
disco
Release 1.0

Sep 24, 2023

Contents

1 Disco Language Reference 1

2 Quick Tutorial for experienced functional programmers 41

i

ii

CHAPTER 1

Disco Language Reference

The Disco Language Reference consists of a number of short, interlinked pages, each centered on a single topic. This
is not a typical “language reference”, which would be intended for language implementers and organized according to
syntax, type system, semantics, and so on. Neither is it a comprehensive tutorial meant to be read from start to finish.
Rather, it is intended to be a reference for students who are just learning the language. Error messages and other
documentation may link here, giving students the opportunity to learn about specific topics just when it is relevant to
them.

1.1 Arithmetic

Disco can do many of the usual operations on numbers. For more on the types of numbers Disco supports, see Numeric
types.

1.1.1 Addition

Note: This page concerns the + operator on numbers; for the + operator on types, see sum types; for the + operator
on graphs, see overlay.

Values of all numeric types can be added using the + operator. For example:

Disco> 1 + 2
3
Disco> (-5) + 2/3
-13/3

If you ask for the type of +, you get

Disco> :type +
~+~ : × →

1

disco, Release 1.0

which says that it is a function taking a pair of natural numbers and returning a natural number. However, as mentioned
above, it also works on other numeric types such as integers and rational numbers.

1.1.2 Multiplication

Note: This page concerns the * operator on numbers; for the * operator on types, see pair types; for the * operator
on graphs, see connect.

All numeric types can be multiplied using the * operator. For example:

Disco> 2 * 3
6
Disco> (-5) * 2/3
-10/3

In some cases, the * symbol is not needed: putting two things next to each other means multiplying them. For example:

Disco> (1 + 2)(3 + 4)
21
Disco> x : N
Disco> x = 5
Disco> 3x
15

The exception is that putting a variable directly on the left of something else is interpreted as function application
instead of multiplication.

1.1.3 Subtraction

Integers and rational numbers can be subtracted using the - operator. For example:

Disco> 1 - 5
-4
Disco> 2/3 - 1/2
1/6

It is not possible to subtract natural numbers or fractional numbers since those numeric types have no concept of
negative numbers; however, in many situations, if you subtract natural or fractional numbers they will be automatically
converted to integers or rationals as appropriate.

In some situations, you really do need to subtract natural or fractional numbers. For example, consider this incorrect
definition of the factorial function:

fact_bad : N -> N
fact_bad(0) = 1
fact_bad(n) = n * fact_bad(n-1)

This definition will yield an error, because subtracting two natural numbers is not allowed: in particular, n is a natural
number and we are attempting to perform the subtraction n-1. One solution is to use the special “dot minus” operator
.- (also written), which simply stops at zero instead of yielding negative numbers:

2 Chapter 1. Disco Language Reference

disco, Release 1.0

Disco> 5 .- 3
2
Disco> 5 .- 4
1
Disco> 5 .- 5
0
Disco> 5 .- 6
0
Disco> 5 .- 7
0

Using dot minus, we can write a correct definition of factorial as follows:

fact : N -> N
fact(0) = 1
fact(n) = n * fact(n .- 1)

(Alternatively, we could define fact using an arithmetic pattern; see that page for more info.)

1.1.4 Division

Fractional and rational numbers can be divided using the / operator. For example:

Disco> 1 / 5
1/5
Disco> (2/3) / (7/5)
10/21

It is not possible to divide natural numbers or integers since those numeric types have no concept of fractions; however,
in many situations, if you divide natural numbers or integers they will be automatically converted to fractionals or
rationals as appropriate:

Disco> :type 1 * (-2)
1 * (-2) :
Disco> :type 1 / (-2)
1 / (-2) :

Some related operations:

• If you want only the quotient when dividing (i.e. the integer number of times one thing fits into another,
disregarding any remainder), you can use integer division.

• If you want the remainder instead, you can use the mod operator.

• If you just want to test whether one number evenly divides another, you should use the divides operator.

1.1.5 Integer division

The integer division or quotient of two numbers, written //, is the result of the division rounded down to the nearest
integer. Intuitively, you can think of it as the number of times that one thing fits into another, disregarding any
remainder. For example, 11 // 2 is 5, because 2 fits into 11 five times (with some left over).

Disco> 11 // 2
5
Disco> 6 // 2

(continues on next page)

1.1. Arithmetic 3

disco, Release 1.0

(continued from previous page)

3
Disco> 6 // 7
0
Disco> (-7) // 2
-4

In fact, // is simply defined in terms of regular division along with the floor operation:

x // y = floor (x / y)

Although dividing two integers using the usual / operator does not necessarily result in an integer, using integer
division does. In particular, the integer division operator can be given the types

~//~ : × →
~//~ : × →

Formally, the result of // is defined in terms of the “Division Algorithm”: given a number 𝑛 and a divisor 𝑑, the
quotient n // d is the unique number 𝑞 such that 𝑛 = 𝑞𝑑+ 𝑟, where 0 ≤ 𝑟 < 𝑑.

1.1.6 Modulo

The mod operator is used to give the remainder when one number is divided by another.

For example, 11 mod 2 is 1, because 2 fits into 11 five times, with a remainder of 1; 11 mod 4 is 3, because
dividing 11 by 4 leaves a remainder of 3.

Disco> 11 mod 2
1
Disco> 11 mod 4
3
Disco> 6 mod 2
0
Disco> 6 mod 7
6
Disco> (-7) mod 2
1

Formally, the result of mod is defined in terms of the “Division Algorithm”: given a number 𝑛 and a positive divisor
𝑑, the remainder n mod d is the unique number 𝑟 such that 𝑛 = 𝑞𝑑+ 𝑟, where 0 ≤ 𝑟 < 𝑑 and 𝑞 is the quotient. (For
negative divisors, we instead require 𝑑 < 𝑟 ≤ 0.)

1.1.7 Divisibility testing

We can test whether one number evenly divides another using the divides operator. In particular, a divides b
is true if there exists an integer k such that b == k*a. For example:

Disco> 3 divides 6
true
Disco> 6 divides 3
false
Disco> 3 divides (-6)
true
Disco> 5 divides 5
true

(continues on next page)

4 Chapter 1. Disco Language Reference

disco, Release 1.0

(continued from previous page)

Disco> 4 divides 6
false
Disco> 0 divides 10
false
Disco> 10 divides 0
true
Disco> 0 divides 0
true
Disco> 1/2 divides 3/2
true

1.1.8 Exponentiation

The ^ operator is used to raise one number to the power of another.

Disco> 2 ^ 5
32
Disco> 2 ^ 0
1
Disco> 2 ^ (-5)
1/32
Disco> (-3) ^ (-5)
-1/243

If the exponent is a natural number, the result will have the same type as the base. If the exponent is an integer, the
result will be fractional or rational, depending on the type of the base.

Fractional exponents may not be used, as the result could be irrational, and Disco has no way to represent irrational
numbers. For example, 21/2 =

√
2.

1.1.9 Rounding

Sometimes, when we have a fractional or rational number, we want to get rid of the fractional part and turn it into an
integer or natural number. This can be done with the floor and ceiling operators.

• floor x, also written x , returns the largest integer which is less than or equal to x. For example:

Disco> floor(1/2)
0
Disco> floor(7/2)
3
Disco> floor(3)
3
Disco> floor(-1/2)
-1

Note: That floor always rounds down, even for negative numbers. This is how mathematicians
think about floor, and is the most mathematically elegant definition; however, note that in some
other programming languages, floor always rounds towards zero instead, so e.g. floor(-1/2)
would be 0.

• Likewise, ceiling x, also written x , returns the smallest integer which is greater than or equal to x. For
example:

1.1. Arithmetic 5

disco, Release 1.0

Disco> ceiling(1/2)
1
Disco> ceiling(7/2)
4
Disco> ceiling(3)
3
Disco> ceiling(-1/2)
0

1.1.10 Absolute value

The absolute value function applied to a number x can be written either abs(x) or using the traditional notation |x|.

Disco> abs(6)
6
Disco> abs(-6)
6
Disco> abs(-1/2)
1/2
Disco> |-6|
6

Since the output of abs is always positive, it can convert rational numbers into fractional numbers, and integers into
natural numbers.

The notation |~| can also be used to find the size of a collection such as a set, bag, or list.

1.1.11 Combinatorics

Disco has a growing collection of operations relating to combinatorics, i.e. counting things.

Factorial

Factorial, written !, is a unary operator written after its argument, defined as the product of all the natural numbers
from 1 up to 𝑛, that is, 𝑛! = 1× 2× 3× · · · × 𝑛.

Disco> :doc !
~! : →

n! computes the factorial of n, that is, 1 * 2 * ... * n.

https://disco-lang.readthedocs.io/en/latest/reference/factorial.html

Disco> 3!
6
Disco> 4!
24
Disco> 4! == 1 * 2 * 3 * 4
true
Disco> (4!)!
620448401733239439360000
Disco> ((4!)!)!
Error: that number would not even fit in the universe!

(continues on next page)

6 Chapter 1. Disco Language Reference

disco, Release 1.0

(continued from previous page)

Disco> 0!
1

Note that 0! = 1 by definition, since a product of zero things should be the identity value for multiplication.

Binomial and multinomial coefficients

The binomial coefficient
(︀
𝑛
𝑘

)︀
represents the number of different ways to choose a subset of size 𝑘 out of a set of size

𝑛, and is in general given by the formula(︂
𝑛

𝑘

)︂
=

𝑛!

𝑘!(𝑛− 𝑘)!

However, binomial coefficients can be computed more efficiently than literally using the above formula with factorial,
so Disco has special built-in support for computing them. Since

(︀
𝑛
𝑘

)︀
is usually pronounced “𝑛 choose 𝑘”, the Disco

syntax is n choose k. For example:

Disco> 5 choose 2
10
Disco> 7 choose 0
1
Disco> 0 choose 0
1
Disco> 7 choose 8
0
Disco> 100 choose 23
24865270306254660391200

Multinomial coefficients

Disco also has support for multinomial coefficients:(︂
𝑛

𝑘1 𝑘2 . . . 𝑘𝑟

)︂
=

𝑛!

𝑘1!𝑘2! . . . 𝑘𝑟!(𝑛− 𝑘1 − 𝑘2 − · · · − 𝑘𝑟)!

is the number of ways to simultaneously choose subsets of size 𝑘1, 𝑘2, . . . , 𝑘𝑟 out of a set of size 𝑛. In Disco, a
multinomial coefficient results when the second argument to choose is a list instead of a natural number. For
example:

Disco> 10 choose 2
45
Disco> 10 choose [2]
45
Disco> 10 choose [2,3]
2520
Disco> 10 choose [2,3,5]
2520
Disco> 10 choose [2,3,5] == (10 choose 2) * (8 choose 3) * (5 choose 5)
true

1.1. Arithmetic 7

disco, Release 1.0

1.2 Comparison

Comparison operators can be used to compare two values, to test if they are equal or to see what order they are in.
Comparison operators always return a boolean value.

Values of almost any type can be compared: numeric types, booleans, characters, strings, and any pair, sum, or
container types built out of these. For example, sets of pairs of natural numbers and strings can be compared:

Disco> {(3, "hi"), (4, "there"), (6, "world")} < {(10, "what")}
true

See the individual pages about each type for more information on how comparison works on values of that type.

Functions, on the other hand, cannot be compared, because in general this would require testing the functions on every
single possible input, of which there might be infinitely many.

Disco> (\n:N. n) < (\n:N. n+1)
Error: values of type a2 → a3 cannot be compared.
https://disco-lang.readthedocs.io/en/latest/reference/not-qual.html

• The == operator is for testing equality. For example,

Disco> 3 == 5
false
Disco> "hi" == "hi"
true

Equality is one critical point where Disco syntax has to deviate from standard mathematical notation: be sure
to keep in mind the difference between = (which is used to define things) and ==, used for testing whether two
things are equal. For more information on the difference, see the page on definition vs equality testing.

• The /= operator (also written or !=) means “not equal to”. It is true if and only if its two arguments are not
equal. The syntax /= is supposed to remind us of the standard mathematical notation of an equality sign with a
slash through it (). However, != is also provided for those used to this operator in other programming languages.

• There are four operators that can be used to test the ordering of two values:

– < tests whether the first value is less than the second.

– > tests whether the first value is greater than the second.

– <=, also written or =<, tests whether the first value is less than or equal to the second.

– >=, also written or =>, tests whether the first value is greater than or equal to the second.

• You can chain multiple comparisons; this always means the same thing as combining all the individual compar-
isons with “and”. For example, 3 <= x < y <= 10 means the same thing as 3 <= x /\ x < y /\ y
<= 10.

1.3 Logical operations

Disco has various standard operations for manipulating Boolean values.

• Logical negation is written not; it inverts true to false and vice versa.

• Logical conjunction, aka AND, is written /\, and, or &&. It has the following truth table:

8 Chapter 1. Disco Language Reference

disco, Release 1.0

x y x /\ y
F F F
F T F
T F F
T T T

• Logical disjunction, aka OR, is written \/, or, or ||. It has the following truth table:

x y x \/ y
F F F
F T T
T F T
T T T

• Logical implication, aka IF-THEN, is written ->, ==>, or implies. It has the following truth table:

x y x -> y
F F T
F T T
T F F
T T T

• Biconditional, aka “if and only if”, is written <->, <==>, or iff. It has the following truth table:

x y x <-> y
F F T
F T F
T F F
T T T

1.4 Syntax

Syntax refers to the rules for writing a language. For example, the syntax of the English language includes things like
spelling and grammar. The syntax of Disco programs likewise refers to “spelling and grammar”, that is, the various
ways to write valid Disco programs.

1.4.1 Variables

A variable is a name given to some value. Variable names can contain lowercase and uppercase letters, digits, under-
scores (_) and apostrophes, with the only restriction that a name must start with a letter. For example, myHorse3,
some_name, and X__17'x'_ are all valid variable names.

To define a variable, one must first use a type signature to declare its type on a line by itself, like

variable_name : type

where type is replaced by whatever type the variable should have. The value of the variable can then be defined using
an = sign, like

1.4. Syntax 9

disco, Release 1.0

variable_name = expr

where expr represents an arbitrary expression. (There is also special syntax available for defining functions.) For
example:

my_variable : Z
my_variable = 2 * 7 + 9

The above code defines the variable my_variable with the type Z (i.e. an integer) and the value 23.

1.4.2 Type signature

A type signature declares what type a variable has. It consists of a variable name, a colon, and a type on one line
together. For example,

x : Z

is a type signature declaring the variable x to have type Z.

Every definition must have a type signature that comes before it.

1.4.3 Expressions

An expression is some combination of values, operators, and functions which describes a value (turning an expression
into a value is called evaluation).

Examples of expressions in Disco include:

• 5 (a single number, string, boolean, variable, etc. by itself is an expression)

• 1 + 2 (two or more expressions combined by operators is again an expression)

• f(x,3) * g(2) (function calls are expressions)

Examples of things which are not expressions include:

• x : N (this is a type signature, not an expression; it does not have a value, it says what the type of x is)

• x = 3 (this is a definition)

Warning: Be careful not to confuse x = 3 (a definition of the variable x) with x == 3 (a comparison expres-
sion which has a value of either true or false depending on whether x is equal to 3 or not). See Definition
versus equality testing.

