/3.5/library/asyncio-task.html#asyncio.run_coroutine_threadsafe] that allows us to call
a coroutine from another thread.

Warning

This function is only part of 3.5.1+ and 3.4.4+. If you are not using these Python versions then use
discord.compat.run_coroutine_threadsafe.

However, this function returns a concurrent.Future and to actually call it we have to fetch its result. Putting all of
this together we can do the following:

def my_after():
 coro = client.send_message(some_channel, 'Song is done!')
 fut = asyncio.run_coroutine_threadsafe(coro, client.loop)
 try:
 fut.result()
 except:
 # an error happened sending the message
 pass

player = await voice.create_ytdl_player(url, after=my_after)
player.start()

Why is my “after” function being called right away?

The after keyword argument expects a function object to be passed in. Similar to how threading.Thread expects a
callable in its target keyword argument. This means that the following are invalid:

player = await voice.create_ytdl_player(url, after=self.foo())
other = await voice.create_ytdl_player(url, after=self.bar(10))

However the following are correct:

player = await voice.create_ytdl_player(url, after=self.foo)
other = await voice.create_ytdl_player(url, after=lambda: self.bar(10))

Basically, these functions should not be called.

How do I run something in the background?

Check the background_task.py example. [https://github.com/Rapptz/discord.py/blob/master/examples/background_task.py]

How do I get a specific User/Role/Channel/Server?

There are multiple ways of doing this. If you have a specific entity’s ID then you can use
one of the following functions:

	Client.get_channel()

	Client.get_server()

	Server.get_member()

	Server.get_channel()

If the functions above do not help you, then use of utils.find() or utils.get() would serve some use in finding
specific entities. The documentation for those functions provides specific examples.

Commands Extension

Questions regarding discord.ext.commands belong here.

Is there any documentation for this?

Not at the moment. Writing documentation for stuff takes time. A lot of people get by reading the docstrings in the source
code. Others get by via asking questions in the Discord server [https://discord.gg/0SBTUU1wZTXZNJPa]. Others look at the
source code of other existing bots [https://github.com/Rapptz/RoboDanny].

There is a basic example [https://github.com/Rapptz/discord.py/blob/master/examples/basic_bot.py] showcasing some
functionality.

Documentation is being worked on, it will just take some time to polish it.

Why does on_message make my commands stop working?

Overriding the default provided on_message forbids any extra commands from running. To fix this, add a
bot.process_commands(message) line at the end of your on_message. For example:

@bot.event
async def on_message(message):
 # do some extra stuff here

 await bot.process_commands(message)

Can I use bot.say in other places aside from commands?

No. They only work inside commands due to the way the magic involved works.

Why do my arguments require quotes?

In a simple command defined as:

@bot.command()
async def echo(message: str):
 await bot.say(message)

Calling it via ?echo a b c will only fetch the first argument and disregard the rest. To fix this you should either call
it via ?echo "a b c" or change the signature to have “consume rest” behaviour. Example:

@bot.command()
async def echo(*, message: str):
 await bot.say(message)

This will allow you to use ?echo a b c without needing the quotes.

How do I get the original message?

Ask the command to pass you the invocation context via pass_context. This context will be passed as the first parameter.

Example:

@bot.command(pass_context=True)
async def joined_at(ctx, member: discord.Member = None):
 if member is None:
 member = ctx.message.author

 await bot.say('{0} joined at {0.joined_at}'.format(member))

How do I make a subcommand?

Use the group decorator. This will transform the callback into a Group which will allow you to add commands into
the group operating as “subcommands”. These groups can be arbitrarily nested as well.

Example:

@bot.group(pass_context=True)
async def git(ctx):
 if ctx.invoked_subcommand is None:
 await bot.say('Invalid git command passed...')

