

 Navigation

 	
 index

 	
 next |

 	dinero 0.0.1 documentation

dinero - payment processing for Python

Dinero is library for Python that provides a clean minimal interface for
payment processing. It abstracts the differences between different payment
gateways in order for you not to have to learn each one in depth.

Usage

	Payments 101

	Quickstart

	Gateways

	Transactions

	Customers

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Fusionbox.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dinero 0.0.1 documentation

Payments 101

Note

This document aims to introduce a developer to what is involved in taking
online payments. If you already have experience with online payments, then
you can probably skip ahead to the Quickstart.

There are a lot of pieces involved in accepting payments. The first thing you
need in order to accept payments is a merchant account. Then you need a
payment gateway. Then you need code which talks to the payment gateway.
Associated with the merchant account is a payment processor. The payment
processor talks to credit card companies. All of these pieces add up together
in order for an end user to enter their credit card and you to receive money
from them.

There seem to be two paradigms in online payments. One is the PayPal paradigm,
where customers are redirected off site to the PayPal site where they log into
their PayPal account and confirm the payment on that site and then are
redirected back to your website afterwards. Examples of PayPal-style payment
providers include, of course, PayPal, Amazon Payments, and Google Wallet.

The other paradigm is sometimes called the server-to-server paradigm. With
server-to-server, users are not redirected off of your site, your server code
will communicate the necessary data to the gateway behind the scenes.
Server-to-server payments give you (the developer) complete control of the
customer experience. Server-to-server payments also give you more control of
information management and recurring payments. Examples of server-to-server
providers include Authorize.Net, Braintree payments, and Stripe.

Merchant Account

A merchant account is a special type of bank account that can receive credit
card transactions. To protect against fraud, opening a merchant account is
something of an involved process.

Todo

Explain how to get a merchant account???

Payment Gateway

Payment gateways are what communicate between the credit card processors and
your merchant account. There are several credit card processors these days,
but the major ones include Authorize.Net, Braintree Payments, and Stripe.

Braintree and Stripe both offer accounts that don’t require merchant accounts.
If you are familiar with Square, this is quite similar. These accounts are
more convenient in that you don’t have to go through the hassle of getting a
merchant account and you don’t have to pay the merchant account fees. However,
the pricing for this type of account is generally higher per transaction
(almost always 2.9% + 30¢ per transaction).

Stripe and merchant account-less Braintree accounts are good for companies that
are just starting out who don’t expect to have large transactions. Often it is
cheaper to have one of these accounts because the high transaction fees are
still smaller than the monthly fees associated with merchant accounts.

Authorize.Net or merchant account-backed Braintree accounts are more suitable
for website that expect high volume or high priced transactions, or for
companies that also want to do offline payments as well.

Features

Payment gateways usually offer a variation on the same list of features.

Transactions

The usual process for transaction is as follows:

	Send a payment to the gateway. The gateway will validate the payment and
then send it to the processor who will validate that the credit card is
real and “authorize” the payment. Validating means checking that the
credit card number is real, that the CVV code matches or that the address
is correct. Authorization is a fancy word for making sure that the credit
card actually has money for the payment.

	Then you submit the payment for settlement. This means that you wish the
payment to actually go through. Payments are usually settled once a day.
Settlement is the actually process of transferring the money.

Prior to a payment being settled, it can be voided. If a payment is neither
settled nor voided within 30 days, it goes away. A processor may charge you a
fee if you leave a payment suspended like that.

After a payment has been settled, you may refund all or part of a payment.
This process takes the money from your merchant account and gives it back to
the customer.

Note

It is possible to charge a credit card with only the number and the
expiration date. Name on card, CVV code, and billing address are all
optional fields. However, if you ask for CVV code and/or billing address
you can verify your transaction more soundly.

With certain payment gateways, more verified qualify for better rates.
There is a lot of risk involved for the payment companies and they will
charge more when they are worried about fraud.

Vaulting

If you store a customer’s credit card information on your server, you are
exposing yourself to some big liabilities. There is this thing called PCI
compliance which is sort of a list of regulations that you need to conform to
when processing credit cards. It is much preferable to store that information
with the gateway, who can afford those risks. The vaulting process is
something similar to the following:

	Collect the customer’s credit card information on your website. It is
especially important to avoid storing (or logging!) the credit card number
or the CVV code.