1.4.4 Definitions

We can define a variable to have a certain value using the syntax

variable = expression

Note that every definition also must have a type signature before it. So, for example,

x : Z
x = -17

10 Chapter 1. Disco Language Reference

disco, Release 1.0

declares the variable x to have the type Z and to represent the value -17. From now on, whenever we use x, it can be
thought of as an abbreviation for the number -17.

Note that the equals sign in Disco really means mathematical equality, like an equation in algebra, and that a variable
can have only one definition. If you are already familiar with an imperative language like Python or Java, read the next
section for a comparison with Disco. If Disco is your first programming language, you can skip this (though you may
read it if you are interested).

Definition vs assignment

In many imperative languages, variables can be thought of as “boxes” that store values, and the equals sign means
assignment. For example, in Python,

x = 5
x = 7

means that we should first assign the value 5 to the variable x; then, we replace the value stored by x with 7.

In contrast, in Disco (as in some other functional languages), variables are names for values, and the equals sign means
definition. In Disco,

x = 5
x = 7

is an error, because x cannot be defined as both 5 and 7; it cannot be equal to both at the same time. In other words, it
is like a system of two equations with no solution.

1.4.5 Definition versus equality testing

In standard mathematical notation, the = symbol can be used in at least two distinct (yet related) contexts:

• To define things, as in, “Let 𝑥 = 3𝑦 + 2, and consider. . . ” In this example sentence, 𝑥 = 3𝑦 + 2 defines the
variable x as standing for the expression 3y + 2.

• As a relation which can hold, or not, as in, “If 𝑥 = 3𝑦+2, then . . . but otherwise . . . ”. In this example sentence,
𝑥 and 𝑦 must already be defined, and 𝑥 = 3𝑦 + 2 is something that is either true or false.

Notice how the exact same expression 𝑥 = 3𝑦 + 2 is used in both examples, but means two very different things
depending on the context—which is defined entirely by the English words surrounding the symbols! Disco does not
have the luxury of using English words to figure out what we mean; instead, Disco must use two different symbols.
The = symbol is used to express definitions, as in the first example; whereas the == symbol tests whether two things
are equal, as in the second example.

1.4.6 Operators

An operator is a function that is written in a special way. Normal functions are written before their arguments, like
f(x,y). Binary (two-argument) operators are symbols or words which are written in between their two arguments,
like 1 + 2. Disco has many built-in operators which are symbols (like +, *, /, etc.) as well as a few which are words
(like mod, choose, and divides).

Disco also has three unary operators: arithmetic negation (-) and logical negation (¬ or not) are written in front of
their one argument, and factorial (!) is written after its argument.

When multiple operators are used together, Disco uses their precedence and associativity to decide how to interpret it.

1.4. Syntax 11

disco, Release 1.0

Twiddle notation

Disco has a special syntax for talking about operators on their own, without any arguments: a tilde (or “twiddle”) (~)
goes in each place where an argument would be. For example, to talk about the + operator on its own we can write
~+~. To talk about the factorial operator we would write ~!, because factorial only takes a single argument which
goes before it. Disco will use this “twiddle notation” when you ask it for the type of an operator:

Disco> :type !
~! : →
Disco> :type ~!
~! : →

Note that in this case, we can write ! or ~! and Disco understands either one.

The twiddle notation is also useful when giving an operator as an argument to a higher-order function:

Disco> reduce(~+~, 0, [1 .. 10])
55

Operator documentation

You can ask for documentation about operators directly, for example:

Disco> :doc !
~! : →

n! computes the factorial of n, that is, 1 * 2 * ... * n.

https://disco-lang.readthedocs.io/en/latest/reference/factorial.html

1.4.7 Operator precedence and associativity

When we write something like 1 + 2× 3, how do we know what it means? Does it mean (1 + 2)× 3, or 1 + (2× 3)?
Of course, you are familiar with the usual “order of operations”, where multiplication comes before addition, so in
fact 1 + 2× 3 should be interpreted as 1 + (2× 3) = 1 + 6 = 7.

Another way to say this is that multiplication has higher precedence than addition. If we think of operators as “mag-
nets” that attract operands, higher precedence operators are like “stronger magnets”.

Another issue arises when operators are repeated, or when operators with the same precedence are used together. For
example, does 4 − 3 − 2 − 1 mean ((4 − 3) − 2) − 1 or 4 − (3 − (2 − 1))? In fact, it means the former, because
addition and subtraction are done “left to right”; we say they are left associative. On the other hand, exponentiation is
right associative, meaning that 1 ^ 2 ^ 3 ^ 4 = 1 ^ (2 ^ (3 ^ 4)).

Every operator in Disco has a precedence level and associtivity, and Disco uses these to determine where to put
parentheses in expressions like 1 + 2 * 3 or 5 > 2 ^ 2 + 1 and 7 > 2 ==> true. You might have
memorized something like PEMDAS, but Disco has so many operators that memorizing their precedence levels is out
of the question! Instead, we can use the :doc command to show us the precedence level and associativity of different
operators.

Disco> :doc ^
~^~ : × →
precedence level 13, right associative

Disco> :doc +

(continues on next page)

12 Chapter 1. Disco Language Reference

disco, Release 1.0

(continued from previous page)

~+~ : × →
precedence level 7, left associative

Disco> :doc >
~>~ : × → Bool
precedence level 5, right associative

Disco> :doc and
~and~ : Bool × Bool → Bool
precedence level 4, right associative

Disco> :doc ==>
~==>~ : Bool × Bool → Bool
precedence level 2, right associative

1.4.8 Case expressions

We can use “case expressions” to choose among multiple alternatives.

Basic case expressions with conditions

The basic form of a case expression is as follows:

{? alternative1 if condition1,
alternative2 if condition2,
...
alternativeN otherwise

?}

This will try each condition, starting with the first, until finding the first condition that is true. Then the value of the
entire case expression will be equal to the corresponding alternative. The otherwise case will always be chosen if
it is reached. Each condition must be an expression of type Bool; the alternatives can have any type (though they must
all have the same type, whatever it is).

For example, consider the definition of the caseExample function below:

caseExample : N -> N
caseExample(n) =

{? n + 2 if n < 10 \/ n > 20,
0 if n == 13,
77n^3 if n == 23,
n^2 otherwise

?}

Here are a few sample inputs and outputs for caseExample, with an explanation of each:

• caseExample(5) == 7: the first condition is true (since 5 < 10), so the result is 5 + 2.

• caseExample(23) == 25: the first condition is again true (since 23 > 20), so the result is 23 + 2.
Note that the first true condition is always chosen, so it does not matter that the later condition n == 23 would
also be true.

• caseExample(13) == 0: the first condition is false (13 is neither < 10 nor > 20, but the second condi-
tion (13 == 13) is true.

1.4. Syntax 13

disco, Release 1.0

• caseExample(12) == 144: the first three conditions are all false, so the otherwise case is used, with
the result 12^2.

If none of the conditions in a case expression are true, it is an error: see Value did not match any of the branches in a
case expression.

Case expressions with conditions and patterns

More generally, case expressions can use pattern matching in addition to Boolean conditions, and each alternative in
a case expression can have multiple conditions. The most general form of a case expression is as follows:

{? alternative1 guard11 guard12 ...,
alternative2 guard21 guard22 ...,
...

?}

where each guard has one of two forms:

• if <condition>. This guard succeeds if the condition is true.

• if <expression> is <pattern>. This guard succeeds if the given expression matches the pattern;
furthermore, any variables in the pattern will be defined locally within the corresponding alternative as
well as any subsequent guards in the same clause.

The keyword when can also be used as a synonym for if.

1.4.9 Comments

Comments in Disco can be written using --. Anything from -- to the end of the line is a comment which Disco will
ignore. Comments can be used to write notes to yourself or explanations to others, to write your name in a .disco
file, and so on.

Disco> 1 + 2 -- Disco will ignore this
3

See also documentation, which is a special kind of comment using ||| instead of --.

1.4.10 Documentation

Disco allows special documentation comments, which begin with three vertical bars (|||) at the beginning of a line.
Anything written after ||| is documentation which will be attached to the next definition (either a type definition or
a variable definition). This documentation can later be accessed with the :doc command. For example, suppose we
have the following in a file called cool.disco:

Listing 1: example/cool.disco

-- This is a comment that will be ignored.
||| f is a cool function which computes a thing.
||| It has two lines of documentation.
f : N -> N
f(x) = x + 7

Then at the disco prompt we can load the file, and see the documentation for f using the :doc command:

14 Chapter 1. Disco Language Reference

disco, Release 1.0

Disco> :load cool.disco
Loading cool.disco...
Loaded.
Disco> :doc f
f : →

f is a cool function which computes a thing.
It has two lines of documentation.

1.5 Types

Every expression in disco has a type, which tells us what kind of value will result when we evaluate the expression.
For example, if an expression has type N, it means we are guaranteed to get a natural number as a result once the
expression is done being evaluated.

The type of an expression thus represents a promise or guarantee about the behavior of a program. Checking that
all the types in a program match up can also be seen as a way of predicting or analyzing the behavior of a program
without actually running it.

Each type can be thought of as a collection of values which all have a similar “shape”.

The type of each variable in Disco must be declared with a type signature. We can also give Disco hints about the
intended type of an expression using a type annotation. We can define our own new types using a type definition.

In some situations, Disco may be willing to accept something of one type when it was expecting another: specifically,
when the given type is a subtype of the one it was expecting.

1.5.1 Base types

Base types are the fundamental types that define the possible kinds of simple data values in Disco.

Booleans

The type of booleans is written Bool or Boolean. There are exactly two values of type Boolean: false and
true (which can also be written False and True).

Logical operators can be used to manipulate Boolean values, and expressions of type Boolean can be used as
conditions in a case expression.

Numeric types

Natural numbers

The type of natural numbers is written N, , Nat, or Natural (Disco always prints it as , but you can use any of these
names when writing code). The natural numbers include the counting numbers 0, 1, 2, 3, 4, 5, . . .

Adding or multiplying two natural numbers yields another natural number:

Disco> :type 2 + 3
5 :
Disco> :type 2 * 3
6 :

1.5. Types 15

disco, Release 1.0

Natural numbers cannot be directly subtracted or divided. However, N is a subtype of all the other numeric types, so
using subtraction or division with natural numbers will cause them to be automatically converted into a different type
like integers or rationals:

Disco> :type 2 - 3
2 - 3 :
Disco> :type 2 / 3
2 / 3 :

Note that some mathematicians use the phrase “natural numbers” to mean the set of positive numbers 1, 2, 3, . . . , that
is, they do not include zero. However, in the context of computer science, “natural numbers” almost always includes
zero.

Integers

The type of integers is written Z, , Int, or Integer. The integers include the positive and negative counting numbers
(as well as zero): . . . , -3, -2, -1, 0, 1, 2, 3, . . .

Adding, multiplying, or subtracting two integers yields another integer. Trying to divide two integers will automatically
convert the result to a rational number:

Disco> :type 2 * (-3)
2 * (-3) :
Disco> :type 2 / (-3)
2 / (-3) :

Fractional numbers

The type of fractional numbers is written F, , Frac, or Fractional. The fractional numbers include all the natural
numbers (0, 1, 2, . . .) along with all the positive fractions formed from the ratio of two natural numbers (such as 1/2,
13/7, 56/57, . . .)

Adding, multiplying, or dividing two fractional numbers yields another fractional number. Trying to subtract two
fractional numbers will automatically convert the result to a rational number:

Disco> :type (1/2) * (2/3)
1 / 2 * 2 / 3 :
Disco> :type 1/2 - 2/3
1 / 2 - 2 / 3 :

The special sets (natural numbers), (integers), and (rational numbers) are very common in mathematics and computer
science, but the set of fractional numbers is not common at all (in fact, I made up the name and the notation). People
usually start with the natural numbers , extend them with subtraction to get the integers , and then extend those again
with division to get the rational numbers . However, there is no reason at all that we can’t do it in the other order: first
extend the natural numbers with division to get the fractional numbers , then extend with subtraction to get . Having
all four types in Disco (even though one of them is not very common in mathematical practice) makes many things
simpler and more elegant.

Rational numbers

The type of rational numbers is written Q, , or Rational. The rational numbers can be thought of as the combination
of and , and include zero, positive and negative counting numbers, and positive and negative fractions.

16 Chapter 1. Disco Language Reference

disco, Release 1.0

Disco> :type -3/5
-3 / 5 :

Doing any of the four arithmetic operations (addition, multiplication, subtraction or division) on two rational numbers
results in another rational number.

Note that Disco does not have any way to work with irrational numbers such as 𝜋 or
√
2; such numbers are typically

not needed in discrete mathematics, and including them would make the language much more complicated.

Disco has four types which represent numbers:

• Natural numbers, written N, , Nat, or Natural. These represent the counting numbers 0, 1, 2, . . . which can
be added and multiplied.

Disco> :type 5
5 :

• Integers, written Z, , Int, or Integer, allow negative numbers such as -5. They extend the natural numbers
with subtraction.

Disco> :type -5
-5 :

• Fractional numbers, written F, , Frac, or Fractional, allow fractions like 2/3. They extend the natural
numbers with division.

Disco> :type 2/3
2 / 3 :

• Rational numbers, written Q, , or Rational, allow both negative and fractional numbers, such as -2/3.

Disco> :type -2/3
-2 / 3 :

We can arrange the four numeric types in a diamond shape, like this:

1.5. Types 17

disco, Release 1.0

Each type is a subset, or subtype, of the type or types above it. For example, the fact that N is below Z means that
every natural number is also an integer.

• The values of every numeric type can be added and multiplied.

• The arrow labelled 𝑥 − 𝑦 indicates that going up and to the left in the diamond (i.e. from N to Z or F to Q)
corresponds to adding the ability to do subtraction. That is, values of types on the upper left of the diamond (Z
and Q) can also be subtracted.

• Going up and to the right corresponds to adding the ability to do division; that is, values of the types on the
upper right of the diamond (F and Q) can also be divided.

• To move down and to the right (i.e. from Z to N, or from Q to F), you can use absolute value.

• To move down and to the left (i.e. from F to N, or from Q to Z), you can take the floor or ceiling.

Characters

The type of characters is written Char. Values of this type represent single characters (e.g. a letter, a digit, punctua-
tion, etc.). Technically, a Char value represents any Unicode codepoint.

Characters are written using single quotes. For example,

mychar : Char
mychar = 'g'

Certain special characters can be written using escape sequences, consisting of a backslash followed by another char-
acter:

• \n represents a newline character

• \t represents a tab character

• \' represents a single quote

• \" represents a double quote

• \\ represents an actual (single) backslash character

A sequence of characters is known as a string.

1.5.2 Function types

Function types represent functions that take inputs and yield outputs. The type of functions that take inputs of type A
and yield outputs of type B is written A -> B (or A → B).

Every function in Disco takes exactly one input and produces exactly one output. “Multi-argument” functions can be
represented using a pair type as the input type. For example, the type of a function taking two natural numbers as input
and producing a rational number as output could be written N × N → Q.