@git.command()
async def push(remote: str, branch: str):
 await bot.say('Pushing to {} {}'.format(remote, branch))

This could then be used as ?git push origin master.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

_

 	
 	__version__ (in module discord)

A

 	
 	accept_invite() (discord.Client method)

 	add_field() (discord.Embed method)

 	add_reaction() (discord.Client method)

 	add_reactions (discord.Permissions attribute)

 	add_roles() (discord.Client method)

 	administrator (discord.Permissions attribute)

 	afk_channel (discord.Server attribute)

 	afk_timeout (discord.Server attribute)

 	all() (discord.Permissions class method)

 	all_channel() (discord.Permissions class method)

 	
 	amsterdam (discord.ServerRegion attribute)

 	AppInfo (class in discord)

 	application_info() (discord.Client method)

 	async_event() (discord.Client method)

 	attach_files (discord.Permissions attribute)

 	attachments (discord.Message attribute)

 	author (discord.Embed attribute)

 	(discord.Message attribute)

 	avatar (discord.User attribute)

 	avatar_url (discord.User attribute)

B

 	
 	b (discord.Colour attribute)

 	ban() (discord.Client method)

 	ban_members (discord.Permissions attribute)

 	
 	bitrate (discord.Channel attribute)

 	blue() (discord.Colour class method)

 	bot (discord.User attribute)

 	brazil (discord.ServerRegion attribute)

C

 	
 	call (discord.GroupCall attribute)

 	(discord.Message attribute)

 	(discord.MessageType attribute)

 	call_ended (discord.CallMessage attribute)

 	CallMessage (class in discord)

 	category (discord.ChannelType attribute)

 	change_nickname (discord.Permissions attribute)

 	change_nickname() (discord.Client method)

 	change_presence() (discord.Client method)

 	change_status() (discord.Client method)

 	changed_roles (discord.Channel attribute)

 	Channel (class in discord)

 	channel (discord.CallMessage attribute)

 	(discord.GroupCall attribute)

 	(discord.Invite attribute)

 	(discord.Message attribute)

 	(discord.VoiceClient attribute)

 	channel_icon_change (discord.MessageType attribute)

 	channel_mentions (discord.Message attribute)

 	channel_name_change (discord.MessageType attribute)

 	channels (discord.Server attribute)

 	ChannelType (class in discord)

 	clean_content (discord.Message attribute)

 	clear_fields() (discord.Embed method)

 	clear_reactions() (discord.Client method)

 	Client (class in discord)

 	ClientException

 	close() (discord.Client method)

 	code (discord.ConnectionClosed attribute)

 	(discord.Invite attribute)

 	(discord.opus.OpusError attribute)

 	
 	color (discord.Member attribute)

 	Colour (class in discord)

 	colour (discord.Embed attribute)

 	(discord.Member attribute)

 	(discord.Role attribute)

 	connect (discord.Permissions attribute)

 	connect() (discord.Client method)

 	connected (discord.GroupCall attribute)

 	ConnectionClosed

 	content (discord.Message attribute)

 	count (discord.Reaction attribute)

 	create_channel() (discord.Client method)

 	create_custom_emoji() (discord.Client method)

 	create_ffmpeg_player() (discord.VoiceClient method)

 	create_instant_invite (discord.Permissions attribute)

 	create_invite() (discord.Client method)

 	create_role() (discord.Client method)

 	create_server() (discord.Client method)

 	create_stream_player() (discord.VoiceClient method)

 	create_ytdl_player() (discord.VoiceClient method)

 	created_at (discord.Channel attribute)

 	(discord.Emoji attribute)

 	(discord.Invite attribute)

 	(discord.Object attribute)

 	(discord.PrivateChannel attribute)

 	(discord.Role attribute)

 	(discord.Server attribute)

 	(discord.User attribute)

 	custom_emoji (discord.Reaction attribute)