	Send the information to the gateway. The gateway will give you a token or
and ID that you can use to reference the credit card. You don’t have
access to the credit card number anymore, but that is probably for the
best.

Note

Some payment gateways offer solutions for storing credit card information
that never need to touch your server. These are very convenient because
they may help avoid the need for you to have a PCI compliant website.

Older implementations of this included redirects to the gateway website to
display the form. This may not be acceptable for some websites because it
makes it difficult to control the customer experience and also to track the
customer.

Newer solutions include JavaScript libraries that allow you to capture the
credit card information in the browser and communicate to the gateway over
AJAX. This allows you to have complete control over the interface, but may
not be the perfect solution for everyone.

Alternatives

There are some alternative online payment providers that have been cropping up
recently. Because of the hassles involved with credit card risk and dealing
with credit card processors, there are some companies like Dwolla or
GoCardless, that are skipping credit cards and connect directly to your bank
account for payments. These providers seems to have drastically lower fees,
but at the downside of requiring a user to enter their bank account
information.

Additionally, if you need to make bi-directional payments, it is kind of
difficult with the traditional gateway. Balanced Payments and Stripe Connect
are geared more towards marketplaces where the website collects money for its
users.

 Copyright 2012, Fusionbox.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dinero 0.0.1 documentation

Quickstart

1. Configure

The first thing you need to do in order to use dinero is to configure your
gateways(s). The following example would be configuration for an Authorize.Net gateway:

import dinero

dinero.configure({
 # a name that you can remember
 'auth.net': {
 'type': 'dinero.gateways.AuthorizeNet',
 'default': True,
 # Gateway specific configuration
 'login_id': 'XXX',
 'transaction_key': 'XXX',
 }
})

2. Make Transactions

Now that you have a gateway configured, you can create transactions.

transcation = dinero.Transaction.create(
 price=2000,
 number='4111111111111111',
 month='12',
 year='2012',
)

3. Profit

Well that’s up to you now isn’t it.

 Copyright 2012, Fusionbox.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dinero 0.0.1 documentation

Gateways

A payment gateway is what takes the credit card information and changes that
into money in your bank account. Dinero currently supports Authorize.Net and
has some support for Braintree Payments.

In order to use dinero, you must first configure a gateway. The basic configuration looks like:

import dinero

dinero.configure({
 'foo': {
 'type': 'XXX',
 'default': True,
 # ...
 },
})

where foo is a reference name for you to remember. The type is the
class that implements the gateway. Dinero currently has the following gateway types:

	dinero.gateways.AuthorizeNet

	dinero.gateways.Braintree (incomplete implementation)

The gateway marked default will be used by default when creating transactions.

	
class dinero.gateways.AuthorizeNet

	

The Authorize.Net gateway requires the following packages.

	requests

	lxml

In order to configure the Authorize.Net gateway, you need the Login ID and the
Transaction Key.

import dinero

dinero.configure({
 'foo': {
 'type': 'dinero.gateways.AuthorizeNet',
 'default': True,
 'login_id': 'XXX',
 'transaction_key': 'XXX',
 },
})

 Copyright 2012, Fusionbox.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dinero 0.0.1 documentation

Transactions

Transaction objects contain data about payments. Every transaction object has
a transaction_id and a price.

You can create a basic credit card transaction by using
Transaction.create():

>>> import dinero
>>> transaction = dinero.Transaction.create(
 price=200,
 number='4111111111111111',
 month='12',
 year='2015',
)
>>> transaction.transaction_id
'0123456789'

This will charge the credit card $200. If you store the transaction_id,
you can later retrieve the transaction object.

>>> transaction = dinero.Transaction.retrieve('0123456789')
>>> transaction.price
200

Note

Like many methods in dinero, Transaction.create() and Transaction.retrieve()
accept a gateway_name parameter. This parameter corresponds with the
gateway name that you created when configuring your gateways.