Note that if A and B are types, then A -> B is itself a type, which can be used in all the same ways as any other
type. In other words, functions in Disco are “first-class”, which means they can be used in the same ways as any other
values: for example, functions can be given as input to other functions, or returned as output, we can have lists of
functions, etc.

Function values cannot be compared, however, because in general this would require testing the functions on every
single possible input, of which there might be infinitely many.

18 Chapter 1. Disco Language Reference

https://home.unicode.org/

disco, Release 1.0

1.5.3 Polymorphism

Sometimes, we want to express the fact that a certain function will work for any input type at all. For example, consider
a function to find the length of a list of natural numbers:

lengthN : List(N) -> N
lengthN([]) = 0
lengthN(_ :: xs) = 1 + lengthN(xs)

Or how about a function to find the length of a list of rational numbers:

lengthQ : List(Q) -> Q
lengthQ([]) = 0
lengthQ(_ :: xs) = 1 + lengthQ(xs)

It is easy to see that lengthN and lengthQ are identical except for their types, and that it is going to be very tedious
if we have to write a different version of this function for every possible element type. The length of a list does not
depend on the elements at all, so we would like to be able to define it once and for all, in a way that will work for any
type of list.

Indeed, we can do exactly that, by using a type variable (any name that starts with a lowercase letter) in place of the
concrete element type:

length : List(a) -> N
length([]) = 0
length(_ :: xs) = 1 + length(xs)

Here, the variable a can stand for any type. This expresses both a requirement that the definition of length does not
care what type a is (and disco will actually check to make sure that is the case), and a promise that length can be
used on any particular list. For example,

Disco> length [1,2,3]
3
Disco> length [True, False]
2

On the other hand, suppose we tried to define this function, which adds one to every element of a list:

incr : List(a) -> List(a)
incr([]) = []
incr(x :: xs) = (x + 1) :: incr(xs)

Disco does not accept this definition. The problem is that although it promises that it will work on lists of any type, it
doesn’t: it tries to add one to the elements, and adding 1 is only something that works for some types. For example, it
doesn’t make sense to add 1 to every element in a list of Booleans. incr will work fine if we give it a more specific
type, such as List(N) -> List(N).

Another good example is function composition, which takes two functions and connects the output of one function to
the input of the other, creating a new function representing the “pipeline” of doing one function then the other. The
input and output types of the functions don’t matter at all — other than the fact that the output type of the one function
has to match the input type of the other. We can write it as follows:

compose : (b -> c) * (a -> b) -> (a -> c)
compose(f,g) = \x. f(g(x))

a, b, and c can all stand for different types (although they are not required to be different). Notice, however, that the
input type of the first function is b, and the output type of the second function is also b—hence no matter what type b

1.5. Types 19

disco, Release 1.0

represents, they must be the same. The function that results takes an input of type a and ultimately produces an output
of type c after running the input through both functions.

Note that type definitions can also be polymorphic; see that page for more information.

1.5.4 Algebraic types

Algebraic types are the building blocks that let us build up more complex types.

Unit type

Unit is a special built-in type with only a single value, which can be written unit (or , U+25A0 BLACK SQUARE).

Disco> :type unit
: Unit

Disco> unit

Disco>

This is not very useful on its own, but becomes very useful when combined with sum and pair types to create custom
recursive algebraic types.

Pair types

Pair types, or product types, represent ordered pairs of values. Suppose A and B are types. Then:

• A * B (also written A × B) is a pair type (also known as a product type or Cartesian product). It represents
the set of all possible pairs where the first element has type A and the second element has type B.

• A pair is written (a, b) (where a and b can be arbitrary expressions). Specifically, if a : A and b : B,
then the ordered pair (a, b) has type A * B. For example:

Disco> :type (1, True)
(1, true) : × Bool
Disco> :type (-7, -3)
(-7, -3) : ×

Pair types are commonly used to represent functions that take multiple inputs. For example, f : N * Z -> Q
means that f takes a pair of a natural number and an integer as input. Such functions are often defined via pattern
matching on the pair, like so:

f : N * Z -> Z
f(n,z) = 3n - z

n-tuples and nested pairs

We have seen that A * B is a type of pairs of values. What about triples, quadruples, . . . n-tuples of values? The
answer is simple:

• triples are written (x,y,z) and have types like A * B * C;

• quadruples are written (w,x,y,z) and have types like A * B * C * D;

• and so on.

20 Chapter 1. Disco Language Reference

disco, Release 1.0

So, for example, a function taking a quintuple of values could be written like this:

funTaking5Tuple : N * Z * List(N) * Q * Bool -> Int
funTaking5Tuple(n,z,l,q,b) = ...

Note: General n-tuples actually are not specially built in at all: rather, everything is actually built out of nested pairs.
For convenience, pair types and values both associate to the right, that is,

• the type A * B * C is interpreted as A * (B * C), and

• correspondingly, (x, y, z) is interpreted as (x, (y, z)).

So, for example, the definition of the function funTaking5Tuple from above is really shorthand for

funTaking5Tuple : N * (Z * (List(N) * (Q * Bool))) -> Int
funTaking5Tuple(n,(z,(l,(q,b)))) = ...

Typically one can just use triples or 5-tuples or whatever and not think about this, but occasionally it’s helpful to
understand the way things are represented with nested pairs under the hood.

Sum types

Sum types represent situations where we have a value which could be either one thing or another. Suppose A and B
are types. Then:

• A + B is a sum type (also known as a disjoint union). It represents a disjoint union of the types A and B. That
is, the values of A + B can be either a value of type A, or a value of type B.

• A value of type A + B can be written either left(a), where a is an arbitrary expression of type A, or
right(b), where b is an arbitrary expression of type B. For example:

Disco> left(3) : N + Bool
left(3)
Disco> right(false) : N + Bool
right(false)

Note that the left or right ensures that A + B really does represent a disjoint union. For example, although the
usual union operator is idempotent, that is, N ∪ N = N, with a disjoint union of types N + N is not at all the same as
N. Elements of N + N look like either left(3) or right(3), that is, N + N includes two copies of each natural
number.

1.5.5 Collection types

Collection types represent various ways to store collections of values.

Sets

For any type T, Set(T) is the type of finite sets with elements of type T.

• The empty set is written {}.

• A set with specific elements can be written like this: {1, 2, 3}.

• An ellipsis can be used to generate a range of elements. For example,

1.5. Types 21

disco, Release 1.0

Disco> {1 .. 5}
{1, 2, 3, 4, 5}
Disco> {1, 3 .. 9}
{1, 3, 5, 7, 9}

• Set comprehension notation can also be used, for example:

Disco> {x^2 + 1 | x in {1 .. 10}, x > 4}
{26, 37, 50, 65, 82, 101}

• The built-in set function can be used to convert other collections (e.g. lists) to sets:

Disco> set([1,2,3,2,3])
{1, 2, 3}
Disco> set("hello")
{'e', 'h', 'l', 'o'}

The order of elements in a set does not matter, nor does the number of copies of an element. For example,

Disco> {3,3,1,2} == {1,1,2,2,3,3}
true
Disco> {3, 3, 1, 2}
{1, 2, 3}

To check whether a set contains a given element, one can use the elem operator (also written):

Disco> 2 elem {1,2,3}
true
Disco> 5 elem {1,2,3}
false
Disco> 2 {1,2,3}
true

Sets support various operations, including size, union, intersection, difference, subset, and power set.

1.5.6 Propositions

Prop is the type of propositions. A proposition is a statement that could be true or false. Prop is very similar to
Bool; the main difference is that whereas any Bool can always be evaluated to see if it is true or false, this may
not be possible for a Prop due to the use of quantifiers (forall and exists).

Any Boolean expression can be used as a proposition. For example, true, x > 5, and (x < y) -> ((x ==
2) \/ (x == 3)) can all be used as propositions.

However, unlike Boolean expressions, propositions can use quantifiers, that is, forall or exists. For example,
forall x : Z. x^2 >= 0 is a Prop (but not a Bool).

If you type a proposition at the Disco prompt, it will simply print <Prop> and refuse to evaluate it. If you want to get
an idea of whether a proposition is true or false, you have two options:

• The built-in holds function tries its best to determine whether a proposition is true or false. If it returns a value
at all, it is definitely correct. For example,

– holds ((5 < 3) \/ ((2 < 1) -> false)) yields true

– holds (forall p:Bool. forall q:Bool. (p \/ q) <-> (q \/ p)) yields true

– holds (forall p:Bool. forall q:Bool. (p \/ q) <-> (p /\ q)) yields false

22 Chapter 1. Disco Language Reference

disco, Release 1.0

– holds (forall n:N. n < 529) yields false

However, sometimes it may simply get stuck in an infinite loop. For example, holds (forall n:N. n
>= 0) will simply get stuck. Even though it is obvious to us that this proposition is true, holds is not smart
enough to see this; it simply tries evaluating n >= 0 for every natural number, which will never finish.

• One can also use the :test command. This command makes a best effort to evaluate a proposition, but only
trying a finite number of examples for infinite domains. Additionally, in many cases it can output much more
information than a simple true or false, for example, showing a counterexample if a forall is false, or a
witness if an exists is true. For example,

– :test forall p:Bool. forall q:Bool. (p \/ q) <-> (p /\ q) prints

- Certainly false: p. q. p \/ q <-> p /\ q
Counterexample:
p = false
q = true

– However, :test forall n:N. n < 529 prints

- Possibly true: n. n < 529
Checked 100 possibilities without finding a counterexample.

Obviously this proposition is false, but Disco apparently does not try a big enough value of n to be able to
tell.

Note that at the moment it is not possible to combine propositions using logical operators like /\, \/, or ->. For ex-
ample, Disco does not currently accept something like (forall x : N. x >= 0) /\ (exists x : N.
x == 3), although this is certainly a proposition from a mathematical point of view. This is something that may be
added in the future.

1.5.7 Subtypes

In some cases, Disco is willing to accept one type in place of another, when this is known to be safe. For example,
suppose we have the following definitions:

f : N -> N
f(n) = sqrt(n) + 1

g : Z -> Z
g(n) = n - 5

x : N
x = 16

y : Z
y = -10

Of course we can give x as an input to f, because the type of f says it takes natural numbers as input, and x is a
natural number. Likewise, the type of y matches g’s input type, so we can give y as an input to g:

Disco> f(x)
5
Disco> g(y)
-15

1.5. Types 23

disco, Release 1.0

On the other hand, we cannot give y as an input to f. f is expecting only natural numbers as input, and it might not
be safe to give it a negative number. In fact, in this case, it’s definitely not safe: we cannot take the square root of a
negative number.

Disco> f(y)
Error: typechecking failed.
https://disco-lang.readthedocs.io/en/latest/reference/typecheck-fail.html

However, we can give x as an input to g:

Disco> g(x)
11

Why is that? Well, mathematically speaking, every natural number is also an integer, so if a function is prepared to
receive any integer (positive or negative) as input, then giving it only natural numbers (i.e. nonnegative integers) is
perfectly safe. Intuitively, disco automatically “converts” the natural number into an integer before giving it to g.

Since it is always safe to use a natural number anywhere an integer is expected, we say that N is a subtype of Z.

The four basic numeric types can be arranged in a diamond shape, like so:

Each type is a subtype of the type or types above it. That is, Z is a subtype of Q, F is a subtype of Q, and N is a subtype
of all the others.

1.5.8 Subtyping for algebraic types

In addition to the subtype relationships between the basic numeric types, more complex algebraic types can be subtypes
of each other too.

• For pair types, A * B is a subtype of C * D exactly when A is a subtype of C, and B is a subtype of D. For
example, given these definitions:

g : Z * Q -> Q
g(x,y) = y / (3x)

(continues on next page)

24 Chapter 1. Disco Language Reference

disco, Release 1.0

(continued from previous page)

p : N * N
p = (2,5)

It is allowed to give p as an input to g:

Disco> p(g)
5/6

Since N is a subtype of Z, and N is a subtype of Q, therefore N * N is a subtype of Z * Q.

• Similarly, for sum types, A + B is a subtype of C + D exactly when A is a subtype of C, and B is a subtype of
D. For example, given these definitions:

g : Z + Q -> Q
g(left(z)) = z / 2
g(right(y)) = 3y

p : N + Z
p = left(1)

r : N + Z
r = right(-2)

It is allowed to give p and r as inputs to g:

Disco> g(p)
1/2
Disco> g(r)
-6

Since N is a subtype of Z, and N is a subtype of Q, therefore N + N is a subtype of Z + Q.

• Function types work a little differently. A -> B is a subtype of C -> D exactly when C is a subtype of A and
B is a subtype of D. Notice how the relationship is reversed for the input types. Working out why this makes
sense is left as an interesting exercise for the reader.

1.6 Functions

1.6.1 Pattern matching

Functions in Disco can be defined using pattern matching, which in general looks like this:

f(pattern) = expression

This means, roughly, “if the input to the function f looks like pattern, then the output of f on that input should be
expression.” For example, f(5) = 29 means that if the input to f is the number 5, then the output should be
29.

Functions can be defined by multiple pattern-match clauses; Disco tries the clauses in order, one by one, and picks
the first one that matches. (Note that case expressions can also be used to define functions, in case more sophisticated
logic is needed.) For example,

f(2) = 12
f(2k) = k+1
f(n) = 2n+1

1.6. Functions 25

disco, Release 1.0

means:

• First, if the input to f is specifically 2, then return 12;

• next, if the input to f is even (i.e. of the form 2k for some integer k), return k+1;

• finally, for any other input, which we will call n, return 2n+1.

(If none of the clauses in a function definition matches an input, it is an error: see Value did not match any of the
branches in a case expression.)

The above example uses a literal pattern, an arithmetic pattern, and a variable pattern; see the links below for more
specific information about the different types of patterns that can be used.

Literal pattern

A literal pattern consists of a single specific value. For example,

f(5) = "hi"

uses 5 as a literal pattern, and means that on the specific input 5, the function f should output "hi".

Literal patterns can be used with

• The unit value, e.g. f(unit) = ...

• Booleans, e.g. f(true) = ...

• Natural numbers, e.g. f(5) = ...

• Integers, e.g. f(-5) = ...

• Rational numbers, e.g. f(1/2) = ...

• Characters, e.g. f('x') = ...

• Strings, e.g. f("hello") = ...

Note that f(-5) = ... and f(1/2) = ... are technically arithmetic patterns rather than true literal patterns,
but the distinction does not matter very much.

Variable pattern

A variable pattern simply consists of a single variable. It always successfully matches any input; within the corre-
sponding clause, the input can be referred to by the variable name. For example,

f(n) = 3n + 1

means “for any input to the function f, which we will call n, output the value which is one more than three times the
input n.”

The variable defined by a variable pattern is local to the clause and cannot be referenced anywhere else. For example:

Disco> f : N -> N
Disco> f(n) = 3n+1
Disco> f(3)
10
Disco> n
Error: there is nothing named n.
https://disco-lang.readthedocs.io/en/latest/reference/unbound.html

26 Chapter 1. Disco Language Reference

disco, Release 1.0

This also means multiple function definitions can use the same variable name without interfering with one another at
all.