D

 	
 	dark_blue() (discord.Colour class method)

 	dark_gold() (discord.Colour class method)

 	dark_green() (discord.Colour class method)

 	dark_grey() (discord.Colour class method)

 	dark_magenta() (discord.Colour class method)

 	dark_orange() (discord.Colour class method)

 	dark_purple() (discord.Colour class method)

 	dark_red() (discord.Colour class method)

 	dark_teal() (discord.Colour class method)

 	darker_grey() (discord.Colour class method)

 	deaf (discord.VoiceState attribute)

 	deafen_members (discord.Permissions attribute)

 	default (discord.MessageType attribute)

 	default() (discord.Colour class method)

 	default_avatar (discord.User attribute)

 	default_avatar_url (discord.User attribute)

 	default_channel (discord.Server attribute)

 	
 	default_role (discord.Server attribute)

 	delete_channel() (discord.Client method)

 	delete_channel_permissions() (discord.Client method)

 	delete_custom_emoji() (discord.Client method)

 	delete_invite() (discord.Client method)

 	delete_message() (discord.Client method)

 	delete_messages() (discord.Client method)

 	delete_role() (discord.Client method)

 	delete_server() (discord.Client method)

 	description (discord.AppInfo attribute)

 	(discord.Embed attribute)

 	disconnect() (discord.VoiceClient method)

 	DiscordException

 	discriminator (discord.User attribute)

 	display_name (discord.User attribute)

 	dnd (discord.Status attribute)

 	do_not_disturb (discord.Status attribute)

 	duration (discord.CallMessage attribute)

E

 	
 	edit_channel() (discord.Client method)

 	edit_channel_permissions() (discord.Client method)

 	edit_custom_emoji() (discord.Client method)

 	edit_message() (discord.Client method)

 	edit_profile() (discord.Client method)

 	edit_role() (discord.Client method)

 	edit_server() (discord.Client method)

 	edited_timestamp (discord.Message attribute)

 	email (discord.Client attribute)

 	Embed (class in discord)

 	embed_links (discord.Permissions attribute)

 	embeds (discord.Message attribute)

 	
 	Emoji (class in discord)

 	emoji (discord.Reaction attribute)

 	emojis (discord.Server attribute)

 	Empty (discord.Embed attribute)

 	encoder_options() (discord.VoiceClient method)

 	ended_timestamp (discord.CallMessage attribute)

 	endpoint (discord.VoiceClient attribute)

 	estimate_pruned_members() (discord.Client method)

 	eu_central (discord.ServerRegion attribute)

 	eu_west (discord.ServerRegion attribute)

 	event() (discord.Client method)

 	external_emojis (discord.Permissions attribute)

F

 	
 	features (discord.Server attribute)

 	fields (discord.Embed attribute)

 	find() (in module discord.utils)

 	
 	footer (discord.Embed attribute)

 	Forbidden

 	frankfurt (discord.ServerRegion attribute)

 	from_pair() (discord.PermissionOverwrite class method)

G

 	
 	g (discord.Colour attribute)

 	Game (class in discord)

 	game (discord.Member attribute)

 	GatewayNotFound

 	general() (discord.Permissions class method)

 	get() (in module discord.utils)

 	get_all_channels() (discord.Client method)

 	get_all_emojis() (discord.Client method)

 	get_all_members() (discord.Client method)

 	get_bans() (discord.Client method)

 	get_channel() (discord.Client method)

 	(discord.Server method)

 	
 	get_invite() (discord.Client method)

 	get_member() (discord.Server method)

 	get_member_named() (discord.Server method)

 	get_message() (discord.Client method)

 	get_reaction_users() (discord.Client method)

 	get_server() (discord.Client method)

 	get_user_info() (discord.Client method)

 	gold() (discord.Colour class method)

 	green() (discord.Colour class method)

 	group (discord.ChannelType attribute)

 	group_call_in() (discord.Client method)

 	GroupCall (class in discord)

H

 	
 	high (discord.VerificationLevel attribute)

 	
 	hoist (discord.Role attribute)

 	HTTPException

I

 	
 	icon (discord.AppInfo attribute)

 	(discord.PrivateChannel attribute)

 	(discord.Server attribute)

 	icon_url (discord.AppInfo attribute)

 	(discord.PrivateChannel attribute)

