

 Navigation

 	
 index

 	discord-akairo master documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/discord-akairo/checkouts/master/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/discord-akairo/checkouts/master/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	discord-akairo master documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		discord-akairo master documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

examples/2. Commands and Arguments.html

 Navigation

 		
 index

 		discord-akairo master documentation »

Commands and Arguments

Commands

Now that your framework is setup, let’s make some commands.Here is a simple ping command.In the Getting Started example, this file would be placed in the src/commands/ folder.

const Command = require('discord-akairo').Command;

function exec(message){
 message.channel.send('pong');
}

module.exports = new Command('ping', ['ping', 'hello', 'hi'], [], exec);

This command can now be called with !ping, !hello, or !hi, and the bot will respond with pong.

Note that the exec function is not an arrow function. This is because of how this works in JS.If the exec function is an arrow function, you will not have access to this.framework.client, this.commandHandler, etc.The same behavior applies to inhibitors and listeners.

Arguments

One of the big things that Akairo has to offer is its argument parser.In the args parameter of the Command constructor, you can put some arguments.

module.exports = new Command('person', ['person'], [
 {id: 'firstName'},
 {id: 'lastName'},
 {id: 'age', type: 'number', defaultValue: 18}
], exec);

This will create three arguments: firstName, lastName, and age.You can access them in the exec function like so:

function exec(message, args){
 message.channel.send(`Your name is ${args.firstName} ${args.lastName} and you are ${args.age} years old!`);
}

If someone used !person John Smith 24, the output will be Your name is John Smith and you are 24 years old!.If someone used !person Bob Smith, the output will be Your name is Bob Smith and you are 18 years old!.If someone used !person Kevin Smith not-a-number, the output will be Your name is Kevin Smith and you are 18 years old!.

Flags and Prefixes

Flags and prefixes allow for even more customization.

module.exports = new Command('number', ['number'], [
 {id: 'number', type: 'number'},
 {id: 'times', type: 'number', parse: 'prefix', prefix: '--times:', defaultValue: 1},
 {id: 'big', parse: 'flag', prefix: '--big'}
], exec);

An argument with the parse property set to 'prefix' or 'flag' makes it ignore word order.'prefix' finds words that starts with the argument’s prefix property, and 'flag' find words that match the prefix property.So, you can use any of these commands:!number 15 --times:5 --big!number 15 --big --times:5!number --big 15 --times:5!number --times:5 --big 15 (Imagine a lot of whitespace between the words, Markdown doesn’t like spaces.)

Whatever order you can think of, the value of args in the exec function will be:

{
 number: 15,
 times: 5,
 big: true
}

Text and Content

The other possible parse types are 'text', and 'content'.
The difference is that 'text' would give you all the words in the input with the words matching prefixes and extra whitespace removed.'content' just gives you everything after the command.

They both also use the index in order to start from a certain word.Note that the behavior of index will be different, because 'text' removes extra whitespace but 'content' does not do so and also does not work with quoted splitting.

For the first example above, 'text' would give you '15' while 'content' would give you '15 --times:5 --big'.For the fourth example above, 'text' would give you '15' while 'content' would give you '--times:5 --big 15' (with the whitespace).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		discord-akairo master documentation »

Discord-Akairo

insert cool logo here

A bot framework for Discord.js v11.

Features

		Command processing.

		Argument parsing.

		Command inhibitors.

		Event listeners.

		Reloadable everything.

		SQLite support.

Help

See the examples folder for information.If you need more help, message me on Discord: 1Computer#7952.

Issues

Open up an issue if you find a bug!It would help a lot, as I am terrible at testing.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

_static/file.png

_static/plus.png

examples/3. Creating Inhibitors.html

 Navigation

 		
 index

 		discord-akairo master documentation »

Creating Inhibitors

Inhibitors

Inhibitors are functions that are ran before a command is processed and executed.Here is an inhibitor that prevents certain users from using all commands.In the Getting Started example, this file would be placed in the src/inhibitors/ folder.

const Inhibitor = require('discord-akairo').Inhibitor;

const blockedUsers = [
 '1234',
 '5678',
 '1357',
 '2468'
];

function exec(message){
 if (blockedUsers.includes(message.author.id)){
 return true;
 }
}

module.exports = new Inhibitor('blacklist', 'blacklist', exec);

In this example, if the author’s ID is one of the ones in the blacklist, the command will be blocked!

 © Copyright 2016.
 Created using Sphinx 1.3.5.

examples/5. Databases.html

 Navigation

 		
 index

 		discord-akairo master documentation »

Databases

Database handling is not part of the framework itself, it just comes with it.Currently, only SQLite is supported.Your main file can be used to initialize a database.

const Discord = require('discord.js');
const Akairo = require('discord-akairo');

const config = require('./config.json');
const client = new Discord.Client();

const guildSQL = new Akairo.SQLiteHandler('./databases/guilds.sqlite', 'guildConfigs', require('./databases/guildDefault.json'));
const userSQL = new Akairo.SQLiteHandler('./databases/users.sqlite', 'userConfigs', require('./databases/userDefault.json'));

const akairo = new Akairo.Framework(client, {
 token: config.token,
 ownerID: config.ownerID,
 prefix: message => guildSQL.get(message.guild ? message.guild.id : 'default').prefix,
 allowMention: true,
 commandDirectory: './src/commands/',
 inhibitorDirectory: './src/inhibitors/',
 listenerDirectory: './src/listeners/'
});

akairo.guildSQL = guildSQL;
akairo.userSQL = userSQL;

akairo.login().then(() => {
 guildSQL.init(client.guilds.map(g => g.id));
 userSQL.init(client.users.map(u => u.id));
});

The above example is what a more complex bot’s main file using Akairo might look like.It has a database for guilds and for users, and it changes prefix per-guild.

All tables using Akairo’s handler must have an id column.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

examples/4. Creating Listeners.html

 Navigation

 		
 index

 		discord-akairo master documentation »

Creating Listeners

Listeners

Listeners are functions that are ran when an event is emitted from an EventEmitter.This is part of node.js and Akairo provides Listener to easily manage them.In the Getting Started example, this file would be placed in the src/listeners/ folder.

const Listener = require('discord-akairo').Listener;

function exec(message, command, reason){
 const replies = {
 owner: 'You are not the bot owner!',
 guild: 'You can only use this command in a guild!',
 dm: 'You can only use this command in a DM!',
 blacklist: 'I don\'t like you >:c'
 };

 if (replies[reason]) message.reply(replies[reason]);
}

module.exports = new Listener('commandBlocked', 'commandHandler', 'commandBlocked', 'on', exec);

The client and CommandHandler events can be used with 'client' or 'commandHandler'.Other EventEmitters can be used by passing it directly.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

examples/1. Getting Started.html

 Navigation

 		
 index

 		discord-akairo master documentation »

Getting Started

Installation

First off, you should install the packages that you need.npm install discord.js discord-akairo --save

Main File

Your main file should look somewhat like the following.

const Discord = require('discord.js');
const Akairo = require('discord-akairo');

const client = new Discord.Client();
const akairo = new Akairo.Framework(client, {
 token: 'TOKEN',
 ownerID: 'ID',
 prefix: '!',
 allowMention: true,
 commandDirectory: './src/commands/',
 inhibitorDirectory: './src/inhibitors/',
 listenerDirectory: './src/listeners/'
});

// Note that unlike client.login(), this Promise is resolved once when the client is ready.
akairo.login().then(() => {
 console.log('Started up!');
});

Directory

Your bot directory should look something like this:

yourbot
| main.js
|----src
 |----commands
 |----inhibitors
 |----listeners

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