Wildcard patterns

A wildcard pattern is just an underscore character, indicating that we do not care about a particular input. Just like a
variable pattern, it successfully matches any input; unlike a variable pattern, it does not define a new name.

For example,

f(_) = 10

defines the function which always returns 10, no matter what input it is given. This could also be written

f(n) = 10

but since n is not used, we can explicitly indicate that we do not care about it by replacing it with a wildcard pattern _.

Arithmetic patterns

An arithmetic pattern consists of an arithmetic expression, containing one or more variables, used as a pattern. For
example,

f(n+2) = ...
f(2n+7) = ...
f(p/q) = ...
f(-p/(q+1)) = ...

are all examples of arithmetic patterns. A full description of how arithmetic patterns work would be too complex to
include here; put simply, an arithmetic pattern matches whenever the input is a number of the given form. For example,
f(2n+1) = ... matches whenever there is a number n such that the input is of the form 2n+1. This is a common
way to define functions depending on whether the input is even or odd:

f : N -> N
f(2n) = ... n ... -- even inputs
f(2n+1) = ... n ... -- odd inputs

Note that f(p/q) matches whenever the input is a rational number with a numerator of p and a denominator of
q. In all other cases, arithmetic patterns are generally required to have only one variable. Otherwise, the pattern is
ambiguous. For example, f(a+b) = ... is not allowed, since a + b = n has many solutions for a given n; for
a given input, there is generally no way to determine what a and b should be.

Arithmetic patterns can sometimes allow us to define things in an alternative way that does not require subtraction.
For example, one way to define the factorial function is as follows:

fact : N -> N
fact(0) = 1
fact(n+1) = (n+1) * fact(n)

In the second clause, instead of writing fact(n) = n * fact(n .- 1), we can express that the clause only
applies to natural numbers that are one more than another natural number.

1.6. Functions 27

disco, Release 1.0

Tuple patterns

A tuple pattern consists of a tuple expression (i.e. a pair, triple, . . .) used as a pattern. Each component of the tuple
can itself be any pattern. The simplest kind of tuple pattern would be a pair with variables, like

f : N * N -> Q
f(x,y) = ...

This is extremely common when defining functions that take multiple inputs. Functions that take more than two inputs
can also be defined similarly:

f : N * Z * Z -> Z
f(a,b,c) = ...

(See the page on pair types for more details on how n-tuples work.)

The components of a pair pattern can themselves be any pattern, however, not just variables. For example,

f : N * N -> N
f(2n+1, 3) = 17
f(x, y) = x + y

The above example defines f to yield 17 when applied to any tuple consisting of an odd number paired with 3 (using
an arithmetic pattern and a literal pattern), and x + y when applied to any other pair (x,y).

1.6.2 Anonymous functions

Sometimes, especially when using higher-order functions, it is convenient to write down a function without having to
give it a name. This can be done using a so-called “lambda expression”. In its simplest form, this looks like

\ <var> . <expression>

where <var> stands for any variable name, and <expression> stands for any expression, which is allowed to use
the variable. This represents a function which takes <var> as input, and returns <expression> as output.

𝜆 (U+033B, GREEK SMALL LETTER LAMBDA) can also be used in place of \ (a backslash is used because it
looks kind of like 𝜆).

For example, \n. 3n+1 is the function which returns one more than three times its input.

Disco> (\n. 3n+1)(6)
19

• The thing after the lambda or backslash can actually be any pattern, not just a variable. For example,

\(x,y). x + 2y

is the function which takes a pair of numbers as input and returns the sum of the first number and twice the
second number.

• The variable after the lambda can optionally be annotated with its type, as in \ <var> : <type> .
<expression>. For example,

\x:Z. x + 5

is the function of type Z -> Z which returns 5 more than its input. Without the type annotation, Disco would
infer \x. x + 5 to have type N -> N instead.

28 Chapter 1. Disco Language Reference

disco, Release 1.0

1.6.3 Higher-order functions

A higher-order function is a function which takes other functions as input. For example:

twice : (N -> N) * N -> N
twice(f, x) = f(f(x))

The twice function takes a function on natural numbers f, along with a natural number n, as input, and calls f twice
on n.

A function is an input-output relation, that is, we can think of a function as a machine, or process, that takes inputs
and produces outputs according to some rule(s). For each element of the domain, or input type, a function specifies a
single element of the codomain, or output type.

The type of a function with domain A and codomain B is written A -> B (or A → B).

Two simple examples of functions are shown below.

f : N -> N
f(n) = 3n + 1

g : N * N -> Q
g(x,y) = f(x) / (y - 1)

The function f takes natural numbers as input and produces natural numbers as output; for a given input n it produces
the output 3n + 1.

The function g takes pairs of natural numbers as input, and produces rational numbers; given the pair (x,y), it
produces f(x) / (y - 1) as output.

• Functions can be given names and defined by pattern-matching, as in the examples above.

• Functions can also be defined anonymously, using lambda notation. For example,

\n. 3n + 1

is the function which takes an input called n and outputs 3n + 1. This is the same function as the example
function f above.

• Attempting to print a function value will simply result in the type of the function being printed as a placeholder:

Disco> (\n. 3n+1)
< → >

This is because once a program is running, Disco has no way in general to recover the textual definition of a
function.

1.7 Collections

Disco has several built-in collection types (such as lists, bags, and sets) which represent collections of values. The
pages linked below explain the different ways to create and use collections, and the operations which can be used on
them.

1.7.1 Size

The size of a collection c (a list, bag, or set) can be found using the notation |c|. For example,

1.7. Collections 29

disco, Release 1.0

Disco> |{1,2,3}|
3
Disco> |{1,2,3} union {2,3,4,4}|
4
Disco> |[2 .. 7]|
6

1.7.2 Cartesian product

The Cartesian product operator, written >< (or, using Unicode, as ×), operates on two collections of the same type
(either sets, bags, or lists), and forms the collection of all possible pairs with one element taken from the first collection
and the other from the second.

• On lists, the order matters: the resulting list has the first element of the first list matched with all elements of the
second list, then the second element of the first list matched with all elements of the second list, and so on.

Disco> [2,1,1] >< [6,7]
[(2, 6), (2, 7), (1, 6), (1, 7), (1, 6), (1, 7)]

• On sets, we simply get the set of all unique pairs.

Disco> {2,1,1} >< {6,7}
{(1, 6), (1, 7), (2, 6), (2, 7)}

• The behavior of Cartesian product on bags is slightly less intuitive, but follows directly from the fact that taking
the Cartesian product of two lists and then converting the result to a bag always yields the same result as first
converting the two lists to bags and then taking the Cartesian product (although the latter can be more efficient).
That is, for all lists l1 and l2, bag(l1 >< l2) == bag(l1) >< bag(l2).

In particular, if a is an element of bag A with a multiplicity of m, and b is an element of bag B with a multiplicity
of n, then (a,b) is an element of A >< B with a multiplicity of m * n. In other words, we have m * n
ways to form the pair (a,b) if we have m copies of a to choose from and n copies of b to choose from.

Disco> bag([1,1,2,3]) >< bag([8,7,7,7])
(1, 7) # 6, (1, 8) # 2, (2, 7) # 3, (2, 8), (3, 7) # 3, (3, 8)

1.7.3 Ellipsis

Sets and lists may be defined using ellipsis, that is, two or more dots meaning (intuitively) “and so on”. For example:

Disco> {1 .. 5}
{1, 2, 3, 4, 5}
Disco> [2, 4 ... 10]
[2, 4, 6, 8, 10]
Disco> [1, 4, 9 ... 100]
[1, 4, 9, 16, 25, 36, 49]

Note, Disco isn’t actually being all that smart here, and it won’t work for any pattern at all. For example, it fails
miserably to understand that we want a list of primes:

Disco> [2, 3, 5, 7, 11 ... 100]
[2, 3, 5, 7, 11, 22, 48, 100]

So what is Disco actually doing? Note first that there must always be a single number after the dots.

30 Chapter 1. Disco Language Reference

disco, Release 1.0

• If there is a single number before the dots:

– If the first number is smaller than the last number, the resulting list or set starts at the first number and
counts up by ones until reaching the last number.

Disco> {1 .. 5}
{1, 2, 3, 4, 5}

– If the first number is greater than the last number, it counts down instead of up.

Disco> [10 .. 7]
[10, 9, 8, 7]

• If there are 𝑘 > 1 numbers before the dots, Disco fits a 𝑘−1-degree polynomial to the numbers and then extends
it until the next value would be greater than the value after the dots.

– For example, for 𝑘 = 2, this just means that Disco will extend the list using a constant gap between
consecutive values (the same as the gap between the first two numbers):

Disco> [1, 3 .. 10]
[1, 3, 5, 7, 9]
Disco> {5, 10 .. 40}
{5, 10, 15, 20, 25, 30, 35, 40}

– For 𝑘 = 3, Disco will use a quadratic polynomial, which means we can generate things like the squares or
the triangular numbers:

Disco> [1, 4, 9 ... 100]
[1, 4, 9, 16, 25, 36, 49]
Disco> [1, 3, 6 ... 28]
[1, 3, 6, 10, 15, 21, 28]

1.7.4 Set operations

The Cartesian product of two finite sets can be found using the >< operator.

Disco> {1,2,3} >< {'x','y'}
{(1, 'x'), (1, 'y'), (2, 'x'), (2, 'y'), (3, 'x'), (3, 'y')}

The union or intersection of two finite sets can be found using the union and intersect operators, or using the
Unicode notation and .

Disco> {1,2,3} union {2,3,4}
{1, 2, 3, 4}
Disco> {1,2,3} intersect {2,3,4}
{2, 3}

The difference of two sets can be found using the set difference operator, written \:

Disco> {7 .. 12} \ {1 .. 10}
{11, 12}

You can check whether one set is a subset of another using the subset operator (or the Unicode symbol):

Disco> {2,3,4} subset {1 .. 10}
true

(continues on next page)

1.7. Collections 31

disco, Release 1.0

(continued from previous page)

Disco> {7 .. 11} subset {1 .. 10}
false

Note that Disco does not support the set complement operation, since the complement of a finite set is infinite whenever
the domain is infinite.

1.7.5 Power set

The power set of a set is the set of all possible subsets. It can be computed using the power function, which takes a
Set(T) and returns a Set(Set(T)):

Disco> power({1,2,3})
{{}, {1}, {1, 2}, {1, 2, 3}, {1, 3}, {2}, {2, 3}, {3}}
Disco> power(set("hi"))
{{}, {'h'}, {'h', 'i'}, {'i'}}
Disco> power({})
{{}}
Disco> power(power({}))
{{}, {{}}}

1.7.6 Comprehensions

Comprehension notation can be used to describe collections such as sets or lists. The general syntax for a set compre-
hension is

{ expression | qualifiers }

with a single expression, followed by a vertical bar |, followed by a list of one or more qualifiers. The idea is
introduced through some examples below; for the precise details, see the Details section.

List comprehensions are similar, but use square brackets ([,]) instead of curly braces ({, }).

Examples

Disco> {x | x in {1..5}} -- same as {1..5}
{1, 2, 3, 4, 5}

Disco> {3x | x in {1..5}} -- multiply each element of {1..5} by 3
{3, 6, 9, 12, 15}

-- Pick out the elements of {1..10} that satisfy the condition
Disco> {x | x in {1 .. 10}, x^2 + 20 == 9x}
{4, 5}

-- Pick out the elements of {1..100} that satisfy all the conditions
Disco> {x | x in {1 .. 100}, x =< 10 \/ x >= 90, x mod 2 == 0}
{2, 4, 6, 8, 10, 90, 92, 94, 96, 98, 100}

-- Products of all combinations of elements from {1..4} and {1, 10, 100}
Disco> {x * y | x in {1 .. 4}, y in {1, 10, 100}}
{1, 2, 3, 4, 10, 20, 30, 40, 100, 200, 300, 400}

(continues on next page)

32 Chapter 1. Disco Language Reference

disco, Release 1.0

(continued from previous page)

-- Pairs of elements from {1..4} where the first is >= the second
Disco> {(x,y) | x in {1 .. 4}, y in {1 .. x}}
{(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3), (4, 4)}

Details

Each qualifier in a comprehension can be either

• a variable binding of the form <variable> in <set>, e.g. x in {1 .. 10} or b in {false,
true}, or

• a guard, which can be any boolean expression.

A variable binding locally defines a variable and causes it to “loop” through all the values in the given set. For example,
x in {1 .. 5} defines the variable x within the comprehension, and makes x take on each value from 1 through
5 in turn. Multiple variable bindings will cause the loops to “nest”. For example, { (x,y) | x in {1 .. 3},
y in {5 .. 7}} has nine elements: y loops through its three possible values for each value of x.

Disco> { (x,y) | x in {1 .. 3}, y in {5 .. 7}}
{(1, 5), (1, 6), (1, 7), (2, 5), (2, 6), (2, 7), (3, 5), (3, 6), (3, 7)}

A boolean guard is checked for each combination of variable values to see if it is true. Any values of the variables
which make the guard false are discarded.

Finally, any values of the variable(s) which make all the guards true are used in the expression on the left side of the
|, and the resulting value will become an element of the set.

Putting all this together, for example, {x^2 + y | x in {1 .. 5}, x mod 2 == 1, y in {1 ..
x}, x + y > 5} is evaluated as follows:

• x will loop through the values from 1 to 5.

• For each value of x, check whether x mod 2 == 1. The values which make this false (2 and 4) are discarded.
The only values of x left are 1, 3, and 5.

• For each of the remaining values of x, y will loop through the values from 1 up to x.

• For each value of y, check whether the sum of x and y is greater than 5.

• Finally, from values of x and y which make it through both checks, we compute x^2 + y and put the result in
the set being built.

In the end, the result is the set {12, 26, 27, 28, 29, 30}.

Specification

Note: In case you are curious about the precise definition and are not afraid of the details, the exact way that set
comprehensions work can be defined by the following three equations, making use of the standard functions each
and unions:

• { e | } = e

• { e | x in xs, gs } = unions(each(\x. {e | gs}, xs))

• { e | g, gs } = {? { e | gs } if g, {} otherwise ?}

1.7. Collections 33

disco, Release 1.0

1.8 Error messages

There are many different error messages Disco can generate when something is wrong. Each page linked below gives
more explanation and background to help you understand a particular error message.

The error messages in Disco are currently undergoing major improvements. If you have a suggestion on how a
particular error message could be improved, please record it at https://github.com/disco-lang/disco/issues !

1.8.1 There is nothing named x

Something in your program, or something you typed at the prompt, refers to a variable name which is not defined.

• Did you spell the variable name correctly? (Remember that capitalization matters!)

• Did you forget to import a module which defines the variable you want?

• Are you trying to refer to a variable outside of the context in which it is defined? For example, a parameter to a
function can only be used inside the function itself.

• Did you forget to put double quotes around a string, for example, hello instead of "hello"?

If you got this error due to something else not on the list above, please add it as a suggestion!

1.8.2 The name x is ambiguous

You tried to use a variable which has multiple definitions, so disco does not know which one you want to use. The
only way this can happen is if the variable is defined in two different files. For example,

• The variable is defined both in a.disco and b.disco, and you have both import a and import b in
your code.