 	(discord.Server attribute)

 	id (discord.AppInfo attribute)

 	(discord.Channel attribute)

 	(discord.Emoji attribute)

 	(discord.Invite attribute)

 	(discord.Message attribute)

 	(discord.Object attribute)

 	(discord.PrivateChannel attribute)

 	(discord.Role attribute)

 	(discord.Server attribute)

 	(discord.User attribute)

 	idle (discord.Status attribute)

 	image (discord.Embed attribute)

 	InvalidArgument

 	
 	invisible (discord.Status attribute)

 	Invite (class in discord)

 	inviter (discord.Invite attribute)

 	invites_from() (discord.Client method)

 	is_afk (discord.VoiceState attribute)

 	is_closed (discord.Client attribute)

 	is_connected() (discord.VoiceClient method)

 	is_default (discord.Channel attribute)

 	is_empty() (discord.PermissionOverwrite method)

 	is_everyone (discord.Role attribute)

 	is_loaded() (in module discord.opus)

 	is_logged_in (discord.Client attribute)

 	is_private (discord.Channel attribute)

 	(discord.PrivateChannel attribute)

 	is_strict_subset() (discord.Permissions method)

 	is_strict_superset() (discord.Permissions method)

 	is_subset() (discord.Permissions method)

 	is_superset() (discord.Permissions method)

 	is_voice_connected() (discord.Client method)

J

 	
 	join_voice_channel() (discord.Client method)

 	
 	joined_at (discord.Member attribute)

K

 	
 	kick() (discord.Client method)

 	
 	kick_members (discord.Permissions attribute)

L

 	
 	large (discord.Server attribute)

 	leave_server() (discord.Client method)

 	light_grey() (discord.Colour class method)

 	lighter_grey() (discord.Colour class method)

 	load_opus() (in module discord.opus)

 	login() (discord.Client method)

 	
 	LoginFailure

 	logout() (discord.Client method)

 	logs_from() (discord.Client method)

 	london (discord.ServerRegion attribute)

 	loop (discord.Client attribute)

 	(discord.VoiceClient attribute)

 	low (discord.VerificationLevel attribute)

M

 	
 	magenta() (discord.Colour class method)

 	manage_channels (discord.Permissions attribute)

 	manage_emojis (discord.Permissions attribute)

 	manage_messages (discord.Permissions attribute)

 	manage_nicknames (discord.Permissions attribute)

 	manage_roles (discord.Permissions attribute)

 	manage_server (discord.Permissions attribute)

 	manage_webhooks (discord.Permissions attribute)

 	managed (discord.Emoji attribute)

 	(discord.Role attribute)

 	max_age (discord.Invite attribute)

 	max_uses (discord.Invite attribute)

 	me (discord.PrivateChannel attribute)

 	(discord.Reaction attribute)

 	(discord.Server attribute)

 	medium (discord.VerificationLevel attribute)

 	Member (class in discord)

 	member_count (discord.Server attribute)

 	members (discord.Server attribute)

 	mention (discord.Channel attribute)

 	(discord.Role attribute)

 	(discord.User attribute)

 	
 	mention_everyone (discord.Message attribute)

 	(discord.Permissions attribute)

 	mentionable (discord.Role attribute)

 	mentioned_in() (discord.User method)

 	mentions (discord.Message attribute)

 	Message (class in discord)

 	message (discord.CallMessage attribute)

 	(discord.Reaction attribute)

 	messages (discord.Client attribute)

 	MessageType (class in discord)

 	mfa_level (discord.Server attribute)

 	move_channel() (discord.Client method)

 	move_member() (discord.Client method)

 	move_members (discord.Permissions attribute)

 	move_role() (discord.Client method)

 	move_to() (discord.VoiceClient method)

 	mute (discord.VoiceState attribute)

 	mute_members (discord.Permissions attribute)

N

 	
 	name (discord.AppInfo attribute)

 	(discord.Channel attribute)

 	(discord.Emoji attribute)

 	(discord.Game attribute)