If you had the following configuration:

import dinero
dinero.configure({
 'new-auth.net': {
 'type': 'dinero.gateways.AuthorizeNet',
 'default': True,
 ...
 },
 'old-auth.net': {
 'type': 'dinero.gateways.AuthorizeNet',
 ...
 },
})

If you don’t specify gateway_name, it will use new-auth.net. If
you wanted to use old-auth.net, you could do something like the
following:

dinero.Transaction.create(
 gateway_name='old-auth.net',
 price=200,
 ...
)

When you have a transaction object, you can refund it:

transaction.refund()

If a transaction has not yet been settled, the transaction will simply be
voided, otherwise an actual refund will take place. If a transaction has
settled, you can pass refund the optional amount argument, in case you only
want to give a partial refund.

transaction.refund(100)

Delayed Settlement

By default, dinero will automatically submit a transaction for settlement,
however you can override this by setting the settle argument to False.
When you need to settle a transaction, you can call
Transaction.settle():

transaction = dinero.Transaction.create(
 price=200,
 number='4111111111111111',
 month='12',
 year='2015',
 settle=False,
)

...

transaction.settle()

If you need to cancel a transaction instead of settling it, just call
Transaction.refund().

API

	
class dinero.Transaction(gateway_name, price, transaction_id, **kwargs)[source]

	Transaction is an abstraction over payments in a gateway. This is
the interface for creating payments.

	
classmethod create(price, **kwargs)[source]

	Creates a payment. This method will actually charge your customer.
create() can be called in several different ways.

You can call this with the credit card information directly.

Transaction.create(
 price=200,
 number='4111111111111111',
 year='2015',
 month='12',

 # optional
 first_name='John',
 last_name='Smith,'
 zip='12345',
 address='123 Elm St',
 city='Denver',
 state='CO',
 cvv='900',
 email='johnsmith@example.com',
)

If you have a dinero.Customer object, you can create a
transaction against the customer.

customer = Customer.create(
 ...
)

Transaction.create(
 price=200,
 customer=customer,
)

Other payment options include card and check. See
dinero.CreditCard for more information.

	
classmethod retrieve(transaction_id[, gateway_name=None])[source]

	Fetches a transaction object from the gateway.

	
refund([amount=None])[source]

	If amount is None dinero will refund the full price of the
transaction.

Payment gateways often allow you to refund only a certain amount of
money from a transaction. Refund abstracts the difference between
refunding and voiding a payment so that normally you don’t need to
worry about it. However, please note that you can only refund the
entire amount of a transaction before it is settled.

	
settle([amount=None])[source]

	If you create a transaction without settling it, you can settle it with
this method. It is possible to settle only part of a transaction. If
amount is None, the full transaction price is settled.

 Copyright 2012, Fusionbox.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	dinero 0.0.1 documentation

Customers

Payment gateways allow you to store information about your customers. They let
you store credit cards securely so that you can remember cards without actually
storing the sensitive information on your server. If your database is
compromised you won’t leak all of your customers’ information.

We have two objects that you can use to manage your customers’ data.

Customers

The Customer class provides an interface quite similar to
Transaction. To create a customer, you use Customer.create():

>>> customer = Customer.create(
 email='bill@example.com',
 number='4111111111111111',
 cvv='900',
 address='123 Elm St',
 zip='12345',
)
>>> customer.customer_id
'1234567890'
>>> customer.card_id
'0000101010'

Todo

Are the credit card fields required when creating a Customer? Dinero
doesn’t really require it, but Authorize.Net seems to require you put
either a credit card or a bank account (see page 14 of Authorize.Net’s CIM
XML Guide [http://www.authorize.net/support/CIM_XML_guide.pdf]).

Similarly, you can also retrieve customers. However, whereas transactions are
not really editable, if you want to update a customer’s information you can.
Just call the Customer.save() method when you have made your changes.

>>> customer = Customer.retrieve('1234567890')
>>> customer.email = 'fred@example.com'
>>> customer.save()

You wouldn’t really have a use for storing a customer’s payment data if you
weren’t actually going to use it. If you want to charge a customer,
Transaction.create() accepts a Customer object:

customer = Customer.retrieve('1234567890')

transaction = Transaction.create(
 price=200,
 customer=customer,
)

Credit Cards

Every Customer also has list of credit cards that can be accessed at
customer.cards.