• You have defined the variable in your own code, but it is also defined in one of the files you import.

The simplest solution is to rename one of the conflicting definitions. If you can’t or don’t want to do this, you can
also make an “adapter module” to rename a variable without changing the original file. For example, suppose we
have x defined in our own file as well as in a.disco. We can make a new file named b.disco which contains the
following:

import a

y :: N
y = x

Now instead of import a we can say import b, and now we will be able to use y instead of x.

1.8.3 The definition of x must have an accompanying type signature

In Disco, you are not allowed to define a variable by simply saying x = You must also specify the type of a
variable by placing a type signature before it, like this:

x : N -- a type signature for x
x = 5 -- the definition of x

34 Chapter 1. Disco Language Reference

https://github.com/disco-lang/disco/issues
https://github.com/disco-lang/disco/issues/new

disco, Release 1.0

1.8.4 The expression e must have both a blah type and also. . .

This error occurs sometimes when two incompatible types meet: the context in which an expression is used requires it
to have a certain type, whereas the expression actually has a different type.

For example, consider the following:

Disco> x : N
Disco> x = 5
Disco> x(2)
Error: the expression

x
must have both a function type and also the incompatible type

.

In this example, the reason x must have a function type is because we applied it to an argument, like x(2). The only
things which can be applied to arguments are functions. On the other hand, we said that the type of x is N, whch is not
a function.

1.8.5 Empty case expressions are not allowed

Every case expression must have at least one branch.

If you’re getting this error, perhaps everything inside a case expression ({? ... ?}) is a comment?

1.8.6 Value did not match any of the branches in a case expression

This means that none of the conditions in a case expression were true. For example, consider this case expression:

{? 'A' if n < 5,
'B' if n > 5

?}

When n == 5 specifically, both conditions will be false, and this error will be generated.

The reason this is an error is that every expression must have a value; if all the conditions are false, we do not know
what value the whole case expression should have.

This error may also occur when defining a function via pattern matching, if none of the patterns match a particular
input. For example, consider the below definition of f:

f : N -> N
f(3) = 99
f(2n) = n

If we call this function on an odd input besides 3, it will generate an error, since neither of the patterns matches:

Disco> f(5)
Error: value did not match any of the branches in a case expression.

The reason the same error is generated is that internally, function definitions by cases are translated into case expres-
sions. For example, the above definition for f is translated into something like

f : N -> N
f(m) = {? 99 if m is 3, n if m is 2n ?}

1.8. Error messages 35

disco, Release 1.0

1.8.7 Pattern p contains duplicate variable x

A pattern is not allowed to contain the same variable more than once. For example, the following definition is not
allowed, because the pattern (x,x) contains two occurrences of the variable x.

f :: N*N -> N
f(x,x) = 3
f(x,y) = 7

If you want to define a function which returns 3 whenever its two arguments are equal, and 7 otherwise, you could
define it like this, using a case expression

f :: N*N -> N
f(x,y) = {? 3 if x == y, 7 otherwise ?}

1.8.8 The pattern p is supposed to have type T, but instead. . .

This is a similar sort of error as The expression e must have both a blah type and also. . . , but concerns patterns instead
of expressions. On the one hand, disco can figure out what type a pattern should be based on the type of the function.
On the other hand, the pattern itself may correspond to a different type. For example,

Disco> :{
Disco| f : N -> N
Disco| f(x,y) = x + y
Disco| :}
Error: the pattern

(x, y)
is supposed to have type

,
but instead it has a pair type.

In this example, we have declared the type of f to be N -> N, that is, a function which takes a natural number as
input and yields another natural number as output. However, we have used the pattern (x,y) for the input of f, which
looks like a value of a pair type.

1.8.9 Duplicate type signature for x

This error message is caused by multiple type signatures for the same variable. It does not matter if the types are the
same or different; there can only be one type signature per variable.

Disco> :{
Disco| x : N
Disco| x : N
Disco| :}
Error: duplicate type signature for x.

If this is unexpected, check that you did not misspell a variable name so it accidentally has the same name as another
variable.

1.8.10 Duplicate definition for x

Just as each variable can only have one type signature, so each variable can only have one definition. Once a variable is
defined, it is not possible to change its value to something different. This is quite different than some other languages.
See the documentation about definitions for more information.

36 Chapter 1. Disco Language Reference

disco, Release 1.0

1.8.11 Duplicate definition for type T

This is very similar to Duplicate definition for x, but for type definitions instead of variables. For example,

Disco> type H = N * N
Disco> type H = Z + Q
Error: duplicate definition for type H.

1.8.12 Cyclic type definition for T

This error occurs when one or more type definitions form a cycle.

Note that recursive types, i.e. types defined in terms of themselves, are very much allowed (and useful)! A “cyclic
type” error only occurs when a type is defined as being directly equal to itself.

For example:

Disco> :{
Disco| type A = B
Disco| type B = C
Disco| type C = A
Disco| :}
Error: cyclic type definition for A.

1.8.13 Number of arguments does not match

When defining a function, there are two ways Disco can figure out how many arguments it takes: by looking at its
declared type, and by looking at the number of arguments in its definition. This error results when these are not the
same.

For example, the following definition would yield this error:

f : N -> N -> N
f x y z = 3

The declared type of f, namely N -> N -> N, says that it takes two natural number inputs. However, the definition
f x y z = ... makes it look like it takes three inputs: x, y, and z.

This is not a terribly informative error message, and it will likely be improved and/or split out into several separate
error messages soon.

1.8.14 The type T is not searchable

When writing a property using a forall, we are only allowed to use types which are searchable, that is, types for
which we can effectively generate sample values. Note this is not the same thing as being finite. For example, the type
of natural numbers is searchable even though it is infinite; we can list natural numbers (either in order or randomly) in
order to see which ones make the property true or false.

Disco> :test forall x:N. x < 10 -- this works as expected
- Test is false: x. x < 10
Counterexample:

x = 10

On the other hand, the function type N -> N is not searchable: there is no way to list all functions of type N -> N. The
below property is in fact false, but Disco can’t handle it:

1.8. Error messages 37

disco, Release 1.0

Disco> :test forall f : N -> N. f(4) > 6
Error: the type

→
is not searchable (i.e. it cannot be used in a forall).

1.8.15 There is no built-in or user-defined type named X

This is similar to There is nothing named x, but with types. You have referred to a type that does not exist.

• Did you spell the name of the type correctly? (Remember that capitalization matters!)

• Did you forget to import a module which defines the type you want?

1.8.16 Wildcards are not allowed in expressions

A wildcard pattern, written using an underscore (_), can be used in a pattern (on the left side of an equals sign) to
indicate that you don’t care about a certain value.

However, you are not allowed to use a wildcard anywhere on the right side of an equals sign. If you promise to give
me two books you can’t just give me one and say you don’t care about the other one; likewise, if you promise to deliver
(say) a pair of natural numbers, you not allowed to say you don’t care what one of them is:

f : Char -> N * N
f(_) = (_, 3)

The first _ is fine: the function f doesn’t need to care what Char input it is given. But the second _ is not OK: f has
promised to return a pair of natural numbers, and it had better fulfill its promise.

1.8.17 Not enough/too many arguments for the type T

Some built-in types expect to be given one or more types as arguments (for example, List and Set both expect one
argument; Map expects two). You can also define your own types that expect arguments. These error messages show
up when you have given the wrong number of arguments to a type. For example:

Disco> t : List
Error: not enough arguments for the type 'List'.
Disco> t : List(N,Q)
Error: too many arguments for the type 'List'.
Disco> type MyType(a,b,c) = List(a) * Set(b) * List(c)
Disco> q : MyType(Char,Bool)
Error: not enough arguments for the type 'MyType'.

1.8.18 Unknown type variable

This error always refers to a type definition, which uses a type variable that was not a parameter of the type being
defined. For example:

Disco> type T(a,b) = N * c
Error: Unknown type variable 'c'.

In this example, we are defining the type T which has parameters a and b. We are thus allowed to use a and b
anywhere inside the definition of T. However, here we use c, which is not defined.

38 Chapter 1. Disco Language Reference

disco, Release 1.0

• Did you misspell a variable name?

• Did you forget to add the variable as a parameter of the type? For example, if we want to define a type of
parameterized trees, but write type T = Unit + a * T * T, we would get this error; what we should
write insitead is type T(a) = Unit + a * T(a) * T(a).

1.8.19 Recursive occurrences of T may only have type variables as arguments

For technical reasons, when defining a parameterized type, any recursive occurrences of the type in its own definition
can only have type variables as arguments. For example, this is perfectly OK:

type T(a) = Unit + a * T(a) * T(a)

Notice how every occurrence of T on the right-hand side of the = has the variable a as an argument.

Even this is OK:

type Alt(a,b) = Unit + a * Alt(b,a)

In this example, the Alt on the right-hand side of the = has its arguments in the opposite order from the one on the
left-hand side, but that is OK as long as they are all type variables.

These examples, on the other hand, are not OK:

type Bad1(a) = Unit + Bad1(N)
type Bad2(a) = Unit + Bad2(Bad2(a))

1.8.20 The shape of two types does not match

This is a really horrible, uninformative error message; I’m sorry! I hope to improve it soon.

In the meantime, this error is generally caused by the types of different things not lining up. For example:

h : Z*Z -> Bool
h(3) = true

In this example, the type of h says that h takes a pair of integers as input. However, the definition of h looks like it
takes a single natural number as input, and these types don’t match.

Some tips for pinpointing the error:

• Try narrowing down the source of the error by checking small pieces of code by themselves.

• Try asking Disco for the types of various pieces at the prompt to see if they match what you think the type should
be. For example, Disco can tell us that the type of true is Bool (which matches the desired output type), but
the type of 3 is N (which does not match).

• Ask for help if you are stuck!

1.8.21 Typechecking failed

This error message is the absolute worst. It is used in any and all situations where something went wrong and Disco
couldn’t make sense of the types in your program.

1.8. Error messages 39

disco, Release 1.0

1.8.22 Values of type T cannot be. . .

This error message comes up when you are trying to apply certain operations to types that do not allow that operation.
For example:

• Trying to subtract or divide two natural numbers

• Trying to compare two functions

1.8.23 Type variable x represents any type, so we cannot assume. . .

A polymorphic function has to be able to work for any input type. Thus, it cannot assume that input values of a
polymorphic type support any operations in particular. For example, the type of the function h below claims it works
for any type a at all, but the implementation of h uses subtraction (which does not actually work for any type):

h : a -> a
h(x) = x - 3

1.9 Symbols

The following table shows all the fancy Unicode symbols that can be used in Disco. The first column shows the symbol
itself (suitable for copy-pasting). For each symbol, the table shows the corresponding Unicode codepoint, the LaTeX
command that can be used to generate the symbol, an equivalent ASCII representation that can be used in Disco to
avoid copy-pasting a fancy symbol, and the meaning of the symbol with a link to the relevant Disco documentation.

Symbol Codepoint LaTeX ASCII equivalent Meaning + documentation
¬ U+AC \neg not Not

U+2227 \land /\ And
U+2227 \lor \/ Or

→ U+2192 \to -> Implies; function type
U+2192 \iff <-> If and only if
U+2260 \neq /=, != Not equal to
U+2264 \leq <=, =< Less-than-or-equal-to
U+2265 \geq >=, => Greater-than-or-equal-to
U+2200 \forall forall Universal quantification
U+2203 \exists exists Existential quantification
U+2238 .- Saturating subtraction
U+2208 \in elem Element of
U+2286 \subseteq subset Subset of
U+222A \cup union Set union
U+2229 \cap intersect Set intersection
U+2A2F \times >< Cartesian product; pair type
U+228E \uplus + Sum type
U+2115 \mathbb{N} N Natural numbers
U+2124 \mathbb{Z} Z Integers
U+1D53D \mathbb{F} F Fractional numbers
U+211A \mathbb{Q} Q Rational numbers

𝜆 U+033B \lambda \ Anonymous function
U+25A0 \blacksquare unit Unit value

40 Chapter 1. Disco Language Reference

CHAPTER 2

Quick Tutorial for experienced functional programmers

Disco is a small yet expressive, pure functional programming language designed especially to be used in the context
of a discrete mathematics course. Right now it is in a rough prototype stage; this tutorial is only useful for developers
who already have some knowledge of functional programming.

2.1 Getting started

After you have been added as a collaborator to the disco github repository, get the source code via SSH:

git clone git@github.com:disco-lang/disco.git

If you are not a collaborator on the repository you can also get the source code via HTTPS:

git clone https://github.com/disco-lang/disco.git

Make sure you have the stack tool installed. Then navigate to the root directory of the disco repository, and execute

stack setup
stack build --fast

(This may take quite a while the first time, while stack downloads and builds all the dependencies of disco.)

After building disco with stack build, to run the disco REPL (Read-Eval-Print Loop), type stack exec
disco at a command prompt. You should see a disco prompt that looks like this:

Disco>

To run the test suite, you can execute

stack test --fast

See the build script in the root of the repository for an example of additional arguments you may wish to pass to
stack build for a tight edit-compile-test loop while working on the code.

41

https://github.com/disco-lang/disco
https://docs.haskellstack.org/en/stable/README/

disco, Release 1.0

2.2 Arithmetic

As a computational platform for learning discrete mathematics, at the core of disco is of course the ability to compute
with numbers. However, unlike many other languages, disco does not support real (aka floating-point) numbers at
all—they are not typically needed for discrete mathematics, and omitting them simplifies the language quite a bit. To
compensate, however, disco has sophisticated built-in support for rational numbers.

2.2.1 Basic arithmetic

To start out, you can use disco as a simple calculator. For example, try entering the following expressions, or others
like them, at the Disco> prompt:

• 2 + 5

• 5 - 8

• 5 * (-2)

• (1 + 2)(3 + 4)

• 2 ^ 5

• 2 ^ 5000

• 4 .- 2

• 2 .- 4

The last two expressions use the saturating subtraction operator, .-, which takes two numeric operands, 𝑎 and 𝑏, and
returns 𝑎− 𝑏 if 𝑎 > 𝑏, and 0 otherwise. Note that unlike regular subtraction, the result of a saturating subtraction will
always be a natural number.

Also notice that it is not always necessary to write * for multiplication: as is standard mathematical notation, we may
often omit it, as in (1 + 2)(3 + 4), which means the same as (1 + 2) * (3 + 4). (For precise details on
when the asterisk may be omitted, see the discussion in the section on functions.) Notice also that integers in disco
may be arbitrarily large.

Now try these:

• 3/7 + 2/5

• 2 ^ (-5)

The results may come as a bit of a surprise if you are already used to other languages such as Java or Python, which
would yield a floating-point (i.e. real) number; as mentioned before, disco does not support floating-point numbers.
However, rational numbers can still be entered using decimal notation. Try these expressions as well:

• 2.3 + 1.6

• 1/5.0

• 1/7.0

Disco automatically picks either fractional or decimal notation for the output, depending on whether any values with
decimal points were used in the input (for example, compare 1/5 and 1/5.0, or 1.0/5). Note that 1/7.0 results
in 0.[142857]; can you figure out what the brackets indicate?