 	(discord.PrivateChannel attribute)

 	(discord.Role attribute)

 	(discord.Server attribute)

 	(discord.User attribute)

 	
 	nick (discord.Member attribute)

 	nonce (discord.Message attribute)

 	none (discord.VerificationLevel attribute)

 	none() (discord.Permissions class method)

 	NotFound

O

 	
 	oauth_url() (in module discord.utils)

 	Object (class in discord)

 	offline (discord.Status attribute)

 	on_channel_create() (in module discord)

 	on_channel_delete() (in module discord)

 	on_channel_update() (in module discord)

 	on_error() (discord.Client method)

 	(in module discord)

 	on_group_join() (in module discord)

 	on_group_remove() (in module discord)

 	on_member_ban() (in module discord)

 	on_member_join() (in module discord)

 	on_member_remove() (in module discord)

 	on_member_unban() (in module discord)

 	on_member_update() (in module discord)

 	on_message() (in module discord)

 	on_message_delete() (in module discord)

 	on_message_edit() (in module discord)

 	on_reaction_add() (in module discord)

 	on_reaction_clear() (in module discord)

 	on_reaction_remove() (in module discord)

 	on_ready() (in module discord)

 	
 	on_resumed() (in module discord)

 	on_server_available() (in module discord)

 	on_server_emojis_update() (in module discord)

 	on_server_join() (in module discord)

 	on_server_remove() (in module discord)

 	on_server_role_create() (in module discord)

 	on_server_role_delete() (in module discord)

 	on_server_role_update() (in module discord)

 	on_server_unavailable() (in module discord)

 	on_server_update() (in module discord)

 	on_socket_raw_receive() (in module discord)

 	on_socket_raw_send() (in module discord)

 	on_typing() (in module discord)

 	on_voice_state_update() (in module discord)

 	online (discord.Status attribute)

 	OpusError

 	OpusNotLoaded

 	orange() (discord.Colour class method)

 	overwrites (discord.Channel attribute)

 	overwrites_for() (discord.Channel method)

 	owner (discord.AppInfo attribute)

 	(discord.PrivateChannel attribute)

 	(discord.Server attribute)

P

 	
 	pair() (discord.PermissionOverwrite method)

 	participants (discord.CallMessage attribute)

 	PermissionOverwrite (class in discord)

 	Permissions (class in discord)

 	permissions (discord.Role attribute)

 	permissions_for() (discord.Channel method)

 	(discord.PrivateChannel method)

 	permissions_in() (discord.User method)

 	pin_message() (discord.Client method)

 	pinned (discord.Message attribute)

 	pins_add (discord.MessageType attribute)

 	
 	pins_from() (discord.Client method)

 	play_audio() (discord.VoiceClient method)

 	poll_voice_ws() (discord.VoiceClient method)

 	position (discord.Channel attribute)

 	(discord.Role attribute)

 	private (discord.ChannelType attribute)

 	private_channels (discord.Client attribute)

 	PrivateChannel (class in discord)

 	provider (discord.Embed attribute)

 	prune_members() (discord.Client method)

 	purge_from() (discord.Client method)

 	purple() (discord.Colour class method)

R

 	
 	r (discord.Colour attribute)

 	raw_channel_mentions (discord.Message attribute)

 	raw_mentions (discord.Message attribute)

 	raw_role_mentions (discord.Message attribute)

 	Reaction (class in discord)

 	reactions (discord.Message attribute)

 	read_message_history (discord.Permissions attribute)

 	read_messages (discord.Permissions attribute)

 	reason (discord.ConnectionClosed attribute)

 	recipient_add (discord.MessageType attribute)

 	recipient_remove (discord.MessageType attribute)

 	recipients (discord.PrivateChannel attribute)

 	red() (discord.Colour class method)

 	region (discord.GroupCall attribute)