When you create your Customer, it will create the first card:

>>> customer = Customer.create(
 email='bill@example.com',
 number='4111111111111111',
 cvv='900',
 address='123 Elm St',
 zip='12345',
)
>>> card = customer.cards[0]
>>> card.last_4
'1111'

If you have a secondary card, you can add it using Customer.add_card().

customer.add_card(
 first_name='John',
 last_name='Smith',
 number='4222222222222',
 cvv='900',
 address='123 Elm St',
 zip='12345',
)

The CreditCard class is editable like Customer:

card.first_name = 'Fred'
card.save()

Note

When you create a CreditCard, it will be validated. This is quite
useful if you are going to store a credit card and charge it later when you
don’t have access to the user to fix the information.

address and zip are required by Visa when doing a Zero-Dollar
Authorization. This is a special process for validating that a card is
real without actually charging money to it. For other credit card types,
1¢ is usually charged and immediately voided when validating a credit card.

When you are testing your payments application, you may need to input
credit cards that validate. Here is a list of test credit card numbers [http://www.paypalobjects.com/en_US/vhelp/paypalmanager_help/credit_card_numbers.htm].

API

Todo

Provide a list of fields that an instance will always have for Customer and
CreditCard.

	Customer

	
	customer_id

	first_name

	last_name

	email

	cards

	Card

	
	customer_id

	card_id

	last_4

	
class dinero.Customer(customer_id, **kwargs)[source]

	A Customer object stores information about your customers.

	
classmethod create(email, **kwargs)[source]

	Creates and stores a customer object. When you first create a
customer, you are required to also pass in arguments for a credit card.

Customer.create(
 email='bill@example.com',

 # required for credit card
 number='4111111111111111',
 cvv='900',
 month='12',
 year='2015',
 address='123 Elm St.',
 zip='12345',
)

This method also accepts gateway_name.

	
classmethod retrieve(customer_id[, gateway_name=None])[source]

	Fetches a customer object from the gateway. This optionally accepts a
gateway_name parameter.

	
save()[source]

	Saves changes to a customer object.

	
delete()[source]

	Deletes a customer object from the gateway.

	
cards

	Contains a list of all the cards associated with a customer. This is
populated by create() and retrieve() and appended to by
add_card().

	
add_card(*args, **kwargs)[source]

	The first credit card is added when you call create(), but you
can add more cards using this method.

customer.add_card(
 number='4222222222222',
 cvv='900',
 month='12'
 year='2015'
 address='123 Elm St',
 zip='12345',
)

	
class dinero.CreditCard(customer_id, card_id, **kwargs)[source]

	A representation of a credit card to be stored in the gateway.

	
save()[source]

	Save changes to a card to the gateway.

	
delete()[source]

	Delete a card from the gateway.

 Copyright 2012, Fusionbox.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	dinero 0.0.1 documentation

Index

 A
 | C
 | D
 | R
 | S
 | T

A

 	

 	add_card() (dinero.Customer method)

C

 	

 	cards (dinero.Customer attribute)

 	create() (dinero.Customer class method)

 	

 	(dinero.Transaction class method)

 	

 	CreditCard (class in dinero)

 	Customer (class in dinero)

D

 	

 	delete() (dinero.CreditCard method)

 	

 	(dinero.Customer method)

 	

 	dinero.gateways.AuthorizeNet (built-in class)

R

 	

 	refund() (dinero.Transaction method)

 	

 	retrieve() (dinero.Customer class method)

 	

 	(dinero.Transaction class method)

S

 	

 	save() (dinero.CreditCard method)

 	

 	(dinero.Customer method)

 	

 	settle() (dinero.Transaction method)

T

 	

 	Transaction (class in dinero)

 Copyright 2012, Fusionbox.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		dinero 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Fusionbox.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_modules/dinero/customer.html

 Navigation

 		
 index

 		dinero 0.0.1 documentation »

 		Module code »

 Source code for dinero.customer

from dinero import get_gateway
from dinero.exceptions import InvalidCustomerException
from dinero.log import log
from dinero.card import CreditCard
from dinero.base import DineroObject

[docs]class Customer(DineroObject):
 """
 A :class:`Customer` object stores information about your customers.
 """

 @classmethod
 @log
[docs] def create(cls, gateway_name=None, **kwargs):
 """
 Creates and stores a customer object. When you first create a
 customer, you are required to also pass in arguments for a credit card. ::