The standard floor and ceiling operations are built-in:

42 Chapter 2. Quick Tutorial for experienced functional programmers

disco, Release 1.0

Disco> floor (17/3)
5
Disco> ceiling (17/3)
6

Just for fun, disco also supports standard mathematical notation for these operations via Unicode characters:

Disco> 17/3
5
Disco> 17/3
6

Integer division, which rounds down to the nearest integer, can be expressed using //:

Disco> 5 // 2
2
Disco> (-5) // 2
-3

x // y is always equivalent to floor (x/y), but is provided as a separate operator for convenience.

The counterpart to integer division is mod, which gives the remainder when the first number is divided by the second:

Disco> 5 mod 2
2
Disco> (2^32) mod 7
4
Disco> (2^32) % 7

The % operator may also be used as a synonym for mod.

Finally, the abs function is provided for computing absolute value:

Disco> abs 5
5
Disco> abs (-5)
5

2.2.2 Advanced arithmetic

Disco also provides a few more advanced arithmetic operators which you might not find built in to other languages.

• The divides operator can be used to test whether one number evenly divides another. Try evaluating these
expressions:

– 2 divides 20

– 2 divides 21

– (-2) divides 20

– 2 divides (-20)

– 7 divides (2^32 - 4)

– (1/2) divides (3/2)

– (1/5) divides (3/2)

– 1 divides 10

2.2. Arithmetic 43

disco, Release 1.0

– 0 divides 10

– 10 divides 0

– 0 divides 0

The last three expressions may be surprising, but follow directly from the definition: a divides
b is true if there is an integer k such that a*k = b. For example, there is no k such that 0*k =
10, so 0 divides 10 is false.

Note that a vertical line is often used to denote divisibility, as in 3 | 21, but disco does not support
this notation, since the vertical line is used for other things (and besides, it is typically not a good
idea to use a visually symmetric operator for a nonsymmetric relation).

• The choose operator can be used to compute binomial coefficients. For example, 5 choose 2 is the number
of ways to select two things out of five.

• The factorial function is available via standard mathematical notation:

Disco> 20!
2432902008176640000

• A square root (sqrt) function is provided which rounds the result down to the nearest integer (remember that
disco does not support arbitrary real numbers).

Disco> sqrt (299^2 + 1)
299
Disco> sqrt (299^2 .- 1)
298

2.3 Types

Every value in disco has a type. Types play a central role in the language, and help guide and constrain programs. All
the types in a program must match correctly (i.e. the program must typecheck) before it can be run. The type system
has for the most part been designed to correspond to common mathematical practice, so if you are used to type systems
in other programming languages (even other functional languages) you may be in for a surprise or two.

Disco can often infer the type of an expression. To find out what type disco has inferred for a given expression, you
can use the :type command. For example:

Disco> :type 3
3 :
Disco> :type 2/3
2 / 3 :
Disco> :type [1,2,5]
[1, 2, 5] : List

The colon in 3 : can be read “has type” or “is a”, as in “three is a natural number”. A colon can also be used to
give an explicit type to an expression, for example, when you want to specify a type other than what disco would infer.
For example:

Disco> :type 3 + 5
3 + 5 :
Disco> :type (3 : Integer) + 5
(3 :) + 5 :

The above example shows that normally, disco infers the type of 3 + 5 to be a natural number, but we can force the
3 to be treated as an Integer, which in turn forces the whole expression to be inferred as an integer.

44 Chapter 2. Quick Tutorial for experienced functional programmers

disco, Release 1.0

2.3.1 Primitive numeric types

Disco has four built-in primitive numeric types: natural numbers, integers, fractions (i.e. nonnegative rationals), and
rationals.

• The type of natural numbers, written Natural, Nat, N, or , includes the counting numbers 0, 1, 2,

• The type of integers, written Integer, Int, Z, or , includes the natural numbers as well as their negatives.

• The type of fractions (i.e. nonnegative rationals), written Fractional, Frac, F, or , includes all ratios of the
form 𝑎/𝑏 where 𝑎 and 𝑏 are natural numbers, with 𝑏 ̸= 0.

• The type of rational numbers, written Rational, Q or , includes all ratios of integers.

In mathematics, it is typically not so common to think of the nonnegative rationals F as a separate set by themselves; but
this is mostly for historical reasons and because of the way the development of rational numbers is usually presented.
The natural numbers support addition and multiplication. Extending them to support subtraction yields the integers;
then, extending these again to support division yields the rationals. However, what if we do these extensions in
the opposite order? Extending the natural numbers to support division results in the positive rational numbers; then
extending these with subtraction again yields the rationals. All told, the relationship between these four types forms a
diamond-shaped lattice:

Q
/ \

Z F
\ /
N

Each type is a subset of the type or types above it. Going northwest in this diagram (N → Z or F → Q) corresponds
to allowing negatives, that is, subtraction; going northeast (N → F or Z → Q) corresponds to allowing reciprocals,
that is, division.

Try evaluating each of the following expressions at the disco prompt, and also request their inferred type with the
:type command. What type does disco infer for each? Why?

• 1 + 2

• 3 * 7

• 1 - 2

• 1 / 2

• (1 - 2) / 3

Going southeast in the lattice (getting rid of negatives) is accomplished with the absolute value function abs. Going
southwest (getting rid of fractions) is accomplished with floor and ceiling.

Note that disco supports subtyping, that is, values of type S can be automatically “upgraded” to another type T as long
as S is a “subtype” (think: subset) of T. For example, a natural number can be automatically upgraded to an integer.

Disco> (-1 : Z) + (3 : N)
2
Disco> :type (-1 : Z) + (3: N)
(-1 :) + (3 :) :

In the above example, the natural number 3 is automatically upgraded to an integer so that it can be added to -1.
When we discuss functions later, we will see that this principle extends to function arguments as well: for example, if
a function is expecting an integer as input, it is acceptable to give it a natural number, since the natural number can be
upgraded to an integer.

2.3. Types 45

disco, Release 1.0

2.3.2 Other types

There are many other types built into disco as well—Bool, Void, Unit, List, product, and sum types, to name
a few. These will be covered throughout the rest of the tutorial in appropriate places. For now, try executing these
commands and see if you can guess what is going on:

• :type false

• :type unit

• :type [1, 2, 3]

• :type [1, 2, -3]

• :type [1, 2, -3, 4/5]

• :type [[1,2], [3,4,5]]

• :type (1, true)

• :type left(3)

2.4 Disco files and the disco REPL

For anything beyond simple one-off calculations that can be entered at the disco prompt, disco definitions may be
stored in a file which can be loaded into the REPL.

2.4.1 Disco files

Disco files typically end in .disco. Here is a simple example:

Listing 1: example/basics.disco

approx_pi : Rational
approx_pi = 22/7

increment : N -> N
increment(n) = n + 1

This file contains definitions for approx_pi and increment. Each definition consists of a type signature of the
form <name> : <type>, followed by an equality of the form <name> = <expression>. Both parts of a
definition are required; in particular, if you omit a type signature, disco will complain that the name is not defined.
The example file shown above contains two definitions: approx_pi is defined to be the Rational number 22/7,
and increment is defined to be the function which outputs one more than its natural number input. (Functions and
the syntax for defining them will be covered in much more detail in an upcoming section of the tutorial.)

The order of definitions in a .disco file does not matter; each definition may refer to any other definition in the
whole file.

To load the definitions in a file into the disco REPL, you can use the :load command. After successfully loading a
file, all the names defined in the file are available for use; the :names command can be used to list all the available
names. For example:

Disco> :load example/basics.disco
Loading example/basics.disco...
Loaded.
Disco> :names

(continues on next page)

46 Chapter 2. Quick Tutorial for experienced functional programmers

disco, Release 1.0

(continued from previous page)

approx_pi :
increment : →
Disco> approx_pi
22/7
Disco> increment(3)
4
Disco> :type increment
increment : →
Disco> approx_pi + increment(17)
148/7

(If you want to follow along, note that the above interaction assumes that the disco REPL was run from the docs/tutorial
subdirectory.)

2.4.2 Comments and documentation

Comments in disco have a similar syntax to Haskell, with the exception that only single-line comments are supported,
and not multi-line comments. In particular, two consecutive hyphens -- will cause disco to ignore everything until
the next newline character.

Listing 2: example/comment.disco

-- This is a comment
approx_pi : Rational
approx_pi = 22/7 -- an OK approximation

-- The following function is very complicated
-- and took about three weeks to write.
-- Don't laugh.
increment : N -> N
increment(n) = n + 1 -- one more than the input

Comments can be placed anywhere and are literally ignored by disco. In many cases, however, the purpose of a
comment is to provide documentation for a function. In this case, disco supports special syntax for documentation,
which must be placed before the type signature of a definition. Each line of documentation must begin with ||| (three
vertical bars).

Listing 3: example/doc.disco

||| A reasonable approximation of pi.
approx_pi : Rational
approx_pi = 22/7 -- an OK approximation

||| Take a natural number as input, and return the natural
||| number which is one greater.
|||
||| Should not be used while operating heavy machinery.
-- This comment will be ignored.
increment : N -> N
increment(n) = n + 1

fizz : N
fizz = 1

When this file is loaded into the disco REPL, we can use the :doc command to see the documentation associated

2.4. Disco files and the disco REPL 47

disco, Release 1.0

with each name.

Disco> :load example/doc.disco
Loading example/doc.disco...
Loaded.
Disco> :doc approx_pi
approx_pi :

A reasonable approximation of pi.

Disco> :doc increment
increment : →

Take a natural number as input, and return the natural
number which is one greater.

Should not be used while operating heavy machinery.

Disco> :doc fizz
fizz :

Since fizz does not have any associated documentation, the :doc command simply shows its type.

2.4.3 Other REPL commands

The disco REPL has a few other commands which are useful for disco developers.

• :parse shows the fully parsed form of an expression.

Disco> :parse 2 + [3,4 : Int]
TBin_ () Add (TNat_ () 2) (TContainer_ () ListContainer [(TNat_ () 3,
→˓Nothing),(TAscr_ () (TNat_ () 4) (Forall (<[]> TyAtom (ABase Z))),
→˓Nothing)] Nothing)

• :pretty shows the pretty-printed form of a term (without typechecking it).

Disco> :pretty 2 + [3,4:Int]
2 + [3, (4 :)]

• :desugar shows the desugared term corresponding to an expression.

Disco> :desugar [3,4]
3 :: 4 :: []

• :compile shows the compiled core language term corresponding to an expression.

Disco> :compile [3 - 4]
CCons 1 [CApp (CConst OAdd) [(Lazy,CCons 0 [CNum Fraction (3 % 1),CApp
→˓(CConst ONeg) [(Strict,CNum Fraction (4 % 1))]])],CCons 0 []]

48 Chapter 2. Quick Tutorial for experienced functional programmers

disco, Release 1.0

2.5 Logic

2.5.1 Booleans

The type of booleans, written Bool or Boolean, represents logical truth and falsehood. The two values of this type
are written true and false. (For convenience True and False also work.)

• Logical AND can be written and, &&, or (note that is U+2227 LOGICAL AND, not a caret symbol ^, which
is reserved for exponentiation).

• Logical OR is written or, ||, or (U+2228 LOGICAL OR).

• Logical negation (NOT) is written not or ¬ (U+00AC NOT SIGN).

• Logical implication is written implies or ==>.

Disco> true and false
false
Disco> true || false
true
Disco> not (true true)
false
Disco> ¬ (false or false or false or true)
false
Disco> true implies false
false
Disco> false implies true
true

2.5.2 Equality testing

If you have two disco values of the same type, in almost all cases you can compare them to see whether they are equal
using ==, resulting in a Bool value.

Disco> 2 == 5
false
Disco> 3 * 7 == 2*10 + 1
true
Disco> (3/5)^2 + (4/5)^2 == 1
true
Disco> false == False
true

The /= operator tests whether two values are not equal; it is just the logical negation of ==.

2.5.3 Comparison

Again, in almost all cases values can be compared to see which is less or greater, using operators <, <=, >, or >=.

Disco> 2 < 5
true
Disco> false < true
true

Comparisons can also be chained; the result is obtained by comparing each pair of values according to the comparison
between them, and taking the logical AND of all the results. For example:

2.5. Logic 49

disco, Release 1.0

Disco> 1 < 3 < 8 < 99
true
Disco> 2.2 < 5.9 > 3.7 < 8.8 > 1.0 < 9
true
Disco> x : Int
Disco> x = 5
Disco> 2 < x < 10
true

2.6 Structural types

In addition to the primitive types covered so far, disco also has sum and product types which can be used to build up
more complex structures out of simpler ones.

2.6.1 Product types

The product of two types, written using an asterisk * or Unicode times symbol × (U+00d7 MULTIPLICATION
SIGN), is a type whose values are ordered pairs of values of the component types. Pairs are written using standard
ordered pair notation.

Listing 4: example/pair.disco

pair1 : N * Q
pair1 = (3, -5/6)

pair2 : Z × Bool
pair2 = (17 + 22, (3,5) < (4,2))

pair3 : Bool * (Bool * Bool)
pair3 = (true, (false, true))

pair4 : Bool * Bool * Bool
pair4 = (true, false, true)

pair1 in the example above has type N * Q, that is, the type of pairs of a natural number and a rational number; it
is defined to be the pair containing 3 and -5/6. pair2 has type Z × Bool (using the alternate syntax × in place
of *), and contains two values: 17 + 22, and the result of asking whether (3, 5) < (4, 2).

Disco> pair2
(39, true)

Pairs are compared lexicographically, which intuitively means that the first component is most important, the second
component breaks ties in the first component, and so on. For example, (𝑎, 𝑏) < (𝑐, 𝑑) if either 𝑎 < 𝑐 (in which case 𝑏
and 𝑑 don’t matter) or if 𝑎 = 𝑐 and 𝑏 < 𝑑. This is why (3,5) < (4,2) evaluates to true. Of course, two pairs
are equal exactly when their first elements are equal and their second elements are equal.

pair3 shows that pairs can be nested: it is a pair whose second component is also a pair. pair4 looks like an ordered
triple, but in fact we can check that pair3 and pair4 are equal!

Disco> pair3 == pair4
true

Really, pair4 is just syntax sugar for pair3. In general:

50 Chapter 2. Quick Tutorial for experienced functional programmers

disco, Release 1.0

• The type X * Y * Z is interpreted as X * (Y * Z).

• The tuple (x,y,z) is interpreted as (x,(y,z)).

This continues recursively, so, for example, A * B * C * D * E means A * (B * (C * (D * E))). Put
another way, disco really only has pairs, but appears to support arbitrarily large tuples by encoding them as right-nested
pairs.

If you want left-nested pairs you can use explicit parentheses: for example, (Bool * Bool) * Bool is not the
same as Bool * Bool * Bool, and has values such as ((false, true), true).