 	(discord.Server attribute)

 	
 	remove_field() (discord.Embed method)

 	remove_reaction() (discord.Client method)

 	remove_roles() (discord.Client method)

 	replace_roles() (discord.Client method)

 	request_offline_members() (discord.Client method)

 	require_colons (discord.Emoji attribute)

 	response (discord.HTTPException attribute)

 	revoked (discord.Invite attribute)

 	ringing (discord.GroupCall attribute)

 	Role (class in discord)

 	role_hierarchy (discord.Server attribute)

 	role_mentions (discord.Message attribute)

 	roles (discord.Emoji attribute)

 	(discord.Member attribute)

 	(discord.Server attribute)

 	run() (discord.Client method)

S

 	
 	self_deaf (discord.VoiceState attribute)

 	self_mute (discord.VoiceState attribute)

 	send_file() (discord.Client method)

 	send_message() (discord.Client method)

 	send_messages (discord.Permissions attribute)

 	send_tts_messages (discord.Permissions attribute)

 	send_typing() (discord.Client method)

 	Server (class in discord)

 	server (discord.Channel attribute)

 	(discord.Emoji attribute)

 	(discord.Invite attribute)

 	(discord.Member attribute)

 	(discord.Message attribute)

 	(discord.Role attribute)

 	(discord.VoiceClient attribute)

 	server_permissions (discord.Member attribute)

 	server_voice_state() (discord.Client method)

 	ServerRegion (class in discord)

 	
 	servers (discord.Client attribute)

 	session_id (discord.VoiceClient attribute)

 	set_author() (discord.Embed method)

 	set_field_at() (discord.Embed method)

 	set_footer() (discord.Embed method)

 	set_image() (discord.Embed method)

 	set_thumbnail() (discord.Embed method)

 	singapore (discord.ServerRegion attribute)

 	snowflake_time() (in module discord.utils)

 	speak (discord.Permissions attribute)

 	splash (discord.Server attribute)

 	splash_url (discord.Server attribute)

 	start() (discord.Client method)

 	start_private_message() (discord.Client method)

 	Status (class in discord)

 	status (discord.Member attribute)

 	sydney (discord.ServerRegion attribute)

 	system_content (discord.Message attribute)

T

 	
 	table_flip (discord.VerificationLevel attribute)

 	teal() (discord.Colour class method)

 	temporary (discord.Invite attribute)

 	text (discord.ChannelType attribute)

 	(discord.HTTPException attribute)

 	text() (discord.Permissions class method)

 	thumbnail (discord.Embed attribute)

 	timestamp (discord.Embed attribute)

 	(discord.Message attribute)

 	title (discord.Embed attribute)

 	
 	to_dict() (discord.Embed method)

 	to_tuple() (discord.Colour method)

 	token (discord.VoiceClient attribute)

 	top_role (discord.Member attribute)

 	topic (discord.Channel attribute)

 	tts (discord.Message attribute)

 	type (discord.Channel attribute)

 	(discord.Embed attribute)

 	(discord.Game attribute)

 	(discord.Message attribute)

 	(discord.PrivateChannel attribute)

U

 	
 	unavailable (discord.GroupCall attribute)

 	(discord.Server attribute)

 	unban() (discord.Client method)

 	unpin_message() (discord.Client method)

 	update() (discord.PermissionOverwrite method)

 	(discord.Permissions method)

 	url (discord.Embed attribute)

 	(discord.Emoji attribute)

 	(discord.Game attribute)

 	(discord.Invite attribute)

 	
 	us_central (discord.ServerRegion attribute)

 	us_east (discord.ServerRegion attribute)

 	us_west (discord.ServerRegion attribute)

 	use_voice_activation (discord.Permissions attribute)

 	User (class in discord)

 	user (discord.Client attribute)

 	(discord.PrivateChannel attribute)

 	(discord.VoiceClient attribute)

 	user_limit (discord.Channel attribute)

 	uses (discord.Invite attribute)

V

 	
 	value (discord.Colour attribute)

 	(discord.Permissions attribute)

 	verification_level (discord.Server attribute)