 Customer.create(
 email='bill@example.com',

 # required for credit card
 number='4111111111111111',
 cvv='900',
 month='12',
 year='2015',
 address='123 Elm St.',
 zip='12345',
)

 This method also accepts ``gateway_name``.
 """
 gateway = get_gateway(gateway_name)
 resp = gateway.create_customer(kwargs)
 return cls(gateway_name=gateway.name, **resp)

 @classmethod
 @log
[docs] def retrieve(cls, customer_id, gateway_name=None):
 """
 Fetches a customer object from the gateway. This optionally accepts a
 ``gateway_name`` parameter.
 """
 gateway = get_gateway(gateway_name)
 resp, cards = gateway.retrieve_customer(customer_id)
 # resp must have customer_id in it
 customer = cls(gateway_name=gateway.name, **resp)
 for card in cards:
 customer.cards.append(CreditCard(
 gateway_name=gateway.name,
 **card
))
 return customer

 def __init__(self, gateway_name, customer_id, **kwargs):
 self.gateway_name = gateway_name
 self.customer_id = customer_id
 self.data = kwargs
 self.data['cards'] = []

 def update(self, options):
 for key, value in options.iteritems():
 setattr(self, key, value)

 @log
[docs] def save(self):
 """
 Saves changes to a customer object.
 """
 if not self.customer_id:
 raise InvalidCustomerException("Cannot save a customer that doesn't have a customer_id")
 gateway = get_gateway(self.gateway_name)
 gateway.update_customer(self.customer_id, self.data)
 return True

 @log
[docs] def delete(self):
 """
 Deletes a customer object from the gateway.
 """
 if not self.customer_id:
 raise InvalidCustomerException("Cannot delete a customer that doesn't have a customer_id")
 gateway = get_gateway(self.gateway_name)
 gateway.delete_customer(self.customer_id)
 self.customer_id = None
 return True

 @log
[docs] def add_card(self, gateway_name=None, **options):
 """
 The first credit card is added when you call :meth:`create`, but you
 can add more cards using this method. ::

 customer.add_card(
 number='4222222222222',
 cvv='900',
 month='12'
 year='2015'
 address='123 Elm St',
 zip='12345',
)
 """
 if not self.customer_id:
 raise InvalidCustomerException("Cannot add a card to a customer that doesn't have a customer_id")
 gateway = get_gateway(gateway_name)
 resp = gateway.add_card_to_customer(self, options)
 card = CreditCard(gateway_name=self.gateway_name, **resp)
 self.cards.append(card)
 return card

 def __setattr__(self, attr, val):
 if attr in ['gateway_name', 'customer_id', 'data']:
 self.__dict__[attr] = val
 else:
 self.data[attr] = val

 @classmethod
 def from_dict(cls, dict):
 return cls(dict['gateway_name'],
 dict['customer_id'],
 **dict['data']
)

 def __repr__(self):
 return "Customer({gateway_name!r}, {customer_id!r}, **{data!r})".format(**self.to_dict())

 © Copyright 2012, Fusionbox.
 Created using Sphinx 1.3.5.

_modules/dinero/card.html

 Navigation

 		
 index

 		dinero 0.0.1 documentation »

 		Module code »

 Source code for dinero.card

from dinero.log import log
from dinero import get_gateway
from dinero.base import DineroObject

[docs]class CreditCard(DineroObject):
 """
 A representation of a credit card to be stored in the gateway.
 """

 def __init__(self, gateway_name, customer_id, **kwargs):
 self.gateway_name = gateway_name
 self.customer_id = customer_id
 self.data = kwargs

 @log
[docs] def save(self):
 """
 Save changes to a card to the gateway.
 """
 gateway = get_gateway(self.gateway_name)
 gateway.update_card(self)

 @log
[docs] def delete(self):
 """
 Delete a card from the gateway.
 """
 gateway = get_gateway(self.gateway_name)
 gateway.delete_card(self)
 return True

 def __setattr__(self, attr, val):
 if attr in ['customer_id', 'data', 'gateway_name']:
 self.__dict__[attr] = val
 else:
 self.data[attr] = val

 @classmethod
 def from_dict(cls, dict):
 return cls(dict['gateway_name'],
 dict['customer_id'],
 **dict['data']
)

 def __repr__(self):
 return "CreditCard(({customer_id!r}, **{data!r})".format(**self.to_dict())

 © Copyright 2012, Fusionbox.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		dinero 0.0.1 documentation »

 All modules for which code is available

		dinero.card

		dinero.customer

		dinero.transaction

 © Copyright 2012, Fusionbox.
 Created using Sphinx 1.3.5.