2.6.2 Sum types

If X and Y are types, their sum, written X + Y (or X Y, using U+228e MULTISET UNION), is the disjoint union
of X and Y. That is, values of type X + Y are either values of X or values of Y, along with a “tag” so that we know
which it is. The possible tags are left and right (to indicate the type on the left or right of the +). For example:

Listing 5: example/sum.disco

sum1 : N + Bool
sum1 = left(3)

sum2 : N + Bool
sum2 = right(false)

sum3 : N + N + N
sum3 = right(right(3))

sum1 and sum2 have the same type, namely, N + Bool; values of this type consist of either a natural number or a
boolean. sum1 contains a natural number, tagged with left; sum2 contains a boolean tagged with right.

Notice that X + X is a different type than X, because we get two distinct copies of all the values in X, some tagged
with left and some with right. This is why we call a sum type a disjoint union.

Iterated sum types, as in sum3, are handled in exactly the same way as iterated product types: N + N + N is really
syntax sugar for N + (N + N). sum3 therefore begins with a right tag, to show that it contains a value of the
right-hand type, namely, N + N; this value in turn consists of another right tag along with a value of type N. Other
values of the same type N + N + N include right(left(6)) and left(5).

2.6.3 Unit and Void types

Disco has two other special built-in types which are rarely useful on their own, but often play an important role in
describing other types.

• The type Unit has just a single value, called unit or .

Disco> :type unit
: Unit

• The type Void has no values.

2.6.4 Counting and enumerating types

For any type which has only a finite number of values, disco can count how many values there are, using the count
operator, or list them using enumerate (we will learn more about lists later in the tutorial).

2.6. Structural types 51

disco, Release 1.0

Disco> count ((Bool * (Bool + Bool)) + Bool)
right 10
Disco> enumerate ((Bool * (Bool + Bool)) + Bool)
[left (false, left false), left (false, left true), left (false, right false),
left (false, right true), left (true, left false), left (true, left true),
left (true, right false), left (true, right true), right false, right true]

Disco> enumerate (Bool * Bool * Bool)
[(false, false, false), (false, false, true), (false, true, false), (false, true,
→˓true),
(true, false, false), (true, false, true), (true, true, false), (true, true, true)]

2.7 Functions

The type of functions with input X and output Y is written X -> Y. Some basic examples of function definitions are
shown below.

Listing 6: example/function.disco

f : N -> N
f(x) = x + 7

g : Z -> Bool
g(n) = (n - 3) > 7

factorial : N -> N
factorial(0) = 1
factorial(n) = n * factorial(n .- 1)

• The function f takes a natural number as input, and returns the natural number which is 7 greater. Notice that
f is defined using the syntax f(x) = In fact, the basic syntax for function arguments is juxtaposition,
just as in Haskell; the syntax f x = ... would work as well. Stylistically, however, f(x) = ... is to be
preferred, since it matches standard mathematical notation.

• The function g takes an integer n as input, and returns a boolean indicating whether n - 3 is greater than 7.
Note that this function cannot be given the type N -> Bool, since it uses subtraction.

• The recursive function factorial computes the factorial of its input. Top-level functions such as
factorial are allowed to be recursive. Notice also that factorial is defined by two cases, which are
matched in order from top to bottom, just as in Haskell.

Functions can be given inputs using the same syntax:

Disco> f(2^5)
39
Disco> g(-5)
false
Disco> factorial(5 + 6)
39916800

“Multi-argument functions” can be written as functions which take a product type as input. (This is again a stylistic
choice: disco certainly supports curried functions as well. But in either case, disco fundamentally supports only
one-argument functions.) For example:

52 Chapter 2. Quick Tutorial for experienced functional programmers

disco, Release 1.0

Listing 7: example/multi-arg-functions.disco

gcd : N * N -> N
gcd(a,0) = a
gcd(a,b) = gcd(b, a mod b)

discrim : Q * Q * Q -> Q
discrim(a,b,c) = b^2 - 4*a*c

manhattan : (Q*Q) * (Q*Q) -> Q
manhattan ((x1,y1), (x2,y2)) = abs (x1-x2) + abs (y1-y2)

All of these examples are in fact pattern-matching on their arguments, although this is most noticeable with the last
example, which decomposes its input into a pair of pairs and gives a name to each component.

Functions in disco are first-class, and can be provided as input to another function or output from a function, stored
in data structures, etc. For example, here is how one could write a higher-order function to take a function on natural
numbers and produce a new function which iterates the original function three times:

Listing 8: example/higher-order.disco

thrice : (N -> N) -> (N -> N)
thrice(f)(n) = f(f(f(n)))

2.7.1 Anonymous functions

The syntax for an anonymous function in disco consists of a lambda (either a backslash or an actual 𝜆) followed by a
pattern, a period, and an arbitrary disco expression (the body).

The pattern can be a single variable name or a more complex pattern. Note that patterns can also contain type anno-
tations. Unlike in, say, Haskell, there is no special syntactic sugar for curried multi-argument functions; one can just
write nested lambdas.

Here are a few examples to illustrate the possibilities:

Disco> thrice(\x. x*2)(1)
8
Disco> thrice(\z:Nat. z^2 + 2z + 1)(7)
17859076
Disco> (\(x,y). x + y) (3,2)
5
Disco> (\x:N. \y:Q. x > y) 5 (9/2)
true

2.7.2 Let expressions

Let expressions are a mechanism for defining new variables for local use within an expression. For example, 3
+ (let y = 2 in y + y) evaluates to 7: the expression y + y is evaluated in a context where y is de-
fined to be 2, and the result is then added to 3. The simplest syntax for a let expression, as in this example, is
let <variable> = <expression1> in <expression2>. The value of the let expression is the value
of <expression2>, which may contain occurrences of the <variable>; any such occurrences will take on the
value of <expression1>.

More generally:

2.7. Functions 53

disco, Release 1.0

• A let may have multiple variables defined before in, separated by commas.

• Each variable may optionally have a type annotation.

• The definitions of later variables may refer to previously defined variables.

• However, the definition of a variable in a let may not refer to itself; only top-level definitions may be recursive.

Here is a (somewhat contrived) example which demonstrates all these features:

Listing 9: example/let.disco

f : Nat -> List(Nat)
f n =
let x : Nat = n//2,

y : Nat = x + 3,
z : List(Nat) = [3,x,y]

in n :: z

An important thing to note is that a given definition in a let expression will only ever be evaluated (at most) once,
even if the variable is used multiple times. let expressions are thus a way for the programmer to ensure that the
result of some computation is shared. let x = e in f x x and f e e will always yield the same result, but
the former might be more efficient, if e is expensive to calculate.

2.7.3 Disambiguating function application and multiplication

As previously mentioned, the fundamental syntax for applying a function to an argument is juxtaposition, that is,
simply putting the function next to its argument (with a space in between if necessary).

However, disco also allows multiplication to be written in this way. How can it tell the difference? Given an expression
of the form X Y (where X and Y may themselves be complex expressions), disco uses simple syntactic rules to
distinguish between multiplication and function application. In particular, note that the types of X and Y do not enter
into it at all (it would greatly complicate matters if parsing and typechecking had to be interleaved—even though this
is what human mathematicians do in their heads; see the discussion below).

To decide whether X Y is function application or multiplication, disco looks only at the syntax of X; X Y is multipli-
cation if and only if X is a multiplicative term, and function application otherwise. A multiplicative term is one that
looks like either a natural number literal, or a unary or binary operation (possibly in parentheses). For example, 3,
(-2), and (x + 5) are all multiplicative terms, so 3x, (-2)x, and (x + 5)x all get parsed as multiplication.
On the other hand, an expression like (x y) is always parsed as function application, even if x and y both turn out to
have numeric types; a bare variable like x does not count as a multiplicative term. Likewise, (x y) z is parsed as
function application, since (x y) is not a multiplicative term.

Note: You may enjoy reflecting on how a human mathematician does this disambiguation. In fact, they are do-
ing something much more sophisticated than disco, implicitly using information about types and social conventions
regarding variable names in addition to syntactic cues. For example, consider 𝑥(𝑦 + 3) versus 𝑓(𝑦 + 3). Most math-
ematicians would unconsciously interpret the first as multiplication and the second as function application, due to
standard conventions about the use of variable names 𝑥 and 𝑓 . On the other hand, in the sentence “Let 𝑥 be the func-
tion which doubles an integer, and consider 𝑣 = 𝑥(𝑦 + 3)”, any mathematician would have no trouble identifying this
use of 𝑥(𝑦 + 3) as function application, although they might also rightly complain that 𝑥 is a strange choice for the
name of a function.

54 Chapter 2. Quick Tutorial for experienced functional programmers

disco, Release 1.0

2.7.4 Operator functions

Operators can be manipulated as functions using the ~ notation. The tilde goes wherever the argument to the operator
would go. This can be used, for example, to pass an operator to a higher-order function.

Disco> :type ~+~
~+~ : × →

Disco> import list
Loading list.disco...
Disco> foldr(~+~,0,[1 .. 10])
55

Disco> -- factorial
Disco> :type ~!
~! : →

Disco> -- negation
Disco> :type -~
-~ : →

2.8 Case expressions

Fundamentally, the only construct available in disco which allows choosing between multiple alternatives is case
analysis using a case expression. (The other is multi-clause functions defined via pattern-matching, but in fact that is
really only syntax sugar for a case expression.)

The syntax of case expressions is inspired by mathematical notation such as

𝑓(𝑥) =

⎧⎪⎨⎪⎩
𝑥+ 2 𝑥 < 0

𝑥2 − 3𝑥+ 2 0 ≤ 𝑥 < 10

5− 𝑥 otherwise

Here is how one would write a corresponding definition in disco:

Listing 10: example/case.disco

f : Z -> Z
f(x) = {? x + 2 if x < 0,

x^2 - 3x + 2 if 0 <= x < 10,
5 - x otherwise

?}

The entire expression is surrounded by {? ... ?}; the curly braces are reminiscent of the big brace following
𝑓(𝑥) = . . . in the standard mathematical notation, but we don’t want to use plain curly braces (since those will be
used for sets), so question marks are added (which are supposed to be reminiscent of the fact that case expressions are
about asking questions).

2.8.1 Case syntax and semantics

More formally, the syntax of a case expression consists of one or more branches, separated by commas, enclosed in
{? ... ?}. (Whitespace, indentation, etc. formally does not matter, though something like the style shown in the
example above is encouraged.)

2.8. Case expressions 55

disco, Release 1.0

Each branch consists of an arbitrary expression followed by zero or more guards. When a case expression is evaluated,
each branch is tried in turn; the first branch which has all its guards succeed is chosen, and the value of its expression
becomes the value of the entire case expression. In the example above, this means that first x < 0 is evaluated; if
it is true then x + 2 is chosen as the value of the entire case expression (and the rest of the branches are ignored).
Otherwise, 0 <= x < 10 is evaluated; and so on.

There are three types of guards:

• A boolean guard has the form if <expr> or when <expr>, where <expr> is an expression of type Bool.
It succeeds if the expression evaluates to true. There is no difference between if and when; they are simply
synonyms.

• A pattern guard has the form if <expr> is <pattern>, or when <expr> is <pattern>. It suc-
ceeds if the expression <expr> matches the pattern <pattern>.

• For convenience, the special guard otherwise is equivalent to if true.

Here is an example using both boolean and pattern guards:

Listing 11: example/case-pattern.disco

g : Z*Z -> Z
g(p) = {? 0 when p is (3,_),

x + y when p is (x,y) when x > 5 or y > 20,
-100 otherwise

?}

Here is the result of evaluating g on a few example inputs:

Disco> g(3,9)
0
Disco> g(4,3)
-100
Disco> g(16,15)
31

When a pattern containing variables matches, the variables are bound to the corresponding values, and are in scope in
both the branch expression as well as any subsequent guards. In the example above, when the pattern (x,y) matches
p, both x and y may be used in the branch expression (x + y in this case) as well as in the second guard if x > 5
or y > 20. That is, the guards in this branch will only succeed if p is of the form (x,y) and either x > 5 or y
> 20, in which case the value of the whole case expression becomes the value of x + y; for example, g(16,15)
= 31.

Warning: Be careful not to get a Boolean guard using == confused with a pattern guard using is. The difference
is in how variables are handled: boolean guards can only use existing variables; pattern guards create new variables.
For example, ... when p is (x,y) matches a tuple p and gives the names x and y to the components. On
the other hand, ... if p == (x,y) will probably complain that x and y are undefined—unless x and y are
already defined elsewhere, in which case this will simply check that p is exactly equal to the value (x,y). Use a
boolean guard when you want to check some condition; use a pattern guard when you want to take a value apart or
see what it looks like.

2.8.2 Function pattern-matching

As we have already seen, functions can be defined via multiple clauses and pattern-matching. In fact, any such
definition simply desugars to one big case expression. For example, the gcd function shown below actually desugars
to something like gcd2:

56 Chapter 2. Quick Tutorial for experienced functional programmers

disco, Release 1.0

Listing 12: example/function-desugar.disco

gcd : N * N -> N
gcd(a,0) = a
gcd(a,b) = gcd(b, a mod b)

gcd2 : N * N -> N
gcd2 = 𝜆p. {? a when p is (a,0),

gcd2(b, a mod b) when p is (a,b)
?}

2.8.3 Arithmetic patterns

Disco supports arithmetic patterns, in which arithmetic expressions involving numeric constants, variables, and arith-
metic operations can be used as patterns. A few examples are shown below.

Listing 13: example/arith-pattern.disco

h : N -> N
h(0) = 1 -- matches 0
h(2k+1) = h(k) -- matches any natural of the form 2k+1 for a natural number
→˓k
h(2k+2) = h(k+1) + h(k) -- matches any natural of the form 2k+2

isHalf : Q -> Bool
isHalf(s) = {? true when s is _ / 2, -- matches fractions with denominator 2

false otherwise ?}

Disco> :load example/arith-pattern.disco
Loading arith-pattern.disco...
Loaded.
Disco> map(h, [0 .. 10])
[1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5]
Disco> isHalf(3/2)
true
Disco> isHalf(4/2)
false
Disco> isHalf(17)
false
Disco> isHalf(5/(-2))
true

In short, an arithmetic pattern can contain:

• variables

• natural number constants

• unary negation

• addition, subtraction, multiplication, and division

In most cases, an arithmetic pattern may contain at most one variable; for example, using x + y as an arithmetic
pattern is an error, since the resulting values of x and y would be ambiguous. The one exception is when matching
on an expression containing a division operator, in which case the two patterns are used to separately match on the
numerator and denominator of the value being matched.

2.8. Case expressions 57

disco, Release 1.0

The behavior of arithmetic patterns depends on the type being matched. Generally speaking, matching will succeed if
there is a unique value of the same type that can be assigned to the variable such that the pattern is equal to the value
being matched. For example, when matching on natural numbers, the pattern 2k+3 will match only odd numbers
greater than or equal to 3, since those are the only numbers which result from assigning a natural number value to
k. Matching 2k+3 against an integer will match all odd integers; matching it against a rational number will always
match.

An arithmetic pattern need not contain any variables, in which case it is the same as just matching on a particular
constant.

At the moment, arithmetic patterns do not support exponentiation, though that could be a nice thing to add (but surely
contains many pitfalls).

2.9 Lists

Disco defines a type of inductive, singly-linked lists, very similar to lists in Haskell.