 	VerificationLevel (class in discord)

 	version_info (in module discord)

 	video (discord.Embed attribute)

 	view_audit_logs (discord.Permissions attribute)

 	vip_amsterdam (discord.ServerRegion attribute)

 	vip_us_east (discord.ServerRegion attribute)

 	vip_us_west (discord.ServerRegion attribute)

 	
 	voice (discord.ChannelType attribute)

 	(discord.Member attribute)

 	voice() (discord.Permissions class method)

 	voice_channel (discord.VoiceState attribute)

 	voice_client (discord.Server attribute)

 	voice_client_in() (discord.Client method)

 	voice_clients (discord.Client attribute)

 	voice_members (discord.Channel attribute)

 	voice_state_for() (discord.GroupCall method)

 	VoiceClient (class in discord)

 	VoiceState (class in discord)

W

 	
 	wait_for_message() (discord.Client method)

 	wait_for_reaction() (discord.Client method)

 	
 	wait_until_login() (discord.Client method)

 	wait_until_ready() (discord.Client method)

 	ws (discord.Client attribute)

X

 	
 	xkcd (discord.Invite attribute)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to discord.py’s documentation!

 		
 Setting Up Logging

 		
 What’s New

 		
 v0.16.6

 		
 Bug Fixes

 		
 v0.16.1

 		
 Bug Fixes

 		
 v0.16.0

 		
 New Features

 		
 Bug Fixes

 		
 v0.15.1

 		
 v0.15.0

 		
 New Features

 		
 v0.14.3

 		
 Bug Fixes

 		
 v0.14.2

 		
 New Features

 		
 Bug Fixes

 		
 v0.14.1

 		
 Bug fixes

 		
 v0.14.0

 		
 New Features

 		
 Bug Fixes

 		
 v0.13.0

 		
 New Features

 		
 Bug Fixes

 		
 v0.12.0

 		
 New Features

 		
 Bug Fixes

 		
 v0.11.0

 		
 Breaking Changes

 		
 New Features

 		
 Bug Fixes

 		
 v0.10.0

 		
 New Features

 		
 Performance Improvements

 		
 Bug Fixes

 		
 Migrating to v0.10.0

 		
 Event Registration

 		
 Event Changes

 		
 Coroutines

 		
 Iterables

 		
 Enumerations

 		
 Properties

 		
 Member Management

 		
 Renamed Functions

 		
 Forced Keyword Arguments

 		
 Running the Client

 		
 API Reference

 		
 Version Related Info

 		
 Client

 		
 Voice

 		
 Opus Library

 		
 Event Reference

 		
 Utility Functions

 		
 Application Info

 		
 Enumerations

 		
 Data Classes

 		
 Object

 		
 User

 		
 Message

 		
 Reaction

 		
 Embed

 		
 CallMessage

 		
 GroupCall

 		
 Server

 		
 Member

 		
 VoiceState

 		
 Colour

 		
 Game

 		
 Emoji

 		
 Role

 		
 Permissions

 		
 PermissionOverwrite

 		
 Channel

 		
 PrivateChannel

 		
 Invite

 		
 Exceptions

 		
 Frequently Asked Questions

 		
 Coroutines

 		
 I get a SyntaxError around the word async! What should I do?

 		
 What is a coroutine?

 		
 Where can I use await?

 		
 What does “blocking” mean?

 		
 General

 		
 How do I set the “Playing” status?

 		
 How do I send a message to a specific channel?

 		
 I’m passing IDs as integers and things are not working!

 		
 How do I upload an image?

 		
 How can I add a reaction to a message?

 		
 How do I pass a coroutine to the player’s “after” function?

 		
 Why is my “after” function being called right away?

 		
 How do I run something in the background?

 		
 How do I get a specific User/Role/Channel/Server?

 		
 Commands Extension

 		
 Is there any documentation for this?

 		
 Why does on_message make my commands stop working?

 		
 Can I use bot.say in other places aside from commands?

 		
 Why do my arguments require quotes?

 		
 How do I get the original message?

 		
 How do I make a subcommand?

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