_modules/dinero/transaction.html

 Navigation

 		
 index

 		dinero 0.0.1 documentation »

 		Module code »

 Source code for dinero.transaction

from dinero import exceptions, get_gateway
from dinero.log import log
from dinero.base import DineroObject

[docs]class Transaction(DineroObject):
 """
 :class:`Transaction` is an abstraction over payments in a gateway. This is
 the interface for creating payments.
 """

 @classmethod
 @log
[docs] def create(cls, price, gateway_name=None, **kwargs):
 """
 Creates a payment. This method will actually charge your customer.
 :meth:`create` can be called in several different ways.

 You can call this with the credit card information directly. ::

 Transaction.create(
 price=200,
 number='4111111111111111',
 year='2015',
 month='12',

 # optional
 first_name='John',
 last_name='Smith,'
 zip='12345',
 address='123 Elm St',
 city='Denver',
 state='CO',
 cvv='900',
 email='johnsmith@example.com',
)

 If you have a :class:`dinero.Customer` object, you can create a
 transaction against the customer. ::

 customer = Customer.create(
 ...
)

 Transaction.create(
 price=200,
 customer=customer,
)

 Other payment options include ``card`` and ``check``. See
 :class:`dinero.CreditCard` for more information.
 """
 gateway = get_gateway(gateway_name)
 resp = gateway.charge(price, kwargs)
 return cls(gateway_name=gateway.name, **resp)

 @classmethod
 @log
[docs] def retrieve(cls, transaction_id, gateway_name=None):
 """
 Fetches a transaction object from the gateway.
 """
 gateway = get_gateway(gateway_name)
 resp = gateway.retrieve(transaction_id)
 return cls(gateway_name=gateway.name, **resp)

 def __init__(self, gateway_name, price, transaction_id, **kwargs):
 self.gateway_name = gateway_name
 self.price = price
 self.transaction_id = transaction_id
 self.data = kwargs

 @log
[docs] def refund(self, amount=None):
 """
 If ``amount`` is None dinero will refund the full price of the
 transaction.

 Payment gateways often allow you to refund only a certain amount of
 money from a transaction. Refund abstracts the difference between
 refunding and voiding a payment so that normally you don't need to
 worry about it. However, please note that you can only refund the
 entire amount of a transaction before it is settled.
 """
 gateway = get_gateway(self.gateway_name)

 # TODO: can this implementation live in dinero.gateways.AuthorizeNet?
 try:
 return gateway.refund(self, amount or self.price)
 except exceptions.PaymentException:
 if amount is None or amount == self.price:
 return gateway.void(self)
 else:
 raise exceptions.PaymentException(
 "You cannot refund a transaction that hasn't been settled"
 " unless you refund it for the full amount."
)

 @log
[docs] def settle(self, amount=None):
 """
 If you create a transaction without settling it, you can settle it with
 this method. It is possible to settle only part of a transaction. If
 ``amount`` is None, the full transaction price is settled.
 """
 gateway = get_gateway(self.gateway_name)
 return gateway.settle(self, amount or self.price)

 def __setattr__(self, attr, val):
 if attr in ['gateway_name', 'transaction_id', 'price', 'data']:
 self.__dict__[attr] = val
 else:
 self.data[attr] = val

 @classmethod
 def from_dict(cls, dict):
 return cls(dict['gateway_name'],
 dict['price'],
 dict['transaction_id'],
 **dict['data']
)

 def __repr__(self):
 return "Transaction({gateway_name!r}, {price!r}, {transaction_id!r}, **{data!r})".format(**self.to_dict())

 def __eq__(self, other):
 if not isinstance(other, Transaction):
 return False
 return self.transaction_id == other.transaction_id

 © Copyright 2012, Fusionbox.
 Created using Sphinx 1.3.5.