2.9.1 Basic lists

All the elements of a list must be the same type, and the type of a list with elements of type T is written List(T).

The basic syntax for constructing and pattern-matching on lists is almost exactly the same as in Haskell, with the one
difference that the single colon (type of) and double colon (cons) have been switched from Haskell.

Listing 14: example/list.disco

emptyList : List(Bool)
emptyList = []

nums : List(N)
nums = [1, 3, 4, 6]

nums2 : List(N)
nums2 = 1 :: 3 :: 4 :: 6 :: []

-- nums and nums2 are equal

nested : List(List(Q))
nested = [1, 5/2, -8] :: [[2, 4], [], [1/2]]

sum : List(N) -> N
sum [] = 0
sum (n :: ns) = n + sum ns

2.9.2 List comprehensions

Disco has list comprehensions which are also similar to Haskell’s. A list comprehension is enclosed in square brack-
ets, and consists of an expression, followed by a vertical bar, followed by zero or more qualifiers, [<expr> |
<qual>*].

A qualifier is one of:

• A binding qualifier of the form x in <expr>, where x is a variable and <expr> is any expression with a list
type. x will take on each of the items of the list in turn.

58 Chapter 2. Quick Tutorial for experienced functional programmers

disco, Release 1.0

• A guard qualifier, which is an expression with a boolean type. It acts to filter out any bindings which cause the
expression to evaluate to false.

For example, comp1 below is a (rather contrived) function on two lists which results in all possible sums of two even
numbers taken from the lists which add to at least 50. pythagTriples is a list of all Pythagoren triples with all
three components at most 100. (There are much more efficient ways to compute Pythagorean triples, but never mind.)

Listing 15: example/comprehension.disco

comp1 : List(N) -> List(N) -> List(N)
comp1 xs ys = [x + y | x in xs, 2 divides x, y in ys, 2 divides y, x + y >= 50]

pythagTriples : List (N*N*N)
pythagTriples = [(a,b,c)
| a in [1 .. 20]
, b in [1 .. 20]
, c in [1 .. 20]
, a^2 + b^2 == c^2
]

Note: The biggest difference between list comprehensions in disco and Haskell is that Haskell allows pattern bind-
ings, e.g. Just x <- xs, which keep only elements from the list which match the pattern. At the moment, disco
only allows variables on the left-hand side of a binding qualifier. There is no reason in principle disco can’t support
binding qualifiers with patterns, it just isn’t a big priority and hasn’t been implemented yet.

2.9.3 Polynomial sequences

Like Haskell, disco supports ellipsis notation in literal lists to denote omitted elements, although there are a few
notable differences. One minor syntactic difference is that (just for fun) disco accepts two or more dots as an ellipsis;
the number of dots makes no difference.

Listing 16: example/basic-ellipsis.disco

-- Counting numbers from 1 to 100
counting : List(N)
counting = [1 .. 100]

-- Even numbers from 2 to 100
evens : List(N)
evens = [2, 4 100]

-- [5, 4, 3, ... -3, -4, -5]
down : List(Z)
down = [5 .. -5]

-- 1 + 3 + 5 + 7 = 16
s : N
s = {? a+b+c+d when [1, 3 .. 100] is (a::b::c::d::_) ?}

-- It doesn't always have to be integers
qs : List(Q)
qs = [2/3, 7/5 .. 10]

• [a .. b] denotes the list that starts with a and either counts up or down by ones (depending on whether b is
greater than or less than a, respectively), continuing as long as the elements do not “exceed” b (the meaning of

2.9. Lists 59

disco, Release 1.0

“exceed” depends on whether the counting is going up or down).

• [a, b .. c] denotes the list whose first element is a, second element is b, and the difference between each
element and the next is the difference b - a. The list continues as long as the elements do not “exceed” c,
where “exceed” means either “greater than” or “less than”, depending on whether b - a is positive or negative,
respectively.

All the above is similar to Haskell, except that [10 .. 1] is the empty list in Haskell, and disco’s rules about
determining when the list stops are much less strange (the strangeness of Haskell’s rules is occasioned by floating-
point error, which of course disco does not have to deal with). Also, since disco is strict, it does not support infinite
lists.

However, disco also generalizes things further by allowing notation of the form [a, b, c .. d] or [a, b, c,
d .. e], and so on. We have already seen that [a, b .. c] generates a linear progression of values; by analogy,
[a, b, c .. d] generates a quadratic progression, [a, b, c, d .. e] a cubic, and so on. In general, when
𝑛 values 𝑎0, 𝑎1, . . . , 𝑎𝑛 are given before the ellipsis, disco finds the unique polynomial 𝑝 of degree 𝑛 − 1 such that
𝑝(𝑖) = 𝑎𝑖, and uses it to generate additional terms of the list. (In practice, the disco interpreter does not actually find a
polynomial, but uses the method of finite differences, just like Charles Babbage’s Difference Engine.)

Listing 17: example/general-ellipsis.disco

-- Some triangular numbers
triangular : List(N)
triangular = [1, 3, 6 .. 100]

-- Some squares
squares : List(N)
squares = [1, 4, 9 .. 100]

-- Some cubes
cubes : List(N)
cubes = [1, 8, 27, 64 .. 1000]

The list continues until the first one which “exceeds” the ending value. The precise definition of “exceeds” is a bit
trickier to state in general, but corresponds to the eventual behavior of the polynomial: the list stops as soon as elements
become either larger than or smaller than the ending value, as the polynomial diverges to +∞ or −∞, respectively.

2.9.4 Multinomial coefficients

We already saw that the choose operator can be used to compute binomial coefficients. In fact, if the second operand
to choose is a list instead of a natural number, it can be used to compute general multinomial coefficients as well. n
choose xs is the number of ways to choose a sequence of sets whose sizes are given by the elements of xs from
among a set of n items. If the sum of xs is equal to n, then this is given by n! divided by the product of the factorials
of xs; if the sum of xs is greater than n, then n choose xs is zero; if the sum is less than n, it is as if another
element were added to xs to make up the sum (representing the set of elements which are “not chosen”). In general,
n choose k = n choose [k,n-k] = n choose [k].

2.10 Polymorphism

Disco includes support for parametric polymorphism, with syntax similar to Haskell. For example, here is how we
could write a polymorphic list map function (although this is actually built in to Disco; see the next section on con-
tainers).

60 Chapter 2. Quick Tutorial for experienced functional programmers

disco, Release 1.0

Listing 18: example/poly.disco

maplist : (a -> b) -> List(a) -> List(b)
maplist _ [] = []
maplist f (a :: as) = f a :: (maplist f as)

Disco can also infer polymorphic types. For example:

Disco> :type \x,y. x
𝜆x, y. x : a1 → a → a1
Disco> :load example/poly.disco
Loading poly.disco...
Loaded.
Disco> :type maplist (\x.x)
maplist (𝜆x. x) : List a → List a
Disco> :type maplist (\x.x) [1, 2, 3]
maplist(𝜆x. x)([1, 2, 3]) : List

However, although Disco has an internal notion of type qualifiers (like Haskell type classes), these will never show up
in inferred types. For example:

Disco> :type \x,y. x + y
𝜆x, y. x + y : → →

Internally, Disco is happy to use \x,y. x + y at any type which supports addition, but when forced to infer a
concrete type for it, it simply picks a suitable monomorphic instantiation. However, the following example shows that
it can in fact be used on, say, rational numbers:

Disco> :type (\x,y. x + y) (3/2) (-5)
(𝜆x, y. x + y)(3 / 2)(-5) :

2.11 Type Definitions

The type keyword can be used to conveniently declare aliases for types. For example, consider the following function
which takes a list of natural number triplets and returns the sum of all the triplets in the list:

Listing 19: example/tydefs.disco

sumTripletList : List (N * N * N) -> N
sumTripletList [] = 0
sumTripletList ((n1, n2, n3) :: rest) = (n1 + n2 + n3 + (sumTripletList rest))

Disco> sumTripletList [(1,2,3), (4,5,6)]
21

Let’s write the following type definition:

type NatTriple = N * N * N

The type NatTriple is defined as a 3-tuple containing three values of type N. Note that in Disco, all type names
must begin with a capital letter. Now we can rewrite our type declaration for sumTripletList as follows:

sumTripletList : List(NatTriple) -> N

2.11. Type Definitions 61

disco, Release 1.0

2.11.1 Recursive type definitions

However, type definitions are in fact much more powerful. Disco has no special syntax for declaring algebraic data
types as in Haskell, but unlike Haskell, type definitions in Disco can be recursive. Thus, we can build recursive
algebraic data types directly. For example, we can define a type of binary trees with values of type N at nodes as
follows:

Listing 20: example/tydefs.disco

type Tree = Unit + (N * Tree * Tree)

Here, we see that a Tree can either be a leaf, or a a triplet containing a natural number value of the root as the first
element, and the left and right subtrees of type Tree as the second and third elements, respectively.

Given this definition of Tree, here is how we would write a function which takes a Tree and returns the sum of all
its node values.

Listing 21: example/tydefs.disco

sumTree : Tree -> N
sumTree (left _) = 0
sumTree (right (n, l, r)) = n + sumTree(l) + sumTree(r)

2.11.2 Parameterized type definitions

Type definitions can also be parameterized. For example, we can make the Tree type polymorphic:

Listing 22: example/tydefs-poly.disco

import list

type Tree(a) = Unit + (a * Tree(a) * Tree(a))

treeFold : b * (a * b * b -> b) * Tree(a) -> b
treeFold (z, f, left(unit)) = z
treeFold (z, f, right (a, l, r)) = f(a, treeFold(z,f,l), treeFold(z,f,r))

sumTree : Tree(Nat) -> Nat
sumTree(t) = treeFold(0, \(a,l,r). a+l+r, t)

flattenTree : Tree(a) -> List(a)
flattenTree(t) = treeFold([], \(a,l,r). append(l, append([a], r)), t)

Disco> :load example/tydefs-poly.disco
Disco> leaf = left(unit)
Disco> t = right (1, right (3, leaf, leaf), right (5, leaf, leaf)) : Tree N
Disco> sumTree(t)
9
Disco> flattenTree(t)
[3, 1, 5]

2.11.3 Cyclic type definitions

There is only one restriction on recursive type definitions, namely, they are not allowed to be cyclic, i.e. unguardedly
recursive. A type definition is cyclic if the following two conditions hold:

62 Chapter 2. Quick Tutorial for experienced functional programmers

disco, Release 1.0

1. Repeated expansions of the type definition yield solely type definitions.

2. The same type definition is encountered twice during repeated expansion.

For example:

-- Foo is not allowed because it expands to itself.
type Foo = Foo
-- Bar is not allowed: it expands to Baz which expands to Bar.
type Bar = Baz
type Baz = Bar

-- Pair is OK (though rather useless) because it expands to a
-- top-level type former (product) which is not a type definition.
type Pair = Pair * Pair

2.12 Containers

Coming soon!

Topics to cover:

• warning: under construction

• lists, bags, and sets

– literal syntax

– conversion functions

• built-in functions:

– map

– reduce

– filter

– join

– union, intersection, etc.

– merge

– size

• comprehensions

2.13 Properties

Each disco definition may have any number of associated properties, mathematical claims about the behavior of the
definition which can be automatically verified by disco. Properties begin with !!!, must occur just before their
associated definition, and may be arbitrarily interleaved with documentation lines beginning with |||.

2.13.1 Unit tests

The simplest kind of property is just an expression of type Bool, which essentially functions as a unit test. When
loading a file, disco will check that all such properties evaluate to true, and present an error message if any do not.

2.12. Containers 63

disco, Release 1.0

Listing 23: example/unit-test.disco

!!! gcd(7,6) == 1
!!! gcd(12,18) == 6
!!! gcd(0,0) == 0

gcd : N * N -> N
gcd(a,0) = a
gcd(a,b) = gcd(b, a mod b)

When we load this file, disco reports that it successfully ran the tests associated with gcd:

Disco> :load example/unit-test.disco
Loading example/unit-test.disco...
Running tests...

gcd: OK
Loaded.

On the other hand, if we change the first property to !!! gcd(7,6) = 2 and load the file again, we get an error:

Disco> :load example/unit-test.disco
Loading example/unit-test.disco...
Running tests...

gcd:
- Test result mismatch for: gcd (7, 6) = 2
- Expected: 2
- But got: 1

Loaded.

2.13.2 Quantified properties

More generally, properties can contain universally quantified variables. The syntax for a universally quantified prop-
erty is as follows:

• the word forall (or the Unicode symbol);

• one or more comma-separated bindings, each consisting of a variable name, a colon, and a type;

• a period;

• and an arbitrary expression, which should have type Bool and which may refer to the variables bound by the
forall.

Such quantified properties have the obvious logical interpretation: they hold only if the given expression evaluates to
true for all possible values of the quantified variables.

Listing 24: example/property.disco

!!! x:Bool. neg (neg x) == x
neg : Bool -> Bool
neg x = not x

!!! p: N + N. plusIsoR (plusIso p) == p
plusIso : N + N -> N
plusIso (left n) = 2n
plusIso (right n) = 2n + 1

(continues on next page)

64 Chapter 2. Quick Tutorial for experienced functional programmers

disco, Release 1.0

(continued from previous page)

!!! n:N. plusIso (plusIsoR n) == n
plusIsoR : N -> N + N
plusIsoR n =
{? left (n // 2) if 2 divides n
, right (n // 2) otherwise
?}

!!! forall x:N, y:N, z:N.
f(f(x,y), z) == f(x, f(y,z))

f : N*N -> N
f (x,y) = x + x*y + y

In the example above, the first three properties have a single quantified variable, and specify respectively that neg
is self-inverse, and plusIso and plusIsoR are inverse. The last function has a property with multiple quantified
variables, and specifies that f is associative. Notice that as in this last example, properties may extend onto multiple
lines, as long as subsequent lines are indented. Only a single !!! should be used at the start of each property.

Such properties may be undecidable in general, so disco cannot automatically prove them. Instead, it searches for
counterexamples. If the input space is finite and sufficiently small (as in the first example above, which quantifies
over a single boolean), disco will enumerate all possible inputs and check each one; so in this special case, disco can
actually prove the property by exhaustively checking all cases. Otherwise, disco randomly generates a certain number
of inputs (a la QuickCheck) and checks that the property is satisfied for each. If a counterexample is found, the
property certainly does not hold, and the counterexample can be printed. If no counterexample is found, the property
“probably” holds.

For example, consider this function with a property claiming it is associative:

Listing 25: example/failing/property.disco

!!! forall x:N, y:N, z:N.
f(f(x,y), z) = f(x, f(y,z))

f : N*N -> N
f (x,y) = x + 2*y

The function is not associative, however, and if we try to load this file disco quickly finds a counterexample:

Disco> :load example/failing/property.disco
Loading example/failing/property.disco...
Running tests...

f:
- Test result mismatch for: x : , y : , z : . f (f (x, y), z) = f (x, f (y, z))
- Expected: 5
- But got: 3
Counterexample:

x = 1
y = 0
z = 1

Loaded.

2.13. Properties 65

	Disco Language Reference
	Quick Tutorial for experienced functional programmers

